Stichwort Datenkompetenz: Von Big Data zu Big Insights

Anzeige – Artikel des Data Science Blog Sponsors Qlik.com

Wer in einer Organisation mit Daten arbeiten möchte, sollte dazu befähigt werden – sonst bleiben wertvolle Einblicke unter Umständen verborgen

Aus der reinen Technologie-Perspektive ist Big Data nahezu grenzenlos: Prozessoren arbeiten immer schneller, die Kosten für Speicherplatz sinken kontinuierlich, Cloud-Dienste stellen ad hoc und flexibel auch riesige Speichervolumen zur Verfügung. Beste Voraussetzungen also für Big-Data-Enthusiasten? Könnte man meinen. Doch Big Data hat nicht von Haus aus Wert, Sinn oder Geschäftsnutzen. Der stellt sich erst ein, wenn die vielen verfügbaren Daten assoziativ und ohne Denk- oder Infrastruktur-Hürden neu kombiniert, analysiert und visualisiert – also wirklich smart – werden. Der Schlüssel dazu liegt in moderner Data Analytics Software, die unterschiedlichste Datenquellen und -formate verarbeiten und in Beziehung setzen kann – und so wertvolle neue Einsichten offenbart, die ohne Data Analytics im (Big-)Data-Lake abtauchen würden.

Reich an Daten – arm an Einsichten?

Entscheidend für den Erfolg von Big-Data-Projekten ist es, aus der Datenfülle die wirklich relevanten Zusammenhänge zu evaluieren – und nicht um des Sammelns willen Daten zu horten, die neue Einsichten eher zu- als aufdecken. Viele Organisationen befinden sich leider nach wie vor an diesem Punkt. Sie sind reich an Daten, aber nicht in der Lage, neue Informationen daraus zu extrahieren, die gute Ideen anstoßen, Innovation fördern und das Unternehmen nachhaltig weiterbringen. Es herrscht weitgehende Überforderung mit dem eigenen Datenschatz.

Wer in Big-Data-Technologien investiert, fragt früher oder später nach dem ROI seiner Investitionen. Dieser wird umso günstiger ausfallen, je leichter und passgenauer der Datennutzen an möglichst vielen Stellen im Unternehmen verfügbar ist. Hier gilt es zu erkennen, dass fast jeder im Unternehmen Daten gut nutzen kann und sich im Umgang mit ihnen sicher fühlen möchte, um seine Arbeit noch erfolgreicher zu machen – eine neue Untersuchung des Business-Intelligence-Experten Qlik beweist das.

88 Prozent sind überzeugt: Mit Daten läuft es besser

Demnach würden 66 Prozent der Befragten gerne mehr Zeit und Energie in ihre Datenkompetenz investieren – wenn es die Gelegenheit dazu gäbe. 88 Prozent der befragten Sachbearbeiter und ausführenden Kräfte sind überzeugt davon, dass sie mit adäquatem Datenzugang sowie mit den nötigen Befugnissen und Kompetenzen bessere Resultate im Job erreichen könnten. Doch nur 55 Prozent fühlen sich tatsächlich demensprechend ausgestattet und befähigt. Ganz anders das Bild unter Führungskräften: Unter diesen sind zwar 83 Prozent überzeugt davon, guten Zugang zu Daten zu haben – allerdings haben nur 26 Prozent der Chefs wirklich einen Ansatz gefunden, wie sie nutzbringend mit den Daten arbeiten können.

Das bedeutet: Zur datengetriebenen Arbeit sowie zur Unternehmenssteuerung und -entwicklung auf der Basis von Daten braucht nicht jeder im Unternehmen die gleichen Daten und Dashboards. Jedoch braucht jeder Mitarbeiter in der Organisation gleichermaßen die Möglichkeiten und Fähigkeiten, unkompliziert in den Daten zu forschen, die ihm persönlich helfen, seine Arbeit zu verbessern. Welche Ideen und Anschlussfragen die assoziative Data Discovery im Selfservice auslöst, ist vorher schwer zu sagen – Assoziation ist spontan. Daher gilt: Die Erkenntnis kommt beim Tun.

Aus diesem Grund verlangt wirkliche Innovation nach schrankenloser und intuitiver Datenarbeit, die Platz lässt für Ideen, für ungewöhnliche Datenkombinationen und für ein erfindungsreiches „Um-die-Ecke-Denken“. Lineare SQL-Abfragen können das nicht leisten – und entsprechen in ihren vordefinierten Pfaden nicht der wertvollen Kombinationskompetenz, die das menschliche Gehirn von Natur aus mitbringt.

Zukunftsweisende Data Analytics und Advanced Analytics versucht nicht, das Denken und Assoziieren zu ersetzen – sondern die kognitiven Prozesse des Anwenders zu unterstützen, sie zu erweitern und in ihren Möglichkeiten zu vervollständigen. So entsteht Augmented Intelligence: die intelligente Verknüpfung von menschlicher Ratio und technologischer Schnelligkeit, bzw. Vollständigkeit.

Zentral gemanagte Governance

Natürlich soll assoziatives und individuelles Daten-Handling nicht zum digitalen Selbstbedienungsladen führen. Um dennoch assoziative Analysen und freies Forschen in relevanten Daten zu gewährleisten, bewährt sich in der Selfservice-Datenanalyse zentral gesteuerte Governance mit rollenbasierter Datenverfügbarkeit und individuellen Zugriffsrechten als ideale Lösung.

Data Driven Thinking

Daten gelten als vierter Produktionsfaktor – diese Erkenntnis hat sich mittlerweile in den meisten Führungsetagen durchgesetzt. Während das Buzzword Big Data gerade wieder in der Senke verschwindet, wird nun vor allem von der Data Driven Company gesprochen, oder – im Kontext von I4.0 – von der Smart Factory.
Entsprechend haben die meisten Konzerne in den Aufbau einer Big-Data-Infrastruktur investiert und auch die größeren Mittelständler beginnen allmählich damit, einen Anfang zu setzen. Für den Anfang bedarf es jedoch gar nicht erst eine neue IT-Infrastruktur oder gar eine eigene Data Science Abteilung, ein richtiger Start zum datengetriebenen Unternehmen beginnt mit dem richtigen Mindset – ein Bewusst sein für Datenpotenziale.

Data Driven Thinking

Auch wenn es spezielle Lösungsanbieter anders verkaufen, ist nicht etwa eine bestimmte Datenbank oder eine bestimmte Analysemethodik für die Bewerkstelligung der Digitalisierung notwendig, sondern die datengetriebene Denkweise. In den Datenbeständen der Unternehmen und jenen aus weiteren bisher unerschlossenen Datenquellen stecken große Potenziale, die erkannt werden wollen. Es ist jedoch nicht notwendig, gleich als ersten Schritt jegliche Potenziale in Daten erkennen zu müssen, denn es ist viel hilfreicher, für aktuelle Problemstellungen die richtigen Daten zu suchen, in denen die Antworten für die Lösungen stecken könnten.

Data Driven Thinking oder auch kurz Data Thinking, wie angeblich von einem der ersten Chief Data Officer als solches bezeichnet und auch von meinem Chief Data Scientist Kollegen Klaas Bollhoefer beworben, ist die korrekte Bezeichnung für das richtige Mindset, mit dem sowohl aktuelle Probleme als auch deren Lösungen aus Daten heraus besser identifiziert werden können. Hierfür braucht man auch kein Data Scientist zu sein, es reicht bereits ein in den Grundzügen ausgeprägtes Bewusstsein für die Möglichkeiten der Datenauswertung – Ein Skill, der zeitnah für alle Führungskräfte zum Must-Have werden wird!

Data Scientists als Design Thinker

Was gerade in Europa vordergründig kritisiert wird: Es treffen traditionelle Denkmuster auf ganz neue Produkte und Dienste, mit immer schnelleren Entwicklungsprozessen und tendenziell kürzeren Lebenszyklen – eine zum Scheitern verurteilte Kombination und sicherlich auch einer der Gründe, warum us-amerikanische und auch chinesische Internetunternehmen hier die Nase vorn haben.

Ein zeitgemäßer Ansatz, der im Produktmanagement bereits etabliert ist und genau dort das letzte Quäntchen Innovationskraft freisetzt, ist Design Thinking. Dabei handelt es sich um einen iterativen Ideenfindungs und -validierungsprozess, bei dem die Wünsche und Bedürfnisse der Anwender durchgängig im Fokus stehen, im Hintergrund jedoch steht ein interdisziplinäres Team, dass ein Geschäftsmodell oder einen Geschäftsprozess unter Berücksichtigung des Kundenfeedbacks designed. Nutzer und Entwickler müssen dabei stets im engen Austausch stehen. Erste Ideen und Vorschläge werden bereits möglichst früh vorgestellt, damit bereits lange vor der Fertigstellung das Feedback der Anwender in die weitere Realisierung einfließen kann. Somit orientiert sich die gesamte Entwicklungsphase am Markt – Zu spät erkannte Fehlentwicklungen und Flops lassen sich weitgehend vermeiden. Design Thinker stellen dem Nutzer gezielte Fragen und analysieren dessen Abläufe (und nichts anderes tut ein Data Scientist, er beobachtet seine Welt jedoch viel umfassender, nämlich über jegliche zur Verfügung stehende Daten).

Der Design Thinking Prozess führt crossfunktionale Arbeitsgruppen durch  sechs  Phasen:

In der ersten Phase, dem Verstehen, definiert die Arbeitsgruppe den Problemraum. In der darauffolgenden Phase des Beobachtens ist es entscheidend, die Aktivitäten im Kontext, also vor Ort, durchzuführen und Anwender in ihrem jeweiligen Umfeld zu befragen. In der dritten Phase werden die gewonnenen Erkenntnisse zusammengetragen. In der nachfolgenden Phase der Ideenfindung entwickelt das Team zunächst eine  Vielzahl von Lösungsoptionen. Abschließend werden beim Prototyping, in der fünften Phase, konkrete Lösungen entwickelt, die in der letzten Phase an den Zielgruppen auf ihren Erfolg getestet werden.

Beim Design Thinking mag es zwar eine grundsätzliche Vorgabe für den Ablauf der Ideenfindung und -erprobung geben – der eigentliche Mehrwert steckt jedoch in der dafür nötigen Denkweise und der Einstellung gegenüber dem Experimentieren sowie die Arbeit in einem interdisziplinären Team.

Data Driven Business Cycle

Data Driven Thinking überträgt diesen Ansatz auf die Mehrwert-Generierung unter Einsatz von Datenanalytik und leistet einen Transfer dieser systematischen Herangehensweise an komplexe Problemstellungen im Hinblick auf die Realisierung dafür angesetzter Big Data Projekte. Design Thinking unter Nutzung von Big Data ist überaus mächtig, wenn es darum geht, kundenorientierte Produkte und Prozesse zu entwickeln. Im Data Driven Business Cycle werden für immer neue Ideen und Fragestellungen:

  1. Daten generiert und gesammelt
  2. Daten gesichert, verwaltet und aufbereitet
  3. Daten analysiert
  4. daraus Erkenntnisse gezogen

Aus diesen sich iterativ kreisenden Prozessen der Datennutzung entsteht ein Data Pool (oftmals auch als Data Lake bezeichnet), der immer wieder zum für die Beantwortung von Fragen genutzt werden kann.

Prinzipien des maschinellen Lernen verstehen lernen

Data Driven Thinking entsteht mit dem Bewusstsein für die Potenziale, die in Daten liegen. Noch wirkungsvoller wird diese Denkweise, wenn auch ein Bewusstsein für die Möglichkeiten der Datenauswertung vorhanden ist.

„Kinder, die heute nicht programmieren können, sind die Analphabeten der Zukunft.“ schimpfte Vorzeige-Unternehmer Frank Thelen kürzlich in einer Politik-Talkrunde und bekräftigte damit meine noch davor verkündete Meinung “Karriere ohne Programmier-Erfahrung wird nahezu undenkbar”, denn “Systeme der künstlichen Intelligenz werden in der Zukunft unseren Einkauf und die Warenlieferung übernehmen, unsere Autos fahren, unsere Buchhaltung erledigen, unser Geld optimal auf den Finanzmärkten anlegen und unsere Krankheiten frühzeitig diagnostizieren und die bestmögliche medizinische Behandlung vorgeben.”

Jetzt muss niemand zum Experten für die Entwicklung künstlicher Systeme werden, um hier schritthalten zu können. Ein grundsätzliches Verständnis von den unterschiedlichen Prinzipien des maschinellen Lernen kann jedoch dabei helfen, solche Systeme und die dazugehörigen Chancen und Risiken besser einschätzen zu können, denn diese werden uns in Alltag und Beruf vermehrt begegnen, dabei einen entscheidenden Einfluss auf den Erfolg des Data Driven Business ausüben.

 

Data Leader Guide – Call for Papers

Connected Industry e. V., der Verband für Digitalisierung und Vernetzung, sammelt wegweisende Anwendungsfälle rund um Digitalisierung und Data Science und fasst diese in einem Leitfaden zusammen, dem Data Leader Guide 2016.

data-leader-guide-cover

Welche Inhalte kommen in den Data Leader Guide?

Der Data Leader Guide konzentriert sich auf Anwendungsfälle aus dem deutschsprachigen Wirtschaftsraum D/A/CH. In diesem Data Leader Guide werden vornehmlich die praktisch umgesetzten Use Cases / Business Cases von Anwender-Unternehmen aus den Branchen Industrie/Produktion, Dienstleistungen, Finanzen und Handel praxisorientiert beschrieben.

Was ist das Ziel des Data Leader Guide?

Anhand greifbarer Erfahrungswerte soll Entscheidern, Entwicklern und sonstigen Interessenten eine Orientierung und der Zugang zu dieser komplexen Materie erleichtert werden. Von besonderem Nutzen ist dabei der branchenübergreifende Blickwinkel des Leitfadens, da der Wissenstransfer von anderen Industrien gerade bei Big Data nicht hoch genug eingeschätzt werden kann.

Wann wird der Data Leader Guide 2016 erscheinen?

Pünktlich zum Data Leader Day am 17. November 2016. Die Ausgaben werden als Druckversion sowie als digitale Version erscheinen.

Warum sollte Ihre Anwendungsfall bzw. Projekt nicht fehlen?

Ihr Projekt wird zum Aushängeschild für die Innovationskraft und des Fortschritts Ihres Unternehmens. Darüber hinaus unterstreicht es die Attraktivität Ihres Unternehmens für qualifizierten Nachwuchs aus dem IT- und ingenieurswissenschaftlichen Bereich. Schließlich ist die Aufnahme Ihres Anwendungsfalles in den Data Leader Guide eine der seltenen Möglichkeiten, diesen auch öffentlich zu präsentieren und somit die Leistung des gesamten Projekt-Teams zu würdigen.

Call for Papers

So bringen Sie Ihren Anwendungsfall in den Data Leader Guide:

Sie sind Geschäftsführer, CIO oder ein Mitarbeiter mit Verantwortung für ein Projekt mit starkem Bezug zur Digitalisierung, Big Data, Data Science oder Industrie 4.0? Dann sollten Sie Ihr Projekt für einen Eintrag in den Data Leader Guide von Connected Industry bewerben. Genauere Informationen, wie Sie Ihren Anwendungsfall (Use Case / Business Case) in den Data Leader Guide 2016 bringen, finden Sie über diesen Direktlink zum Connected Industry e.V.

Data Leader Day

Unser Event für Big Data Anwender – Data Leader Day

Mit Stolz und Freude darf ich verkünden, dass wir ausgehend von unserer Data Science Blog Community den Data Leader Day am 17. November in Berlin maßgeblich mitorganisieren werden!

Der große DataLeaderDay am 17. November 2016 in Berlin bringt das Silicon Valley nach Deutschland. Die Konferenz fokussiert dabei auf die beiden Megatrends in der Digitalwirtschaft: Data Science und Industrie 4.0. Erleben Sie auf dem Data Leader Day was jetzt möglich ist – von Pionieren und hochrangigen Anwendern.
dataleaderday-teilnehmer-logos

www.dataleaderday.com

Ein vielfältiges Programm mit Keynote, Präsentationen sowie Use & Business Cases zeigt Ihnen aus der Praxis, wie Sie die Digitalisierung im Unternehmen umsetzen und als neues Wertschöpfungsinstrument einsetzen können. Und das Wichtigste: Sie erleben, welche Wettbewerbsvorteile Sie mit diesen Technologien verwirklichen können. Der Networking-Hub bietet zudem viele Möglichkeiten um Spitzenkräfte zu treffen und um sich über neueste Technologien, Methoden und Entwicklungen auszutauschen.

Zielgruppe – und was Euch erwartet

Auf dem Event werden Entscheider in Führungsposition ihre erfolgreichen Big Data & Data Science Anwendungen präsentieren. Es wird für unterschiedliche Branchen und Fachbereiche viele Erfolgsstories geben, die Mut machen, selbst solche oder ähnliche Anwendungsfälle anzugehen. Ihr werdet mit den Entscheidern networken können!

– Persönliche Vermittlung für ein Karrieregespräch gesucht? Sprecht mich einfach an! –

Unser Data Leader Day richtet sich an Führungskräfte, die von der Digitalisierung bereits profitieren oder demnächst profitieren wollen, aber auch an technische Entwickler, die neue Impulse für erfolgreiche Big Data bzw. Smart Data Projekte mitnehmen möchten. Das Event ist exklusiv und nicht – wie sonst üblich – von Vertrieblern zum Verkauf designed, sondern von Anwendern für Anwender gemacht.

Ort, Programm und Agenda

Aktuelle Informationen zum Event finden sich auf der Event-Seite: www.dataleaderday.com

 

 

Fortbildungsangebote für Data Science und Data Engineering

Der Artikel “Was macht ein Data Scientist? Und was ein Data Engineer?” ist einer der beliebtesten dieser Plattform und immer wieder werde ich gefragt, wo man sich denn zum Data Scientist oder zum Data Engineer ausbilden lassen kann. Meine Antwort lautet meistens: Mit Selbststudium und Learning-by-Doing kann man sehr viel erreichen!

Es gibt jedoch viele Fortbildungsangebote, die einem Lerner das Lernen zwar nicht abnehmen, dieses jedoch didaktisch aufbereiten und modulweise vermitteln. Diejenigen Angebote, von denen wir von Teilnehmern hören, dass sie tatsächlich ihr Geld oder die Mühe wert sein sein sollen, nehmen wir von nun an in unseren Fortbildungskatalog auf.

[button link=”https://www.data-science-blog.com/ausbildung-fortbildung-studium-data-science/” icon=”link” color=”silver” text=”dark” window=”yes”]Zum Fortbildungskatalog![/button]

Master-Studium

Die beste Möglichkeit, Data Scientist oder Data Engineer zu werden, ist von Anfang an das richtige Studium auszuwählen, am besten bereits den Bachelor-Studiengang darauf ausgerichtet zu haben. Soweit mit bekannt, gibt es aber noch keinen Bachelor-Studiengang direkt für Data Science und das ist auch gut so, denn Data Science würde ich eher als Spezialisierung sehen, im Bachelor-Studium geht es aber um Grundwissen und das lernen von akademischer Methodik. Es gibt jedoch bereits ein breites Angebot an Master-Studiengängen, die direkt auf Data Science oder (Big) Data Engineering abzielen und die gute Nachricht: Diese Master-Studiengänge sind zugänglich für sehr viele Bachelor-Studiengänge, meistens mindestens für Bachelor-Absolventen der Mathematik, Informatik oder Ingenieurwissenschaften und sehr häufig auch für Absolventen der Wirtschafts- und Geisteswissenschaften. Voraussetzung sind meistens nur nachgewiesene Kenntnisse über die Grundlagen der Programmierung und der Statistik. Der diese Master-Studiengänge gerade erst angelaufen sind, der Trend jedoch viele Studierende verspricht, könnte für den Zugang jedoch eine sehr gute Bachelor-Abschlussnote Pflicht werden!

Ein Master-Studium mit Spezialisierung auf Data Science oder Big Data ist mit Sicherheit ein Aushängeschild für den eigenen Lebenslauf und ein Gewinn für die Glaubwürdigkeit, wenn man seine Karriere in der angewandten Datenwissenschaft plant.

Zertifikate – Frontalunterricht und Online-Kurse

Für wen ein Master-Studium irgendwie zu spät oder aus anderen Gründen nicht infrage kommt, reine Selbststudium mit einem guten Buch aber auch nicht reicht, kann eines der vielen Fortbildungsangebote mit Aussicht auf ein Zertifikat nutzen. Es gibt diverse Anbieter von Zertifizierungen zum Data Scientist oder Data Engineer.

Einige Angebote finden überwiegend vor Ort beim Anbieter statt, was von vielen Lernern bevorzugt wird, um dem Lernen und den Prüfungen nicht ausweichen zu können. Ein solches Beispiel ist das Zertifikatsprogramm der Fraunhofer ACADEMY.
Es gibt aber weit mehr Angebote, die rein online stattfinden. Meistens wird hier frontal über eine Sammlung von Videos gelehrt. Das wohl bekannteste Angebot an Video-Lehrgängen hat sicherlich Coursera.org.
Einige Anbieter gehen jedoch noch weiter, setzen daher nicht nur auf Videos, sondern vor allem auf richtig gute interaktive Online-Kurse, bei der jede Lektion eine praktische Übung bzw. kleine Prüfung über eine Entwicklungsumgebung in der Cloud darstellt. Solch ein Angebot bietet beispielsweise der interaktive Lehrgang von DataQuest.io.

SMART DATA Developer Conference

SMART DATA Developer Conference macht Softwareentwickler und IT-Professionals fit für Big Data

Nahezu alle befragten Unternehmen geben in der aktuellen Studie „Big Data Use Cases 2015“ der Business Application Research Center – BARC GmbH an, dass strategische Entscheidungen von Daten gestützt sind oder sogar alleinig auf Grundlage von Ergebnissen aus Big-Data-Analysen getroffen werden. Der Studie zufolge ist die größte Herausforderung für Unternehmen derzeit das fehlende fachliche oder technische Know-how. Genau hier setzt die SMART DATA Developer Conference an.

Big Data & Smart Analytics – Durchblick im Markt

Das gesamte Programm der Veranstaltung finden Sie unter smart-data-developer-conference.de/#program

„Nicht die Technik ist heute die Hürde für erfolgreiche Geschäftsmodelle, sondern das Kundenverständnis. Das erreicht man nur mit Smart Data“, so Michael Nolting, Sevenval Technologies GmbH und Keynotesprecher der SMART DATA Developer Conference.

[box type=”tick”]15% Rabatt bei Eingabe des Werbe-Codes: SMART16science[/box]

In seiner eröffnenden Session entwickelt er eine Matrix, die den Teilnehmer befähigt, verfügbare Technologie-Stacks zu bewerten: Welche Technologie und welcher Anbieter sind für den speziellen Anwendungsfall am besten geeignet? Mit dieser Entscheidungshilfe lassen sich Verfahren schnell vergleichen, damit das passende zuverlässig ermittelt wird.

Weitere Themen im Programm sind:

  • Batch & Stream Processing mit Google Dataflow
  • Datenanalysen mit Python und ApacheSpark
  • Datenqualität und –visualisierung
  • uvm

Die SMART DATA Developer Conference vom 18. – 19. April 2016 in München macht Softwareentwickler mit den Herausforderungen von Big Data vertraut. Im Konferenzprogramm erlangen sie Wissen zu Speicherung, Analyse, Plattformen und Tools. In kleinen Gruppen können sie am Workshoptag diese Technologien intensiv trainieren.

Leser des Data Science Blog erhalten mit dem Code SMART16science einen Rabatt von 15 % bei Anmeldung. Damit ist die Teilnahme an der Konferenz ab EUR 425 zzgl. MwSt. möglich oder an beiden Tagen ab EUR 935. Programm und Anmeldung unter smart-data-developer.de.

Mobilgeräte-Sicherheit

Safety first! Testen Sie Ihr Wissen rund um Mobile Device Management!

Mobile Device Management (MDM) unterstützt nicht nur der Verwaltung von mobilen Endgeräten und die Software- und Datenverteilung. Es ermöglicht vor allem, die nötige Sicherheit, Transparenz und Kontrolle beim Einsatz von Smartphones und Tablets zu schaffen.

Sicherheit ist das A und O bei der unternehmensinternen Nutzung von Mobilgeräten. Neben der klassischen Geräteverwaltung bilden deshalb Security-Funktionen wie Datenverschlüsselung, Remote-Recovery, App Blacklists und ein Malware-Schutz die Hauptpfeiler von MDM-Lösungen.

Zuverlässige Schutzfunktionen sollen vor allem verhindern, dass interne Daten unkontrolliert das Unternehmen verlassen. Zu diesem Zweck sorgt ein MDM-Client auf dem mobilen Device für die Einhaltung der Corporate-Regeln. Solche Regeln könnten beispielsweise die Nutzung von Kamera oder Bluetooth verbieten oder die Installation bestimmter Apps und Browser. Auch Jailbreak und Rooten stehen oft auf der Verbotsliste.

Neben Unterlassungen lassen sich auch Gebote vorschreiben, etwa, dass die Geräte beim Einschalten durch eine PIN-Eingabe entsperrt werden müssen, dass Daten auf den Devices per Backup vor Verlusten geschützt und gestohlene oder verlorene Geräte bereinigt werden müssen.

Solche Policy-Vorgaben werden per Echtzeitüberwachung kontrolliert – gerade beim Arbeiten mit kritischen Datensätzen wie personenbezogenen Daten, Kontodaten und anderen vertraulichen Informationen eine absolute Notwendigkeit. Verstößt ein Nutzer gegen eine oder mehrere dieser Regeln wird der Zugriff auf die geschäftskritischen Ressourcen blockiert. Als letzte Konsequenz und bei Verlust oder Diebstahl kann das Smartphone oder Tablet auch gesperrt oder dessen Inhalte kontrolliert gelöscht werden. Die Lokalisierung, das Sperren und Löschen der mobilen Devices sollte deshalb auch über die Luftschnittstelle möglich sein.

Herausforderung BYOD

Eine weitere Sicherheitshürde ist zu bewältigen, wenn das Unternehmen seinen Mitarbeitern die berufliche Nutzung ihrer privaten Geräte erlaubt: In solchen BYOD-Szenarien (BYOD = Bring Your Own Device) ist die strikte Trennung privater und geschäftlicher Daten ein Muss. Während Unternehmen stets im Auge behalten müssen, welche geschäftskritischen Daten ihre Mitarbeiter erheben, verarbeiten und nutzen, müssen deren private Daten privat bleiben. Hier haben sich Container-Lösungen etabliert. Diese stellen sicher, dass die Anwendungen und ihre Daten in einem abgeschotteten Umfeld (Container) – sauber getrennt voneinander – laufen.

Mit einer Container-Lösung lässt sich beispielsweise verhindern, dass Firmeninformationen per Copy & Paste auf Facebook oder Twitter landen. Ein Zugriff aus dem Firmenkontext auf die private Facebook- oder Twitter-App wäre damit schlichtweg nicht möglich. Durch Container lassen sich somit viele Schwachstellen eliminieren.

Für einen absolut sicheren, rollenbasierten Datenaustausch hochsensibler Dokumente empfiehlt sich die Einrichtung eines Secure Data Rooms. Dieser ist vollständig isoliert und durch multiple Sicherheitsstandards vor unbefugten Zugriffen gesichert. Dem Secure Data Room sind Rollenrechte hinterlegt, so dass nur bestimmte, authentifizierte Nutzergruppen auf diesen Raum zugreifen können. So lässt sich zum Beispiel für die Vorstandsebene ein Secure Data Room anlegen, in dem Geschäftsberichte und Verträge abgelegt und – je nach erlaubten Bearbeitungsstufen – eingesehen oder auch bearbeitet werden können.

In Zusammenarbeit mit IBM

 

Hyperkonvergenz: Mehr Intelligenz für das Rechenzentrum

Wer heute dafür verantwortlich ist, die IT-Infrastruktur seines Unternehmens oder einer Organisation zu steuern, der steht vor einer ganzen Reihe Herausforderungen: Skalierbar, beliebig flexibel und mit möglichst kurzer „time-to-market“ für neue Services – so sollte es sein. Die Anforderungen an Kapazität und Rechenpower können sich schnell ändern. Mit steigenden Nutzerzahlen oder neuen Anwendungen, die geliefert werden sollen. Weder Kunden noch Management haben Zeit oder Verständnis dafür, dass neue Dienste wegen neuer Hardwareanforderungen nur langsam oder mit langem Vorlauf ausgerollt werden können.

Unternehmen wollen deshalb schnell und flexibel auf neue Anforderungen und Produkterweiterungen reagieren können. Dabei kommt in der Praxis häufig sehr heterogene Infrastruktur zum Einsatz: On-Premise-Systeme vor Ort, externe Data Center und Cloud-Lösungen müssen zuverlässig, nahtlos und insbesondere auch sicher die Services bereit stellen, die Kunden oder Mitarbeiter nutzen. Wichtig dabei: die Storage- und Computing-Kapazität sollte flexibel skalierbar sein und sich auch kurzfristig geänderten Anforderungen und Prioritäten anpassen können. Zum Beispiel: Innerhalb von kurzer Zeit deutlich mehr virtuelle Desktopsysteme für User bereit stellen.

Smarte Software für Rechenzentren

Der beste Weg für den CIO und die IT-Abteilung, diese neuen Herausforderungen zu lösen, sind „Hyperkonvergenz“-Systeme. Dabei handelt es sich um kombinierte Knoten für Storage und Computing-Leistung im Rechenzentrum, die dank smarter Software beliebig erweitert oder ausgetauscht werden können. Hierbei handelt es sich um SDS-Systeme („Software defined Storage“) – die Speicherkapazität und Rechenleistung der einzelnen Systeme wird von der Software smart abstrahiert und gebündelt.

Das Unternehmen Cisco zeigt, wie die Zukunft im Rechenzentrum aussehen wird: die neue Plattform HyperFlex setzt genau hier an. Wie der Name andeutet, bietet HyperFlex eine Hyperkonvergenz-Plattform für das Rechenzentrum auf Basis von Intel® Xeon® Prozessoren*. Der Kern ist hier die Software, die auf dem eigenen Filesystem „HX Data Platform“ aufsetzt. Damit erweitern Kunden ihr bestehendes System schnell und einfach. Diese Hyperkonvergenz-Lösung ist darauf ausgelegt, nicht als Silo parallel zu bereits bestehender Infrastruktur zu stehen, sondern zu einem Teil der bestehenden Hard- und Software zu werden.

Denn die Verwaltung von HyperFlex-Knoten ist in Ciscos bestehendem UCS Management integriert. So dauert es nur wenige Minuten, bis neue Nodes zu einem System hinzugefügt sind. Nach wenigen Klicks sind die zusätzlichen Knoten installiert, konfiguriert, provisioniert und somit live in Betrieb. Besonders hilfreich für dynamische Unternehmen: HyperFlex macht es sehr einfach möglich, im Betrieb selektiv Storage-, RAM-c oder Computing-Kapazität zu erweitern – unabhängig voneinander.  Sollten Knoten ausfallen, verkraftet das System dies ohne Ausfall oder Datenverlust.

Weiterführende Informationen zu den Cisco HyperFlex Systemen finden Sie mit einem Klick hier.

Dieser Sponsored Post entstand in Zusammenarbeit mit Cisco & Intel.

*Intel, the Intel logo, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and/or other countries.

Mobilgeräte-Administration – Testen Sie Ihr Wissen zum Mobile Device Management!

Ordnung im Chaos

Der Wildwuchs an Mobilgeräten und Betriebssystemen erschwert in vielen Unternehmen deren Administration – und die Integration in die bestehende IT-Landschaft. Doch wie lässt sich Ordnung ins Chaos bringen?

Smartphones, Tablets, Notebooks, dazu IOS, Android, Blackberry und Windows – angesichts der Vielfalt an Geräten und Betriebssystemen wird deren Administration und Sicherheit für die IT zunehmend zum Problem. Kaum ein Unternehmen kommt daher heute um das Thema “Mobile Device Management” (MDM) herum, denn all diese Mobilgeräte mit ihren diversen Betriebssystemen “von Hand” zu administrieren und auf demselben Sicherheitsniveau zu halten ist so gut wie unmöglich.

Moderne MDM-Lösungen helfen, die heterogene Geräteflotte in den Griff zu bekommen und sie wie die klassischen stationären IT-Geräte zentral zu konfigurieren und zu verwalten. Sie bieten Unterstützung auf drei Ebenen: Auf der untersten Ebene geht es um die reine Verwaltung der Devices, darüber folgt das Management der Daten und oben ist die Überwachung und Sicherheit der Gerätenutzung angesiedelt.

In der Regel ist die Durchsetzung der unternehmens- und branchenspezifischen Sicherheitsrichtlinien für sämtliche mobilen Endgeräte, die im und für das Unternehmen im Einsatz sind, das wichtigste Motiv für die Anschaffung einer MDM-Lösung. Aber nicht für jedes Unternehmen sind alle Ebenen wichtig. So spielt bei manchen beispielsweise das Thema Sicherheit nur eine untergeordnete Rolle – etwa, weil keinerlei Anschluss an die Infrastruktur zugelassen wird und die Geräte einfach nur verwaltet werden sollen. Doch auch für diesen Fall hat eine MDM-Lösung einen erheblichen Nutzwert.

Einfach und sicher verwalten

Auf Administrationsebene geht es bei MDM darum, bekannte Funktionen aus dem stationären Umfeld auch für mobile Devices anzubieten. Die Mobilgeräteflotte sollte sich ebenso einfach und sicher verwalten lassen wie die klassische IT. Zu diesen Grundfunktionen gehören das Erfassen und Anlegen eines neuen Mobilgeräts, die automatische Verteilung von Software und die Umsetzung von Unternehmensrichtlinien. Idealerweise lässt sich ein MDM-System mit bestehenden Verzeichnissen wie dem Active Directory und anderen Unternehmensressourcen verbinden, was Vieles vereinfacht.

Verschiedene Nutzerrollen, zum Beispiel für Geschäftsführung, Marketing und Vertrieb, Controlling oder IT, können angelegt und die entsprechenden Zugriffsrechte individuell angepasst werden. Auch sollte ein MDM-System mit Personalzugängen wie -abgängen umgehen und das erforderliche Aufspielen beziehungsweise Löschen von Unternehmensdaten und -software auf den Geräten automatisch ausführen können.

Das alles erfolgt idealerweise über eine zentrale Konsole. Über diese wird das Device auch mit den definierten Richtlinien (Policies) verknüpft und im Anschluss mit der darauf basierenden Grundkonfiguration, Zertifikaten und Ähnlichem beschickt. Im laufenden Betrieb sorgt dann ein MDM-Client auf dem Device für Sicherheit und die Einhaltung der Regeln.

In Zusammenarbeit mit IBM.

Intelligence Gathering

Beispiele für Data Science stehen häufig im Kontext von innovativen Internet-StartUps, die mit entsprechenden Methoden individuelle Kundenbedürfnisse in Erfahrung bringen. Es gibt jedoch auch eine Dunkle Seite der Macht, auf die ich nachfolgend über ein Brainstorming eingehen möchte.

Was ist Intelligence Gathering?

Unter Intelligence Gathering wird jegliche legale und illegale Beschaffung von wettbewerbsentscheidenden Informationen verstanden, von traditioneller Marktforschung bis hin zur Wirtschaftsspionage. Unter Intelligence Gathering fallen die Informationsbeschaffung und die Auswertung, wobei nicht zwangsläufig elektronische Beschaffungs- und Auswertungsszenarien gemeint sind, auch wenn diese den Großteil der relevanten Informationsbeschaffung ausmachen dürften.

Welche Data Science Methoden kommen zum Einsatz?

Alle. Unter dem Oberbegriff von Intelligence Gathering fallen die vielfältigsten Motive der Informationsgewinnung um Wettbewerbsvorteile zu erzielen. Genutzt werden statistische Datenanalysen, Process Mining, Predictive Analytics bis hin zu Deep Learning Netzen. Viele Einsatzzwecke bedingen ein gutes Data Engineering vorab, da Daten erstmal gesammelt, häufig in großen Mengen gespeichert und verknüpft werden müssen. Data Scraping, das Absammeln von Daten aus Dokumenten und von Internetseiten, kommt dabei häufig zum Einsatz. Dabei werden manchmal auch Grenzen nationaler Gesetze überschritten, wenn z. B. über die Umgehung von Sicherheitsmaßnahmen (z. B. IP-Sperren, CAPTCHA, bis hin zum Passwortschutz) unberechtigte Zugriffe auf Daten erfolgen.

Welche Daten werden beispielsweise analysiert?

  • Social-Media-Daten
  • Freie und kommerzielle Kontaktdatenbanken
  • Internationale Finanzdaten (Stichwort: SWIFT)
  • Import-Export-Daten (Stichworte: PIERS, AMS)
  • Daten über Telefonie und Internetverkehr (Sitchwort: Vorratsdatenspeicherung)
  • Positionsdaten (z. B. via GPS, IPs, Funkzellen, WLAN-Mapping)
  • Daten über den weltweiten Reiseverkehr (Stichworte: CRS, GDS, PNR, APIS)

Das volle Potenzial der Daten entfaltet sich – wie jeder Data Scientist weiß – erst durch sinnvolle Verknüpfung.

Welche Insights sind beispielsweise üblich? Und welche darüber hinaus möglich?

Übliche Einblicke sind beispielsweise die Beziehungsnetze eines Unternehmens, aus denen sich wiederum alle wichtigen Kunden, Lieferanten, Mitarbeiter und sonstigen Stakeholder ableiten lassen. Es können tatsächliche Verkaufs- und Einkaufskonditionen der fremden Unternehmen ermittelt werden. Im Sinne von Wissen ist Macht können solche Informationen für eigene Verhandlungen mit Kunden, Lieferanten oder Investoren zum Vorteil genutzt werden. Häufiges Erkenntnisziel ist ferner, welche Mitarbeiter im Unternehmen tatsächliche Entscheider sind, welche beruflichen und persönlichen Vorlieben diese haben. Dies ist auch für das gezielte Abwerben von Technologieexperten möglich.

Darüber hinaus können dolose Handlungen wie etwa Bestechung oder Unterschlagung identifiziert werden. Beispielsweise gab es mehrere öffentlich bekannt gewordene Aufdeckungen von Bestechungsfällen bei der Vergabe von Großprojekten, die US-amerikanische Nachrichtendienste auf anderen Kontinenten aufgedeckt haben (z. B. der Thomson-Alcatel-Konzern Korruptionsfall in Brasilien). Die US-Politik konnte dadurch eine Neuvergabe der Projekte an US-amerikanische Unternehmen erreichen.

Welche Akteure nutzen diese Methoden der Informationsgewinnung?

Die Spitzenakteure sind Nachrichtendienste wie beispielsweise der BND (Deutschland), die CIA (USA) und die NSA (USA).  In öffentlichen Diskussionen und Skandalen ebenfalls im Rampenlicht stehende Geheimdienste sind solche aus Frankreich, Großbritanien, Russland und China. Diese und andere nationale Nachrichtendienste analysieren Daten aus öffentlich zugänglichen Systemen, infiltrieren aber auch gezielt oder ungezielt fremde Computernetzwerke. Die Nachrichtendienste analysieren Daten in unterschiedlichsten Formen, neben Metadaten von z. B. Telefonaten und E-Mails auch umfangreiche Textinformationen, Bild-/Videomaterial sowie IT-Netzwerkverkehr. Der weltweit eingeschlagene Weg zur vernetzten Welt (Internet of Things) wird Intelligence Gathering weiter beflügeln.

[box]Anmerkung: Open Data Analytics

Eine Informationsquelle, die selbst von Experten häufig unterschätzt wird, ist die Möglichkeit der Gewinnung von Erkenntnissen über Märkte, Branchen und Unternehmen durch die Auswertung von öffentlich zugänglichen Informationen, die in gedruckter oder elektronischer Form in frei zugänglichen Open-Data-Datenbanken und Internetplattformen verfügbar gemacht werden, aber beispielsweise auch über Radio, Zeitungen, Journalen oder über teilweise frei zugängliche kommerzielle Datenbanken.[/box]

Die Nachrichtendienste analysieren Daten, um nationale Gefahren möglichst frühzeitig erkennen zu können. Längst ist jedoch bekannt, dass alle Nachrichtendienste zumindest auf internationaler Ebene auch der Wirtschaftsspionage dienen, ja sogar von Regierungen und Konzernen direkt dazu beauftragt werden.

Internet-Giganten wie Google, Baidu, Microsoft (Bing.com) oder Facebook haben Intelligence Gathering, häufig aber einfach als Big Data oder als Datenkrake bezeichnet, zu einem Hauptgeschäftszweck gemacht und sind nicht weit von der Mächtigkeit der Nachrichtendienste entfernt, in einigen Bereichen diesen vermutlich sogar deutlich überlegen (und zur Kooperation mit diesen gezwungen).

Finanzdienstleister wie Versicherungen und Investmentbanker nutzen Intelligence Gathering zur Reduzierung ihrer Geschäftsrisiken. Weitere Akteure sind traditionelle Industrieunternehmen, die auf einen Wettbewerbsvorteil durch Intelligence Methoden abzielen.

Nachfolgend beschränke ich mich weitgehend auf Intelligence Gathering für traditionelle Industrieunternehmen:

competitive-intelligence-wirtschaftsspionage

Industrielle Marktforschung

Die Industrielle Marktforschung ist eine auf bestimmte Branchen, Produkt- oder Kundengruppen spezialisierte Marktforschung die vor allem auf die Analyse des Kundenverhaltens abzielt. Diese kann auf vielen Wegen, beispielsweise durch gezielte Marktbeobachtung oder statistische Analyse der durch Kundenbefragung erhobenen Daten erfolgen. Customer Analytics und Procurement Analytics sind zwei Anwendungsgebiete für Data Science in der industriellen Marktforschung.

Business Intelligence und Competitive Intelligence

Der Begriff Business Intelligence ist aus der modernen Geschäftswelt nicht mehr wegzudenken. Business Intelligence bezeichnet die Analyse von unternehmensinternen und auch -externen Daten, um das eigene Unternehmen benchmarken zu können, eine Transparenz über die Prozesse und die Leistungsfähigkeit des Unternehmens zu erreichen. Das Unternehmen reflektiert sich mit Business Intelligence selbst.

Competitive Intelligence nutzt sehr ähnliche, in den überwiegenden Fällen genau dieselben Methoden, jedoch nicht mit dem Ziel, ein Abbild des eigenen, sondern ein Abbild von anderen Unternehmen zu erstellen, nämlich von direkten Konkurrenten des eigenen Unternehmens oder auch von strategischen Lieferanten oder Zielkunden.

Motivationen für Competitive Intelligence

Die Motivationen für die genaue Analyse von Konkurrenzunternehmen können sehr vielfältig sein, beispielsweise:

  • Ermittlung der eigenen Wettbewerbsposition für ein Benchmarking oder zur Wettbewerberprofilierung
  • (Strategische) Frühwarnung/-aufklärung
  • Due Diligence bei Unternehmenskauf oder Bewertung von Marktzugangschancen
  • Chancen-/Risikoanalyse für neue Angebote/Absatzregionen
  • Issues Monitoring (für das eigene Unternehmen relevante Themen)
  • Analyse von Kundenanforderungen
  • Satisfaction Surveys (eigene und Wettbewerberkunden bzw. -zulieferer)
  • Bewertung von Zulieferern (Loyalität, Preisgestaltung, Überlebensfähigkeit)

Viele dieser Anwendungsszenarien sind nicht weit weg von aktuellen Business Intelligence bzw. Data Science Projekten, die öffentlich kommuniziert werden. Beispielsweise arbeiten Data Scientists mit aller Selbstverständlichkeit im Rahmen von Procurement Analytics daran, Lieferantennetzwerke hinsichtlich der Ausfallrisiken zu analysieren oder auch in Abhängigkeit von Marktdaten ideale Bestellzeitpunkte zu berechnen. Im Customer Analytics ist es bereits Normalität, Kundenausfallrisiken zu berechnen, Kundenbedürfnisse und Kundenverhalten vorherzusagen. Die viel diskutierte Churn Prediction, also die Vorhersage der Loyalität des Kunden gegenüber dem Unternehmen, grenzt an Competetitve Intelligence mindestens an.

Wirtschaftsspionage

Während Competititve Intelligence noch mit grundsätzlich legalen Methoden der Datenbeschaffung und -auswertung auskommt, ist die Wirtschaftsspionage eine Form der Wirtschaftskriminalität, also eine illegale Handlung darstellt, die strafrechtliche Konsequenzen haben kann. Zur Wirtschaftsspionage steigern sich die Handlungen dann, wenn beispielsweise auch interne Dokumente oder der Datenverkehr ohne Genehmigung der Eigentümer abgegriffen werden.

Beispiele für Wirtschaftsspionage mit Unterstützung durch Data Science Methoden ist die Analyse von internen Finanztransaktionsdaten, des Datenverkehrs (über Leitungen oder Funknetze) oder des E-Mail-Verkehrs. Neue Methoden aus den Bereichen Machine Learning / Deep Learning werden auch die Möglichkeiten der Wirtschaftsspionage weiter beflügeln, beispielsweise durch Einsatz von gezielter Schrift-/Spracherkennung in Abhör-Szenarien.

Strafrechtliche Bewertung und Verfolgung

Die strafrechtliche Verfolgung von datengetriebener Wirtschaftsspionage ist in der Regel schwierig bis praktisch unmöglich. Zu Bedenken gilt zudem, dass Datenabgriffe und -analysen mit Leichtigkeit in anderen Nationen außerhalb der lokalen Gesetzgebung durchgeführt werden können.

Nicht zu vergessen: Data Science ist stets wertfrei zu betrachten, denn diese angewandte Wissenschaft kann zur Wirtschaftsspionage dienen, jedoch genauso gut auch bei der Aufdeckung von Wirtschaftsspionage helfen.

Literaturempfehlungen

Folgende Bücher sind Quellen für einen tieferen Einblick in Intelligence Gathering und die Möglichkeiten von Data Science zur Informationsbeschaffung.


Wirtschaftsspionage und Intelligence Gathering: Neue Trends der wirtschaftlichen Vorteilsbeschaffung

Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis