Data Vault 2.0 – Flexible Datenmodellierung

Data Vault 2.0 ist ein Modellierungsansatz für Data Warehouse Systeme, der vor allem für Organisationen mit vielen Quellsystemen und sich häufig ändernden Daten sinnvoll ist.

Big Data mit Hadoop und Map Reduce!

Hadoop ist ein Softwareframework, mit dem sich große Datenmengen auf verteilten Systemen schnell verarbeiten lassen. Es verfügt über Mechanismen, welche eine stabile und fehlertolerante Funktionalität sicherstellen, sodass das Tool für die Datenverarbeitung im Big Data Umfeld bestens geeignet ist. In diesen Fällen ist eine normale relationale Datenbank oft nicht ausreichend, um die unstrukturierten Datenmengen kostengünstig und effizient abzuspeichern.

Training of Deep Learning AI models

Ein KI Projekt richtig umsetzen : So geht’s

Wir von DATANOMIQ und pixolution teilen unsere Erfahrungen aus Deep Learning Projekten, wo es vor allem um die Optimierung und Automatisierung von Unternehmensprozessen rund um visuelle Daten geht, etwa Bilder oder Videos.

Vorstellung des Verbundforschungsprojekts “What can AI do for me?”

Die wenigen Forschungsarbeiten stellen positive Auswirkungen, wie Produktoptimierung, Kosteneinsparung durch Optimierung des Ressourcenmanagements, Steigerung der allgemein Unternehmensperformance, etc. fest. Allerdings bleibt unerforscht welchen individuellen Beitrag spezifische Anwendungsfälle leisten. Dieses Wissen wird jedoch für strategische Entscheidungen bezüglich der Implementierung von AI benötigt, um beispielsweise den ROI von AI-Projekten schätzen zu können. Dazu soll die vorliegende Studie Einsicht bringen.

Kubernetes – der Steuermann für dein Big Data Projekt!

Kubernetes ist ein Container-Orchestrierungssystem. Damit lassen sich also Anwendungen auf verschiedene Container aufteilen, wodurch sie effizient und ausfallsicher ausgeführt werden können.

Wie kann man sich zum/r Data Scientist ausbilden lassen?

Anzeige Das allgegenwärtige Internet und die Digitalisierung haben heutzutage viele Veränderungen in den Geschäften überall auf der Welt mit sich gebracht. Aus diesem Grund wird Data Science immer wichtiger. In der Data Science werden große Datenmengen an Informationen aus allen Arten von Quellen gesammelt, sowohl aus strukturierten als auch aus unstrukturierten Daten. Dazu werden Techniken […]

process.science stellt neues Release vor

process.science, Spezialist in der Entwicklung von Process Mining Plugins für BI-Systeme, stellt seine überarbeitet Version ihres Produkts ps4pbi vor. Dem erweiterten Plugin für Microsoft Power BI spendiert process.science die folgenden Verbesserungen, welche in Kürze auch für ps4qlk, dem entsprechenden Plugin für Qlik Sense verfügbar sein werden.

Data Science mit Python - Buchempfehlung 2021

Data Science mit Python – Aktuelle Buchempfehlungen

Als Dozent für Data Science und Python Programmierung für Hochschulen und Unternehmen (Mitarbeiter-Training) werde ich natürlich immer wieder zu Literatur-Empfehlungen gefragt. Aus aktuellem Anlass gebe ich hiermit eine Empfehlung von Büchern, die ich auch für meine Trainingserklärungen und -beispiele verwende oder einfach generell empfehlen kann.

Business Intelligence – 5 Tips for better Reporting & Visualization

Data and BI Analysts often concentrate on learning a BI Tool, but the main thing to do is learn how to create good data visualization! BI reporting has become an indispensable part of any company. In Business Intelligence, companies sometimes have to choose between tools such as PowerBI, QlikSense, Tableau, MikroStrategy, Looker or DataStudio (and […]

Process Mining mit Fluxicon Disco – Artikelserie

Dieser Artikel der Artikelserie Process Mining Tools beschäftigt sich mit dem Anbieter Fluxicon. Das im Jahr 2010 gegründete Unternehmen, bis heute geführt von den zwei Gründern Dr. Anne Rozinat und Dr. Christian W. Günther, die beide bei Prof. Wil van der Aalst in Eindhoven promovierten, sowie einem weiteren Mitarbeiter, ist eines der ersten Tool-Anbieter für Process […]