Wie künstliche Intelligenz hilft, Krankheiten zu bekämpfen

Die Herausforderungen im Gesundheitswesen sind gewaltig. Die Kosten steigen, das Geld ist knapp und die Margen sinken. Gleichzeitig fehlt es an Pflegepersonal, die vorhandenen Fachkräfte sind überarbeitet. Kliniken müssen effizient wirtschaften, um Patienten die bestmögliche Versorgung zu gewährleisten – und gleichzeitig Datensicherheits- und Compliance-Anforderungen bei der Verarbeitung der anfallenden Daten sicherstellen.

Der Einsatz von künstlicher Intelligenz (KI) kann dabei helfen, dieses Dilemma zu lösen. Algorithmen werden immer besser in dem, was sie tun – und sie arbeiten exakt, schnell und günstig. KI unterstützt in der Medizin und Forschung dabei, Patienten besser zu versorgen, indem beispielsweise Krankheiten früher erkannt werden können. Mit ihrer Hilfe könnten unter anderem die Gesundheitsausgaben in Europa in den kommenden zehn Jahren um einen dreistelligen Milliardenbetrag gesenkt werden, so das Ergebnis der PwC-Studie „Sherlock in Health – How artificial intelligence may improve quality and efficiency, whilst reducing healthcare costs in Europe“. Des Weiteren haben die meisten Patienten keine Berührungsängste: 54 Prozent wären demnach schon heute bereit, sich auf KI und Robotik in der Medizin einzulassen.

KI, ML und DL als medizinische Unterstützung

Algorithmen können in der Medizin auf unterschiedliche Weisen genutzt werden. KI beschäftigt sich mit Methoden, bei denen Computertechnologien es ermöglichen, menschliches Verhalten zu imitieren. Im Rahmen der medizinischen Bildgebung kann KI beispielsweise schnell Anomalien identifizieren, die für das menschliche Auge zu winzig erscheinen – oder große Datenmengen durchforsten. Ein Computertomograph erzeugt bis zu 640 Schnittbilder bei einem einzigen Scan. Wenn ein Radiologe sie ansehen und bewerten müsste, wäre das mit einem sehr hohen Zeitaufwand verbunden. Eine spezielle KI-Applikation kann die Bilder dagegen schnell analysieren und diejenigen markieren, welche Anomalien aufweisen. Die Radiologen können sich damit auf ihre Hauptaufgaben konzentrieren – Diagnose und Heilung. 

Ein weiteres Anwendungsgebiet von künstlicher Intelligenz innerhalb der Medizin ist der Einsatz von Intelligent Agents (IA), zum Beispiel für die Überwachung von Vitalwerten von Patienten oder als Kontrollmechanismus für die Arbeit des Pflegepersonals, der Ärzte oder Apotheker. Die Anwendungen überprüfen dann automatisch, ob die verschriebenen Medikamente und Therapien zum Krankheitsbild und zu den Werten des Patienten passen. 

Anwendungen aus dem Teilbereich der KI „Maschinelles Lernen (ML)“ lernen eigenständig dazu, je mehr Daten erfasst werden. Chirurgen können ML beispielsweise als Unterstützung verwenden, um den richtigen orthopädischen Eingriff nach einer Sportverletzung vorzubereiten. Die Technologie analysiert Patientendaten und kann die Unterschiede bei Knieverletzungen unterschiedlicher Sportarten sichtbar machen. So stehen dem Arzt detaillierte Informationen zur Verfügung, auf deren Basis er die Behandlung fortsetzt.

Deep Learning (DL) wiederum gilt als Teilbereich von ML und geht noch einen Schritt weiter, indem die Algorithmen nicht nur in der Lage sind, selbständig dazuzulernen, sondern sich auch kontinuierlich zu verbessern. So werden große Datenmengen verarbeitet, aus denen Wissenschaftler mögliche neue Erkenntnisse für Behandlungserfolge gewinnen können. Mit Hilfe von DL lassen sich beispielsweise bisher unbekannte Verbindungen zwischen bestimmten demografischen oder genetischen Indikatoren und unterschiedlichen Krankheiten aufdecken. Ebenso gibt es DL-Algorithmen, die mithilfe großer Datenmengen so trainiert werden, dass sie kleinste Veränderungen in der Zellstruktur erkennen können, die beispielsweise zu Brustkrebs führen. Die Fehlerquote bei der Brustkrebserkennung kann damit um bis zu 85 Prozent sinken, so eine Untersuchung von NVIDIA.

Komplexe KI-Projekte benötigen eine passende IT-Infrastruktur

Damit KI, ML und DL im Gesundheitswesen effektiv eingesetzt werden können, gibt es einige Grundvoraussetzungen. Zunächst einmal sind große Datenbestände notwendig. Diese werden genutzt, um die Algorithmen zu trainieren, damit sie akkurat und autonom arbeiten sowie Muster erkennen und genaue Vorhersagen treffen können. Dabei gilt es so viele Daten wie möglich zu berücksichtigen, unabhängig ob sie über verschiedene Systeme verteilt sind, aus unterschiedlichen Quellen stammen oder von mehreren unterschiedlichen Sensoren gesammelt wurden. Jedoch sollten sie eine hohe Datenqualität aufweisen. Darüber hinaus kann es sich um verschiedene Typen von Daten handeln (strukturiert, semi-strukturiert, unstrukturiert), die sich dynamisch entwickeln und verändern. 

Damit Daten überall dort verfügbar sind, wo sie gebraucht werden, gilt es Datensilos aufzulösen und miteinander zu verknüpfen. KI-Projekte stellen somit hohe Anforderungen an die IT-Infrastruktur hinsichtlich Datenverfügbarkeit und Datenqualität, Skalierbarkeit, Informationssicherheit sowie Genauigkeit mit hohen Ansprüchen an die Performance. Eine solch komplexe KI-Umgebung selbst zu planen, zu implementieren und zu unterhalten stellt viele Unternehmen vor große Herausforderungen. Es gibt jedoch schon umfassende Lösungen am Markt. Beispielsweise bietet NetApp zusammen mit NVIDIA und Cisco eine Lösung für die genannten Herausforderungen: ONTAP AI. Diese Architektur vereinfacht das komplette Datenmanagement: Informationen werden über das System sicher erfasst, weitergeleitet und verarbeitet, zum Training verwendet und analysiert.

ONTAP AI basiert auf einer verifizierten Architektur, die NVIDIA DGX-1 GPU‘s mit NetApp All Flash FAS Storage und Cisco Netzwerken zusammenführt und die Effizienz Ihrer KI-/DL-Umgebungen steigert. Herzstück von ONTAP AI ist die NVIDIA DGX-1, ein vollständig integriertes und sofort einsatzbereites Hardware- und Softwaresystem, das speziell für DL entwickelt wurde. Die DGX Plattform nutzt den Deep-Learning-Software-Stack der NVIDIA GPU Cloud, der für maximale GPU-beschleunigte DL-Performance optimiert wurde. Mit dem schnellen All-Flash-Storage und den weltweit ersten End-to-End NVMe-Technologien sorgen NetApp All Flash FAS Systeme für einen kontinuierlichen Datenfluss. So wird sichergestellt, dass die DGX-GPUs optimal mit Daten zur Verarbeitung versorgt werden und somit ein Flaschenhals hinsichtlich Datenbereitstellung durch die Storage-Systeme vermieden wird. 

Schnelle Diagnose

ONTAP AI kommt beispielsweise bei „BacillAi“ zum Einsatz, einem System zur Behandlung von Tuberkulose der Technologieberatungsfirma Cambridge Consultants. Tuberkulose ist die zweithäufigste Todesursache in Entwicklungsländern, da die Krankheit mit einer aufwendigen Diagnose verbunden ist: Zellen einer Speichelprobe müssen unter dem Mikroskop gezählt werden. Doch dafür gibt es nur wenig ausgebildetes medizinisches Personal. BacillAi vereinfacht diesen Schritt – und liefert zudem genauere und schnellere Ergebnisse. Ein Smartphone nimmt die Bilder der Speichelprobe von einem Standardmikroskop auf. Der DL-Algorithmus identifiziert Tuberkulose-Zellen, zählt sie und bestimmt das Stadium der Krankheit. Die Diagnose erhält der medizinische Mitarbeiter über eine App – somit ist das Ergebnis der Untersuchung zudem digitalisiert.

Fazit 

Künstliche Intelligenz kann das Gesundheitswesen revolutionieren. Unternehmen müssen dafür große Datenmengen aus unterschiedlichen Quellen erfassen, vorbereiten, verschieben, auf sie zugreifen und sie schützen. Damit KI, ML und DL-Projekte erfolgreich sind, brauchen Unternehmen aber eine effiziente Daten-Pipeline und eine Architektur, die eine hohe Performance, Sicherheit und Skalierbarkeit ermöglicht.

Weiter Informationen zum Thema finden Sie HIER.

Wie funktioniert Natural Language Processing in der Praxis? Ein Überblick

Natural Language Processing (NLP,auf Deutsch auch als Computerlinguistik bezeichnet) gilt als ein Teilbereich des Machine Learning und der Sprachwissenschaften.

Beim NLP geht es vom Prinzip um das Extrahieren und Verarbeiten von Informationen, die in den natürlichen Sprachen enthalten sind. Im Rahmen von NLP wird die natürliche Sprache durch den Rechner in Zahlenabfolgen umgewandelt. Diese Zahlenabfolgen kann wiederum der Rechner benutzen, um Rückschlüsse auf unsere Welt zu ziehen. Kurz gesagt erlaubt NLP dem Computer unsere Sprache in ihren verschiedenen Formen zu verarbeiten. 

Eine ausführlichere Definition von NLP wurde auf dem Data Science Blog von Christopher Kipp vorgenommen. 

In diesem Beitrag werde ich dagegen einen Überblick über die spezifischen Schritte im NLP als Prozess darstellen, denn NLP erfolgt in mehreren Phasen, die aufeinander Folgen und zum Teil als Kreislauf verstanden werden können. In ihren Grundlagen ähneln sich diese Phasen bei jeder NLP-Anwendung, sei es Chatbot Erstellung oder Sentiment Analyse.

1. Datenreinigung / Normalisierung 

In dieser Phase werden die rohen Sprachdaten aus ihrem ursprünglichen Format entnommen, sodass am Ende nur reine Textdaten ohne Format erhalten bleiben. 

Beispielsweise können die Textdaten für unsere Analyse aus Webseiten stammen und nach ihrer Erhebung in HTML Code eingebettet sein.

Das Bild zeigt eine Beispielseite. Der Text hier ist noch in einen HTML Kontext eingebettet. Der erste Schritt muss daher sein, den Text von den diversen HTML-Tags zu bereinigen. 

 

2. Tokenisierung und Normalisierung (Tokenizing and Normalizing) 

Nach dem ersten Schritt steht als Ergebnis idealerweise reiner Text da, der aber auch Sprachelemente wie Punkte, Kommata sowie Groß- und Kleinschreibung beinhaltet. 

Hier kommt der nächste Schritt ins Spiel – die Entfernung der Interpunktion vom Text. Der Text wird auf diese Weise auf seine Wort-Bestandteile (sog. Tokens) reduziert. 

Zusätzlich zu diesem Schritt kann auch Groß- und Kleinschreibung entfernt werden (Normalisierung). Dies spart vor allem die Rechenkapazität. 

So wird aus folgendem Abschnitt:

Auf diese Weise können wir die Daten aggregieren und in Subsets analysieren. Wir müssen nicht immer das ganze Machine Learning in Hadoop und Spark auf dem gesamten Datensatz starten.

folgender Text 

auf diese weise können wir die daten aggregieren und in subsets analysieren wir müssen nicht immer das ganze machine learning in hadoop und spark auf dem gesamten datensatz starten

 

3. Füllwörterentfernung / Stop words removal 

Im nächsten Schritt entfernen wir die sogenannten Füllwörter wie „und“, „sowie“, „etc.“. In den entsprechenden Python Bibliotheken sind die gängigen Füllwörter bereits gespeichert und können leicht entfernt werden. Trotzdem ist hier Vorsicht geboten. Die Bedeutung der Füllwörter in einer Sprache verändert sich je nach Kontext. Aus diesem Grund ist dieser Schritt optional und die zu entfernenden Füllwörter müssen kontextabhängig ausgewählt werden. 

Nach diesem Schritt bleibt dann in unserem Beispiel folgender Text erhalten: 

können daten aggregieren subsets analysieren müssen nicht immer machine learning hadoop spark datensatz starten

 

4. Pats of speech (POS) 
Als weiterer Schritt können die Wörter mit ihrer korrekten Wortart markiert werden. Der Rechner markiert sie entsprechend als Verben, Nomen, Adjektive etc. Dieser Schritt könnte für manche Fälle der Grundformreduktion/Lemmatization notwendig sein (dazu sogleich unten).

 

5. Stemming und Lemmatization/Grundformreduktion

In weiteren Schritten kann weiter das sogenannte Stemming und Lemmatization folgen. Vom Prinzip werden hier die einzelnen Wörter in ihre Grundform bzw. Wörterbuchform gebracht. 

Im Fall von Stemming werden die Wörter am Ende einfach abgeschnitten und auf den Wortstamm reduziert. So wäre zum Beispiel das Verb „gehen“, „geht“ auf die Form „geh“ reduziert. 

Im Fall der Lemmatization bzw. Grundformreduktion werden die Wörter in ihre ursprüngliche Wörterbuchform gebracht: das Verb „geht“ wäre dann ins „gehen“ transformiert. 

Parts of Speech, Stemming als auch Lemmatising sind vorteilhaft für die Komplexitätsreduktion. Sie führen deswegen zu mehr Effizienz und schnellerer Anwendbarkeit. Dies geschieht allerdings auf Kosten der Präzision. Die auf diese Weise erstellten Listen können dann im Fall einer Suchmaschine weniger relevante Ergebnisse liefern.

Nachfolgende Schritte beim NLP transformieren den Text in mathematische Zahlenfolgen, die der Rechner verstehen kann. Wie wir in diesem Schritt vorgehen, hängt stark davon ab, was das eigentliche Ziel des Projektes sei. Es gibt ein breites Angebot an Python Paketen, die die Zahlenbildung je nach Projektziel unterschiedlich gestalten

 

6a. Bag of Words Methoden in Python (https://en.wikipedia.org/wiki/Bag-of-words_model)

Zu den Bag of Words Methoden in Python gehört das sogenannte TF-IDF Vectorizer. Die Transformationsmethode mit dem TF-IDF eignet sich beispielsweise zum Bau eines Spamdetektors, da der TF-IDF Vectorizer die Wörter im Kontext des Gesamtdokumentes betrachtet.

 

6b. Word Embeddings Methoden in Python: Word2Vec, GloVe (https://en.wikipedia.org/wiki/Word_embedding)

Wie der Name bereits sagt transformiert Word2Vec die einzelnen Wörter zu Vektoren (Zahlenfolgen). Dabei werden ähnliche Wörter zu ähnlichen Vektoren transformiert. Die Methoden aus der Word Embeddings Kiste eignen sich zum Beispiel besser, um einen Chatbot zu erstellen. 

Im letzten Schritt des NLP können wir die so prozessierte Sprache in die gängigen Machine Learning Modelle einspeisen. Das Beste an den oben erwähnten NLP Techniken ist die Transformation der Sprache in Zahlensequenzen, die durch jeden ML Algorithmus analysiert werden können. Die weitere Vorgehensweise hängt hier nur noch vom Ziel des Projektes ab. 

Dies ist ein Überblick über die notwendigen (und optionalen) Schritte in einem NLP Verfahren. Natürlich hängt die Anwendung vom jeweiligen Use Case ab. Die hier beschriebenen NLP Phasen nehmen viele Ungenauigkeiten in Kauf, wie zum Beispiel die Reduzierung der Wörter auf Wortstämmen bzw. den Verzicht auf Großschreibung. Bei der Umsetzung in der Praxis müssen immer Kosten und Nutzen abgewogen werden und das Verfahren dem besonderen Fall angepasst werden. 

Quellen:
  • Mandy Gu: „Spam or Ham: Introduction to Natural Language Processing Part 2“ https://towardsdatascience.com/spam-or-ham-introduction-to-natural-language-processing-part-2-a0093185aebd
  • Christopher D. Manning, Prabhakar Raghavan & Hinrich Schütze: „Introduction to Information Retrieval”, Cambridge University Press, https://nlp.stanford.edu/IR-book/
  • Hobson Lane, Cole Howard, Hannes Max Hapke: „Natural Language Processing in Action. Understanding, analyzing, and generating text with Python.” Manning Shelter Island

NetApp INSIGHT™ 2020

Erleben Sie mit uns gemeinsam die NetApp INSIGHT™ 2020 am 24. und 25. März 2020 in Berlin! Wir zeigen Ihnen, wie Sie mit Ihrer eigenen Data Fabric Ihre hybride Multi-Cloud-Umgebung aufbauen können. Und das Beste? Sie hören nicht nur unsere Experten über die Data Fabric sprechen – Sie lernen, wie Sie Ihre eigene Data Fabric aufbauen können.

Verändern Sie Ihre Welt mit Daten.

Erfahren Sie gemeinsam mit anderen NetApp Kunden und Partnern, wie Sie mit Hilfe von Daten Innovation vorantreiben und so den Einsatz von KI und Ihre Applikationsentwicklung beschleunigen können. Tauschen Sie sich mit Gleichgesinnten aus und entdecken Sie neue Möglichkeiten, wie alle Unternehmensbereiche von der Leistungsfähigkeit der Cloud profitieren können. Lernen Sie NetApp Technologie in der Praxis kennen. Gewinnen Sie in interaktiven Breakout-Sessions tiefgehende Einblicke. Und auch der Spaß kommt dabei nicht zu kurz. 

Jetzt kostenlos registrieren


Die Tickets für unsere regionalen INSIGHT Veranstaltungen in EMEA sind in diesem Jahr kostenfrei. Wir bitten Sie jedoch, Ihre Anreise und Unterkunft individuell zu organisieren. Weitere Informationen finden Sie unter insight.netapp.com.

Herzliche Grüße,

Ihr NetApp INSIGHT Berlin Team

Mit den richtigen Prozessen zum Erfolg: vier Schritte zum Business-IT Alignment

Digitalisierung, Agilität, Tech-basiert: Sowohl in der IT-Transformation als auch im Business-Alignment stecken diese drei strategischen Schlagworte. Häufig sorgen sie jedoch nur für oberflächliche Veränderungen. Tatsächlich ist die Abstimmung von Business und IT für viele Unternehmen nach wie vor eine Herausforderung. Die Transformation ist schließlich keine einmalige Umstellung von A auf B, sondern ein dauerhafter Zustand der ständigen Veränderungen.


Read this article in English:

Stop processing the same mistakes! Four mistakes to business & IT alignment


Für ein erfolgreiches Business-IT Alignment benötigen Unternehmen vor allem adaptive Technologien. Nur so können sie mit den Entwicklungen in der Branche und dem zunehmend geforderten Kundenerlebnis auf Technologiebasis Schritt halten. Alignment bedeutet also, die bis dato als getrennt wahrgenommenen Bereiche Business und Technologie miteinander zu verbinden.

Von der Informations- zur Business-Technologie

Ob es um die Organisation von Geschäftsprozessen, die Kommunikation mit Kunden oder die Erbringung von Dienstleistungen geht: Informationstechnologie sorgt in all diesen Bereichen für Veränderungen. Dabei ist die Abstimmung von Business und IT für den Markteinfluss und das Wachstum mehr denn je von entscheidender Bedeutung. Auch wenn es keine vorherrschende Reorganisationsstrategie gibt, tendieren die meisten Unternehmen dazu, ihre IT zu dezentralisieren. Dadurch wird sie näher an die Endnutzer gebracht, die Wissensbasis verschmilzt zudem häufig mit der Geschäftsstrategie. 

Bei dieser Taktik stehen die Geschäftsziele im Mittelpunkt: Die IT kann die Dynamik des Unternehmens schneller mit permanenten Lösungen unterstützen und aufrechterhalten. Technologischer Fortschritt und Verbesserungen werden wiederum in aktuelle und zukünftige Strategien und Initiativen integriert. Besonders erfolgreiche Unternehmen zeichnen sich dadurch aus, dass sie strenge Organisationsstrukturen hinter sich lassen – die traditionelle Frage „In welcher Abteilung arbeiten Sie?“ wird zu „Wie arbeiten Sie?“.

Aber wie beweist die IT ihren Wert und gewinnt das Vertrauen der C-Suite? Laut Gartner haben fast 20% der Unternehmen bereits in Tools investiert, mit denen geschäftsrelevante Kennzahlen überwacht werden können. Bis 2021 sollen es voraussichtlich 60% sein. Das Problem ist jedoch, dass viele I&O-Führungskräfte nicht wissen, wo sie ansetzen sollen, wenn sie eine IT-Überwachungsstrategie initiieren. 

Vier Herausforderungen des Business-IT Alignments

CIOs stehen unter dem zunehmenden Druck, die wachsenden und sich verändernden digitalen Anforderungen zu erfüllen. Zugleich sollen sie auch die Betriebsumgebung mit neuen Funktionen ausstatten und nachweisen, dass die IT einer bestimmten Geschäftsstrategie entspricht. Unabhängig von der Größe eines Unternehmens gilt: Zukunftsorientierten Organisationen kann die Technologie konkrete Vorteile (wie Geschwindigkeit und Leistung) bieten, um operative und Umsatzziele effizient zu erreichen und die Innovationserwartungen ihrer Kunden zu erfüllen. Eine gute technologische Infrastruktur bereichert die Kultur, Effizienz und Kundenbeziehungen eines Unternehmens.

Von 0 auf 100: Business- und IT Alignment

Wer eine kontinuierliche Strategie implementiert, wird mit einer besser funktionierenden Organisation, mehr Gewinn und einem besseren ROI belohnt. Schließlich erreicht man seine Ziele mit weniger Aufwand und agiert dadurch effizienter. Natürlich gibt es keine Standardmethode für eine erfolgreiche Abstimmung. Eine Organisation, in der sich die IT- und Geschäftsstrategie im Einklang befindet, kann ihre Flexibilität und betriebliche Effizienz mit einer maßgeschneiderten Strategie deutlich verbessern. Dieser Kampf zwischen Effizienz und Effektivität war noch nie so entscheidend für das Überleben von Unternehmen wie heute.

In der Tat sind es vor allem erfolgreiche Unternehmen, die sich umfassend mit den Zusammenhängen zwischen IT und Business befassen und die Bedeutung dieser Synergie verstehen. Hervorragende Beispiele hierfür sind Amazon und Apple. Bei beiden Konzernen sind Technologie und technologische Innovation integraler Bestandteil der Betriebsstruktur. In einigen Fällen haben sie ihre Technologie- und Geschäftsstrategien sogar selbst entwickelt.

Konvergenz und Integration

Viele erfolgreiche Unternehmen haben die Effizienz ihrer Technologieinvestitionen gesteigert und die finanziellen und operativen Risiken, die mit geschäftlichen und technologischen Veränderungen einhergehen, erheblich reduziert.

Wenn das Tempo von Veränderungen und geschäftlicher Agilität derart hoch ist, muss man jedoch auch die Konvergenz und Integration einbeziehen und nicht nur die Abstimmung von IT und Business. Mit anderen Worten: Unternehmen müssen ihre Denkweise verändern und auf eine neue Ebene bringen, sodass sich alle Mitarbeiter auf die gemeinsame Schaffung von „echtem Mehrwert“ konzentrieren und schnell auf Kunden und Nutzer reagieren können.

Granulare Strategien

Fehlt eine granulare Strategie, können abweichende Abteilungsziele, Kulturen und Anreize dazu führen, dass Unternehmen zu viel Geld für Technologie ausgeben, ohne dadurch ihre geschäftlichen Herausforderungen zu lösen. Einfacher ausgedrückt: Beim Business-IT Alignment sollte die Technologie in die Strategie, Mission und Ziele eines Unternehmens integriert werden, um folgende Ziele zu erreichen: 

  • Schnellere Markteinführungszeit
  • Höhere Rentabilität
  • Besseres Kundenerlebnis
  • Bessere Zusammenarbeit
  • Mehr Unternehmens- und IT-Agilität
  • Strategische, technologische Transformation

Hot Topic

Sehen Sie sich die Webinaraufzeichnung Empowering Collaboration Between Business and IT mit Fabio Gammerino, Signavio Pre-Sales Consultant, an.

Das Potenzial von Prozessen: vier Schritte zum optimalen Business-IT Alignment

Business-IT Alignment erscheint vielen Organisationen als intuitiver Prozess. Dennoch haben  viele Unternehmen Schwierigkeiten, dieses hochgesteckte Ziel auch tatsächlich zu erreichen. Das liegt nicht nur daran, dass die Abstimmung von IT und Fachbereichen ein aufwendiger und langwieriger Prozess ist. 

Darüber hinaus besteht der Gesamtprozess aus vielen kleineren Teilprozessen. Diese Teilprozesse haben keinen definitiven Start- und Endpunkt, sondern beinhalten einige Lern- und Umsetzungszyklen, die das Gesamtziel schrittweise vorantreiben. Sie sind also keine simplen Lösungen. Durch den Aufbau einer gemeinsamen Sprache und abteilungsübergreifender Beziehungen, die Gewährleistung von Transparenz und die Entwicklung präziser, unternehmensweiter Maßnahmepläne wird eine Brücke zwischen den beiden Bereichen geschaffen.

Vier Schritte zur optimalen Positionierung Ihrer Business-IT Alignment-Strategie:

  1. Planen: Wandeln Sie Geschäftsziele in messbare IT-Services um, sodass Ressourcen effektiv zur Verbesserung von Umsatz und ROI genutzt werde können – dieser Schritt erfordert eine kontinuierliche Kommunikation zwischen den Unternehmens- und IT-Verantwortlichen.
  2. Modellieren: Die IT-Abteilung entwirft eine Infrastruktur zur Optimierung und Verbesserung der geschäftlichen Prozesse. Die IT-Abteilung muss die geschäftlichen Anforderungen verstehen und sicherstellen, dass sie Systeme implementiert, die für das Unternehmen von entscheidender Bedeutung sind.
  3. Verwalten: Der Service erfolgt auf Basis der Unternehmensziele und -erwartungen. Die IT muss als zentraler Ansprechpartner für Serviceanfragen fungieren und auf diese Anfragen entsprechend der vordefinierten Prioritäten eingehen.
  4. Messen: Verbesserung der organisationsweiten Transparenz und der Service Level Commitments. Obgleich Kennzahlen von entscheidender Bedeutung sind, ist es weitaus wichtiger, dass die IT einen Geschäftskontext für die von ihnen gemessenen Daten und eine klare Beziehung zwischen den gemessenen Parametern und den Geschäftszielen sicherstellt.

Die Meinung von Signavio

Die vorübergehende Rotation von IT-Mitarbeitern innerhalb des Unternehmens ist eine der Hauptstrategien für die Ausrichtung von Business und IT, da hierdurch internes Wissen im Unternehmen geteilt wird. Diese Wissensweitergabe sorgt für eine bessere Beziehung zwischen der IT-Abteilung und anderen Unternehmensbereichen und erweitert die Kompetenzen, insbesondere bei neuen Mitarbeitern. Profunde Kenntnisse geben der Organisation mehr Flexibilität, gut ausgebildete Mitarbeiter bei Bedarf in anderen Rollen einzusetzen.

 

Kontaktieren Sie uns

Erfahren Sie, wie Signavio mit der Signavio Business Transformation Suite Ihr Unternehmen bei der IT-Transformation und operativen Exzellenz unterstützen kann. Registrieren Sie sich jetzt für eine kostenlose 30-Tage-Testversion.