Data Science für Smart Home im familiengeführten Unternehmen Miele

Dr. Florian Nielsen ist Principal for AI und Data Science bei Miele im Bereich Smart Home und zuständig für die Entwicklung daten-getriebener digitaler Produkte und Produkterweiterungen. Der studierte Informatiker promovierte an der Universität Ulm zum Thema multimodale kognitive technische Systeme.

Data Science Blog: Herr Dr. Nielsen, viele Unternehmen und Anwender reden heute schon von Smart Home, haben jedoch eher ein Remote Home. Wie machen Sie daraus tatsächlich ein Smart Home?

Tatsächlich entspricht das auch meiner Wahrnehmung. Die bloße Steuerung vernetzter Produkte über digitale Endgeräte macht aus einem vernetzten Produkt nicht gleich ein „smartes“. Allerdings ist diese Remotefunktion ein notwendiges Puzzlestück in der Entwicklung von einem nicht vernetzten Produkt, über ein intelligentes, vernetztes Produkt hin zu einem Ökosystem von sich ergänzenden smarten Produkten und Services. Vernetzte Produkte, selbst wenn sie nur aus der Ferne gesteuert werden können, erzeugen Daten und ermöglichen uns die Personalisierung, Optimierung oder gar Automatisierung von Produktfunktionen basierend auf diesen Daten voran zu treiben. „Smart“ wird für mich ein Produkt, wenn es sich beispielsweise besser den Bedürfnissen des Nutzers anpasst oder über Assistenzfunktionen eine Arbeitserleichterung im Alltag bietet.

Data Science Blog: Smart Home wiederum ist ein großer Begriff, der weit mehr als Geräte für Küchen und Badezimmer betrifft. Wie weit werden Sie hier ins Smart Home vordringen können?

Smart Home ist für mich schon fast ein verbrannter Begriff. Der Nutzer assoziiert hiermit doch vor allem die Steuerung von Heizung und Rollladen. Im Prinzip geht es doch um eine Vision in der sich smarte, vernetzte Produkt in ein kontextbasiertes Ökosystem einbetten um den jeweiligen Nutzer in seinem Alltag, nicht nur in seinem Zuhause, Mehrwert mit intelligenten Produkten und Services zu bieten. Für uns fängt das beispielsweise nicht erst beim Starten des Kochprozesses mit Miele-Geräten an, sondern deckt potenziell die komplette „User Journey“ rund um Ernährung (z. B. Inspiration, Einkaufen, Vorratshaltung) und Kochen ab. Natürlich überlegen wir verstärkt, wie Produkte und Services unser existierendes Produktportfolio ergänzen bzw. dem Nutzer zugänglicher machen könnten, beschränken uns aber hierauf nicht. Ein zusätzlicher für uns als Miele essenzieller Aspekt ist allerdings auch die Privatsphäre des Kunden. Bei der Bewertung potenzieller Use-Cases spielt die Privatsphäre unserer Kunden immer eine wichtige Rolle.

Data Science Blog: Die meisten Data-Science-Abteilungen befassen sich eher mit Prozessen, z. B. der Qualitätsüberwachung oder Prozessoptimierung in der Produktion. Sie jedoch nutzen Data Science als Komponente für Produkte. Was gibt es dabei zu beachten?

Kundenbedürfnisse. Wir glauben an nutzerorientierte Produktentwicklung und dementsprechend fängt alles bei uns bei der Identifikation von Bedürfnissen und potenziellen Lösungen hierfür an. Meist starten wir mit „Design Thinking“ um die Themen zu identifizieren, die für den Kunden einen echten Mehrwert bieten. Wenn dann noch Data Science Teil der abgeleiteten Lösung ist, kommen wir verstärkt ins Spiel. Eine wesentliche Herausforderung ist, dass wir oft nicht auf der grünen Wiese starten können. Zumindest wenn es um ein zusätzliches Produktfeature geht, das mit bestehender Gerätehardware, Vernetzungsarchitektur und der daraus resultierenden Datengrundlage zurechtkommen muss. Zwar sind unsere neuen Produktgenerationen „Remote Update“-fähig, aber auch das hilft uns manchmal nur bedingt. Dementsprechend ist die Antizipation von Geräteanforderungen essenziell. Etwas besser sieht es natürlich bei Umsetzungen von cloud-basierten Use-Cases aus.

Data Science Blog: Es heißt häufig, dass Data Scientists kaum zu finden sind. Ist Recruiting für Sie tatsächlich noch ein Thema?

Data Scientists, hier mal nicht interpretiert als Mythos „Unicorn“ oder „Full-Stack“ sind natürlich wichtig, und auch nicht leicht zu bekommen in einer Region wie Gütersloh. Aber Engineers, egal ob Data, ML, Cloud oder Software generell, sind der viel wesentlichere Baustein für uns. Für die Umsetzung von Ideen braucht es nun mal viel Engineering. Es ist mittlerweile hinlänglich bekannt, dass Data Science einen zwar sehr wichtigen, aber auch kleineren Teil des daten-getriebenen Produkts ausmacht. Mal abgesehen davon habe ich den Eindruck, dass immer mehr „Data Science“- Studiengänge aufgesetzt werden, die uns einerseits die Suche nach Personal erleichtern und andererseits ermöglichen Fachkräfte einzustellen die nicht, wie früher einen PhD haben (müssen).

Data Science Blog: Sie haben bereits einige Analysen erfolgreich in Ihre Produkte integriert. Welche Herausforderungen mussten dabei überwunden werden? Und welche haben Sie heute noch vor sich?

Wir sind, wie viele Data-Science-Abteilungen, noch ein relativ junger Bereich. Bei den meisten unserer smarten Produkte und Services stecken wir momentan in der MVP-Entwicklung, deshalb gibt es einige Herausforderungen, die wir aktuell hautnah erfahren. Dies fängt, wie oben erwähnt, bei der Berücksichtigung von bereits vorhandenen Gerätevoraussetzungen an, geht über mitunter heterogene, inkonsistente Datengrundlagen, bis hin zur Etablierung von Data-Science- Infrastruktur und Deploymentprozessen. Aus meiner Sicht stehen zudem viele Unternehmen vor der Herausforderung die Weiterentwicklung und den Betrieb von AI bzw. Data- Science- Produkten sicherzustellen. Verglichen mit einem „fire-and-forget“ Mindset nach Start der Serienproduktion früherer Zeiten muss ein Umdenken stattfinden. Daten-getriebene Produkte und Services „leben“ und müssen dementsprechend anders behandelt und umsorgt werden – mit mehr Aufwand aber auch mit der Chance „immer besser“ zu werden. Deshalb werden wir Buzzwords wie „MLOps“ vermehrt in den üblichen Beraterlektüren finden, wenn es um die nachhaltige Generierung von Mehrwert von AI und Data Science für Unternehmen geht. Und das zu Recht.

Data Science Blog: Data Driven Thinking wird heute sowohl von Mitarbeitern in den Fachbereichen als auch vom Management verlangt. Gerade für ein Traditionsunternehmen wie Miele sicherlich eine Herausforderung. Wie könnten Sie diese Denkweise im Unternehmen fördern?

Data Driven Thinking kann nur etabliert werden, wenn überhaupt der Zugriff auf Daten und darauf aufbauende Analysen gegeben ist. Deshalb ist Daten-Demokratisierung der wichtigste erste Schritt. Aus meiner Perspektive geht es darum initial die Potenziale aufzuzeigen, um dann mithilfe von Daten Unsicherheiten zu reduzieren. Wir haben die Erfahrung gemacht, dass viele Fachbereiche echtes Interesse an einer daten-getriebenen Analyse ihrer Hypothesen haben und dankbar für eine daten-getriebene Unterstützung sind. Miele war und ist ein sehr innovatives Unternehmen, dass „immer besser“ werden will. Deshalb erfahren wir momentan große Unterstützung von ganz oben und sind sehr positiv gestimmt. Wir denken, dass ein Schritt in die richtige Richtung bereits getan ist und mit zunehmender Zahl an Multiplikatoren ein „Data Driven Thinking“ sich im gesamten Unternehmen etablieren kann.

Process Mining Tools – Artikelserie

Process Mining ist nicht länger nur ein Buzzword, sondern ein relevanter Teil der Business Intelligence. Process Mining umfasst die Analyse von Prozessen und lässt sich auf alle Branchen und Fachbereiche anwenden, die operative Prozesse haben, die wiederum über operative IT-Systeme erfasst werden. Um die zunehmende Bedeutung dieser Data-Disziplin zu verstehen, reicht ein Blick auf die Entwicklung der weltweiten Datengenerierung an. Waren es 2010 noch 2 Zettabytes (ZB), sind laut Statista für das Jahr 2020 mehr als 50 ZB an Daten zu erwarten. Für 2025 wird gar mit einem Bestand von 175 ZB gerechnet.

Hier wird das Datenvolumen nach Jahren angezeit

Abbildung 1 zeigt die Entwicklung des weltweiten Datenvolumen (Stand 2018). Quelle: https://www.statista.com/statistics/871513/worldwide-data-created/

Warum jetzt eigentlich Process Mining?

Warum aber profitiert insbesondere Process Mining von dieser Entwicklung? Der Grund liegt in der Unordnung dieser Datenmenge. Die Herausforderung der sich viele Unternehmen gegenübersehen, liegt eben genau in der Analyse dieser unstrukturierten Daten. Hinzu kommt, dass nahezu jeder Prozess Datenspuren in Informationssystemen hinterlässt. Die Betrachtung von Prozessen auf Datenebene birgt somit ein enormes Potential, welches in Anbetracht der Entwicklung zunehmend an Bedeutung gewinnt.

Was war nochmal Process Mining?

Process Mining ist eine Analysemethodik, welche dazu befähigt, aus den abgespeicherten Datenspuren der Informationssysteme eine Rekonstruktion der realen Prozesse zu schaffen. Diese Prozesse können anschließend als Prozessflussdiagramm dargestellt und ausgewertet werden. Die klassischen Anwendungsfälle reichen von dem Aufspüren (Discovery) unbekannter Prozesse, über einen Soll-Ist-Vergleich (Conformance) bis hin zur Anpassung/Verbesserung (Enhancement) bestehender Prozesse. Mittlerweile setzen viele Firmen darüber hinaus auf eine Integration von RPA und Data Science im Process Mining. Und die Analyse-Tiefe wird zunehmen und bis zur Analyse einzelner Klicks reichen, was gegenwärtig als sogenanntes „Task Mining“ bezeichnet wird.

Hier wird ein typischer Process Mining Workflow dargestellt

Abbildung 2 zeigt den typischen Workflow eines Process Mining Projektes. Oftmals dient das ERP-System als zentrale Datenquelle. Die herausgearbeiteten Event-Logs werden anschließend mittels Process Mining Tool visualisiert.

In jedem Fall liegt meistens das Gros der Arbeit auf die Bereitstellung und Vorbereitung der Daten und der Transformation dieser in sogenannte „Event-Logs“, die den Input für die Process Mining Tools darstellen. Deshalb arbeiten viele Anbieter von Process Mining Tools schon länger an Lösungen, um die mit der Datenvorbereitung verbundenen zeit -und arbeitsaufwendigen Schritte zu erleichtern. Während fast alle Tool-Anbieter vorgefertigte Protokolle für Standardprozesse anbieten, gehen manche noch weiter und bieten vollumfängliche Plattform Lösungen an, welche eine effiziente Integration der aufwendigen ETL-Prozesse versprechen. Der Funktionsumfang der Process Mining Tools geht daher mittlerweile deutlich über eine reine Darstellungsfunktion hinaus und deckt ggf. neue Trends sowie optimierte Einsteigerbarrieren mit ab.

Motivation dieser Artikelserie

Die Motivation diesen Artikel zu schreiben liegt nicht in der Erläuterung der Methode des Process Mining. Hierzu gibt es mittlerweile zahlreiche Informationsquellen. Eine besonders empfehlenswerte ist das Buch „Process Mining“ von Will van der Aalst, einem der Urväter des Process Mining. Die Motivation dieses Artikels liegt viel mehr in der Betrachtung der zahlreichen Process Mining Tools am Markt. Sehr oft erlebe ich als Data-Consultant, dass Process Mining Projekte im Vorfeld von der Frage nach dem „besten“ Tool dominiert werden. Diese Fragestellung ist in Ihrer Natur sicherlich immer individuell zu beantworten. Da individuelle Projekte auch einen individuellen Tool-Einsatz bedingen, beschäftige ich mich meist mit einem großen Spektrum von Process Mining Tools. Daher ist es mir in dieser Artikelserie ein Anliegen einen allgemeingültigen Überblick zu den üblichen Process Mining Tools zu erarbeiten. Dabei möchte ich mich nicht auf persönliche Erfahrungen stützen, sondern die Tools anhand von Testdaten einem praktischen Vergleich unterziehen, der für den Leser nachvollziehbar ist.

Um den Umfang der Artikelserie zu begrenzen, werden die verschiedenen Tools nur in Ihren Kernfunktionen angewendet und verglichen. Herausragende Funktionen oder Eigenschaften der jeweiligen Tools werden jedoch angemerkt und ggf. in anderen Artikeln vertieft. Das Ziel dieser Artikelserie soll sein, dem Leser einen ersten Einblick über die am Markt erhältlichen Tools zu geben. Daher spricht dieser Artikel insbesondere Einsteiger aber auch Fortgeschrittene im Process Mining an, welche einen Überblick über die Tools zu schätzen wissen und möglicherweise auch mal über den Tellerand hinweg schauen mögen.

Die Tools

Die Gruppe der zu betrachteten Tools besteht aus den folgenden namenhaften Anwendungen:

Die Auswahl der Tools orientiert sich an den „Market Guide for Process Mining 2019“ von Gartner. Aussortiert habe ich jene Tools, mit welchen ich bisher wenig bis gar keine Berührung hatte. Diese Auswahl an Tools verspricht meiner Meinung nach einen spannenden Einblick von verschiedene Process Mining Tools am Markt zu bekommen.

Die Anwendung in der Praxis

Um die Tools realistisch miteinander vergleichen zu können, werden alle Tools die gleichen Datengrundlage benutzen. Die Datenbasis wird folglich über die gesamte Artikelserie hinweg für die Darstellungen mit den Tools genutzt. Ich werde im nächsten Artikel explizit diese Datenbasis kurz erläutern.

Das Ziel der praktischen Untersuchung soll sein, die Beispieldaten in die verschiedenen Tools zu laden, um den enthaltenen Prozess zu visualisieren. Dabei möchte ich insbesondere darauf achten wie bedienbar und anpassungsfähig/flexibel die Tools mir erscheinen. An dieser Stelle möchte ich eindeutig darauf hinweisen, dass dieser Vergleich und seine Bewertung meine Meinung ist und keineswegs Anspruch auf Vollständigkeit beansprucht. Da der Markt in Bewegung ist, behalte ich mir ferner vor, diese Artikelserie regelmäßig anzupassen.

Die Kriterien

Neben der Bedienbarkeit und der Anpassungsfähigkeit der Tools möchte ich folgende zusätzliche Gesichtspunkte betrachten:

  • Bedienbarkeit: Wie leicht gehen die Analysen von der Hand? Wie einfach ist der Einstieg?
  • Anpassungsfähigkeit: Wie flexibel reagiert das Tool auf meine Daten und Analyse-Wünsche?
  • Integrationsfähigkeit: Welche Schnittstellen bringt das Tool mit? Läuft es auch oder nur in der Cloud?
  • Skalierbarkeit: Ist das Tool dazu in der Lage, auch große und heterogene Daten zu verarbeiten?
  • Zukunftsfähigkeit: Wie steht es um Machine Learning, ETL-Modeller oder Task Mining?
  • Preisgestaltung: Nach welchem Modell bestimmt sich der Preis?

Die Datengrundlage

Die Datenbasis bildet ein Demo-Datensatz der von Celonis für die gesamte Artikelserie netter Weise zur Verfügung gestellt wurde. Dieser Datensatz bildet einen Versand Prozess vom Zeitpunkt des Kaufes bis zur Auslieferung an den Kunden ab. In der folgenden Abbildung ist der Soll Prozess abgebildet.

Hier wird die Variante 1 der Demo Daten von Celonis als Grafik dargestellt

Abbildung 4 zeigt den gewünschten Versand Prozess der Datengrundlage von dem Kauf des Produktes bis zur Auslieferung.

Die Datengrundlage besteht aus einem 60 GB großen Event-Log, welcher lokal in einer Microsoft SQL Datenbank vorgehalten wird. Da diese Tabelle über 600 Mio. Events beinhaltet, wird die Datengrundlage für die Analyse der einzelnen Tools auf einen Ausschnitt von 60 Mio. Events begrenzt. Um die Performance der einzelnen Tools zu testen, wird jedoch auf die gesamte Datengrundlage zurückgegriffen. Der Ausschnitt der Event-Log Tabelle enthält 919 verschiedene Varianten und weisst somit eine ausreichende Komplexität auf, welche es mit den verschiednene Tools zu analysieren gilt.

Folgender Veröffentlichungsplan gilt für diese Artikelserie und wird mit jeder Veröffentlichung verlinkt:

  1. Celonis
  2. PAFnow
  3. MEHRWERK (erscheint demnächst)
  4. Lana Labs (erscheint demnächst)
  5. Signavio (erscheint demnächst)
  6. Process Gold (erscheint demnächst)
  7. Fluxicon Disco (erscheint demnächst)
  8. Aris Process Mining der Software AG (erscheint demnächst)

Zertifikatsstudium „Data Science and Big Data“ 2021 an der TU Dortmund

Anzeige

Komplexe Daten aufbereiten und analysieren, um daraus zukünftige Entwicklungen abzulesen: das lernen Sie im berufsbegleitenden Zertifikatsstudium „Data Science and Big Data“ an der TU Dortmund.

Jetzt bewerben!

Data Science & Big Data 2021

Die Zielgruppe sind Fachkräfte, die sich in ihrer Berufspraxis mit Fragestellungen zum Thema Datenanalyse und Big Data befassen, jedoch nun tiefergehende Kenntnisse in dem Themenfeld erhalten möchten. Von der Analyse über das Management bis zur zielgerichteten Darstellung der Ergebnisse lernen die Teilnehmenden dabei Methoden der Disziplinen Statistik, Informatik und Journalistik kennen.

Renommierte Wissenschaftlerinnen und Wissenschaftler vermitteln den Teilnehmerinnen und Teilnehmern die neuesten datenwissenschaftlichen Erkenntnisse und zeigen, wie dieses Wissen praxisnah im eigenen Big-Data Projekt umgesetzt werden kann.

Die nächste Studiengruppe startet im Februar 2021, der Bewerbungsschluss ist am 2. November 2020. Die Anzahl der verfügbaren Plätze ist begrenzt, eine rechtzeitige Bewerbung lohnt sich daher.

Nähere Informationen finden Sie unter: http://www.zhb.tu-dortmund.de/datascience

Interview – Machine Learning in Marketing und CRM

Interview mit Herrn Laurenz Wuttke von der datasolut GmbH über Machine Learning in Marketing und CRM.

Laurenz Wuttke ist Data Scientist und Gründer der datasolut GmbH. Er studierte Wirtschaftsinformatik an der Hochschule Hannover und befasst sich bereits seit 2011 mit Marketing- bzw. CRM-Systemen und der Datenanalyse. Heute ist er Dozent für Big Data im Marketing an der Hochschule Düsseldorf und unterstützt Unternehmen dabei, durch den Einsatz von künstlicher Intelligenz, individuell auf die Kundenbedürfnisse tausender Kunden einzugehen. Damit jeder Marketing Manager jedem Kunden das richtige Angebot zur richtigen Zeit machen kann.

Data Science Blog: Herr Wuttke, Marketing gilt als einer der Pionier-Bereiche der Unternehmen für den Einstieg in Big Data Analytics. Wie etabliert ist Big Data und Data Science heute im Marketing?  

Viele Unternehmen in Deutschland erkennen gerade Chancen und den Wert ihrer Daten. Dadurch investieren die Unternehmen in Big Data Infrastruktur und Data Science Teams.

Gleichzeitig denke ich, wir stehen im Marketing gerade am Anfang einer neuen Daten-Ära. Big Data und Data Science sind im Moment noch ein Thema der großen Konzerne. Viele kleine und mittelständische Unternehmen haben noch viele offene Potentiale in Bezug auf intelligente Kundenanalysen.

Durch stetig steigende Preise für die Kundenakquise, wird die Erhaltung und Steigerung einer guten Kundenbindung immer wichtiger. Und genau hier sehe ich die Vorteile durch Data Science im Marketing. Unternehmen können viel genauer auf Kundenbedürfnisse eingehen, antizipieren welches Produkt als nächstes gekauft wird und so ihr Marketing zielgenau ausrichten. Dieses „personalisierte Marketing“ führt zu einer deutlich stärkeren Kundenbindung und steigert langfristig Umsätze.

Viele amerikanische Unternehmen machen es vor, aber auch deutsche Unternehmen wie Zalando oder AboutYou investieren viel Geld in die Personalisierung ihres Marketings. Ich denke, die Erfolge sprechen für sich.

Data Science Blog: Ein häufiges Anliegen für viele Marketing Manager ist die treffsichere Kundensegmentierung nach vielerlei Kriterien. Welche Verbesserungen sind hier möglich und wie können Unternehmen diese erreichen?

Kundensegmentierungen sind ein wichtiger Bestandteil vieler Marketingstrategien. Allerdings kann man hier deutlich weitergehen und Marketing im Sinne von „Segments of One“ betreiben. Das bedeutet wir haben für jeden einzelnen Kunden eine individuelle „Next Best Action und Next Best Offer“.

Somit wird jeder Kunde aus Sicht des Marketings individuell betrachtet und bekommt individuelle Produktempfehlungen sowie Marketingmaßnahmen, welche auf das jeweilige Kundenbedürfnis zugeschnitten sind.

Dies ist auch ein wichtiger Schritt für die Marketingautomatisierung, denn wir können im Marketing schlichtweg keine tausenden von Kunden persönlich betreuen.

Data Science Blog: Sind die Kundencluster dann erkannt, stellt sich die Frage, wie diese besser angesprochen werden können. Wie funktioniert die dafür notwendige Kundenanalyse?

Ganz unterschiedlich, je nach Geschäftsmodell und Branche fällt die Kundenanalyse anders aus. Wir schauen uns unterschiedliche Merkmale zum historischen Kaufverhalten, Demografie und Produktnutzung an. Daraus ergeben sich in der Regel sehr schnell Kundenprofile oder Personas, die gezielt angesprochen werden können.

Data Science Blog: Oft werden derartige Analyse-Vorhaben auf Grund der Befürchtung, die relevanten Daten seien nicht verfügbar oder die Datenqualität sei einer solchen Analyse nicht würdig, gar nicht erst gestartet. Sind das begründete Bedenken?

Nein, denn oft kommen die Daten, die für eine Kundenanalyse oder die Vorhersage von Ergebnissen braucht, aus Datenquellen wie z.B. den Transaktionsdaten. Diese Daten hat jedes Unternehmen in guter Qualität vorliegen.

Natürlich werden die Analysen besser, wenn weitere Datenquellen wie bspw. Produktmetadaten, Kundeneigenschaften oder das Klickverhalten zur Verfügung stehen, aber es ist kein Muss.

Aus meiner Praxiserfahrung kann ich sagen, dass hier oft ungenutzte Potentiale schlummern.

Data Science Blog: Wie ist da eigentlich Ihre Erfahrung bzgl. der Interaktion zwischen Marketing und Business Intelligence? Sollten Marketing Manager ihre eigenen Datenexperten haben oder ist es besser, diese Ressourcen zentral in einer BI-Abteilung zu konzentrieren?

Aus meiner Sicht funktioniert moderenes Marketing heute nicht mehr ohne valide Datenbasis. Aus diesem Grund ist die Zusammenarbeit von Marketing und Business Intelligence unersetzbar, besonders wenn es um Bestandskundenmarketing geht. Hier laufen idealerweise alle Datenquellen in einer 360 Grad Kundensicht zusammen.

Dies kann dann auch als die Datenquelle für Machine Learning und Data Science verwendet werden. Alle wichtigen Daten können aus einer strukturierten 360 Grad Sicht zu einer Machine Learning Datenbasis (ML-Feature Store) umgewandelt werden. Das spart enorm viel Zeit und viel Geld.

Zu Ihrer zweiten Frage: Ich denke es gibt Argumente für beide Konstrukte, daher habe ich da keine klare Präferenz. Mir ist immer wichtig, dass der fachliche Austausch zwischen Technik und Fachbereich gut funktioniert. Ziele müssen besprochen und gegeben falls angepasst werden, um immer in die richtige Richtung zu gehen. Wenn diese Voraussetzung mit einer guten Data Science Infrastruktur gegeben ist, wird Data Science für wirklich skalierbar.

Data Science Blog: Benötigen Unternehmen dafür eine Customer Data Platform (CDP) oder zumindest ein CRM? Womit sollten Unternehmen beginnen, sollten sie noch ganz am Anfang stehen?

Eine Customer Data Platform (CDP) ist von Vorteil, ist aber kein Muss für den Anfang. Ein guts CRM-System oder gute gepflegte Kundendatenbank reicht zunächst für den Anfang.

Natürlich bietet eine CDP einen entscheidenden Vorteil durch die Zusammenführung von der Online- und der CRM-Welt. Das Klickverhalten hat einen enormen Einfluss auf die analytischen Modelle und hilft dabei, Kunden immer besser zu verstehen. Das ist besonders wichtig in unserer Zeit, da wir immer weniger direkten Kundenkontakt haben und zukünftig wird dieser auch noch weiter abnehmen.

Zusammengefasst: Wer diese Kundendaten intelligent miteinander verknüpft hat einen großen Vorteil.

Data Science Blog: Wie integrieren Sie App- und Webtracking in Ihre Analysen?

Trackingdaten aus Apps und Webseiten sind ein wichtiger Bestandteil unserer Machine Learning Modelle. Sie geben wichtige Informationen über das Kundenverhalten preis. So können die Trackingdaten gute Merkmale für Anwendungsfälle wie Churn Prediction, Customer Lifetime Value und Next Best Offer sein.

Häufig sind die Trackingdaten von unterschiedlichen Anbietern (Google Analytics, Piwik etc.) leicht anders in ihrer Struktur, dafür haben wir uns einen intelligenten Ansatz überlegt, um diese zu vereinheitlichen und in unseren Modellen anzuwenden.

Data Science Blog: Zurück zum Kunden. Seine Bedürfnisse stehen bei erfolgreichen Unternehmen im Fokus stehen. Einige Geschäftsmodelle basieren auf Abonnements oder Mitgliedschaften. Wie können Sie solchen Unternehmen helfen?

Abonnements und Subscriptions sind ein großer Trend: Der Kunde wird zum Nutzer und es fallen viele Kundendaten an, die gesammelt werden können. Viele unserer Kunden haben subscription- oder vertragsbasierte Geschäftsmodelle, was ich persönlich sehr interessante Geschäftsmodelle finde.

Diese haben häufig die Herausforderung ihre Kunden langfristig zu binden und eine gesunde Kundenbindung aufzubauen. Die Akquisition ist meistens sehr teuer und die Kundenabwanderung oder Customer Churn zu reduzieren damit ein strategisches Ziel. Wirklich erfolgreich werden diese dann, wenn die Churn Rate geringgehalten wird.

Die Lösung für eine niedrige Kundenabwanderung, neben einem guten Produkt und gutem Kundenservice, ist eine Churn Prediction und darauf aufbauende Churn Prevention Maßnahmen. Wir nehmen uns dazu das historische Kundenverhalten, schauen uns die Kündiger an und modellieren daraus eine Vorhersage für die Kundenabwanderung. So können Unternehmen abwanderungsgefährdete Kunden schon frühzeitig erkennen und entsprechend handeln. Das hat den entscheidenden Vorteil, dass man nicht einen schon verlorenen Kunden erneut gewinnen muss.

Es gibt aber auch Möglichkeiten schon weit vor der eigentlichen Churn-Gefahr anzusetzen, bei drohender Inaktivität. So haben wir für einen großen Fitness-App-Anbieter ein Alarmsystem entwickelt, das Kunden automatisiert Engagement-Kampagnen versendet, um bei drohender Inaktivität, den Kunden auf die Angebote aufmerksam zu machen. Sie kennen das von der Netflix-App, welche Ihnen jeden Abend einen guten Tipp für das Fernsehprogramm bereitstellt.

Data Science Blog: Gehen wir mal eine Ebene höher. So mancher CMO hat mit dem CFO den Deal, jährlich nur einen bestimmten Betrag ins Marketing zu stecken. Wie hilft Data Science bei der Budget-Verteilung auf die Bestandskunden?

Da gibt es eine einfache Lösung für „Customer Lifetime Value Prognosen“. Durch Machine Learning wird für jeden einzelnen Kunden eine Umsatz-Vorhersage für einen bestimmten Zeitraum getroffen. So kann das Bestandkundenmarketing das Marketingbudget ganz gezielt einsetzen und nach dem Kundenwert steuern. Ich gebe Ihnen ein Beispiel: Kundenreaktivierung im Handel. Sie haben ein bestimmtes Budget und können nicht jedem Kunden eine Reaktivierungsmaßnahme zukommen lassen. Wenn Sie einen gut berechneten Customer Lifetime Value haben, können Sie sich so auf die wertigen Kunden konzentrieren und diese reaktivieren.

Data Science Blog: Mit welchen Technologien arbeiten Sie bevorzugt? Welche Tools sind gerade im Kontext von analytischen Aufgaben im Marketing besonders effizient?

Wir haben uns in den letzten Jahren besonders auf Python und PySpark fokussiert. Mit der Entwicklung von Python für Data Science konnten die anderen Umgebungen kaum mithalten und somit ist Python aus meiner Sicht derzeit die beste Umgebung für unsere Lösungen.

Auch die Cloud spielt eine große Rolle für uns. Als kleines Unternehmen haben wir uns bei datasolut auf die AWS Cloud fokussiert, da wir gar nicht in der Lage wären, riesige Datenbestände unserer Kunden zu hosten.

Vor allem von dem hohen Automatisierungsgrad in Bezug auf Datenverarbeitung und Machine Learning bietet AWS alles, was das Data Science Herz begehrt.

Data Science Blog: Was würden Sie einem Junior Marketing Manager und einem Junior Data Scientist für den Ausbau seiner Karriere raten? Wie werden diese jungen Menschen zukünftig beruflich erfolgreich?

Dem Junior Marketing Manager würde ich immer raten, dass er sich Datenanalyse-Skills erarbeiten soll. Aber vor allem sollte er verstehen, was mit Daten alles möglich ist und wie diese eingesetzt werden können. Auch in meiner Vorlesung zu „Big Data im Marketing“ an der Hochschule Düsseldorf unterrichte ich Studierende, die auf Marketing spezialisiert sind. Hier gebe ich stets diesen Ratschlag.

Bei den Junior Daten Scientist ist es andersherum. Ich sehe in der Praxis immer wieder Data Scientists, die den Transfer zwischen Marketing und Data Science nicht gut hinbekommen. Daher rate ich jedem Data Scientist, der sich auf Marketing und Vertrieb fokussieren will, dass hier fachliches Know-How essentiell ist. Kein Modell oder Score hat einen Wert für ein Unternehmen, wenn es nicht gut im Marketing eingesetzt wird und dabei hilft, Marketingprozesse zu automatisieren.

Ein weiterer wichtiger Aspekt ist, dass sich Data Science und Machine Learning gerade rasant ändern. Die Automatisierung (Stichwort: AutoML) von diesen Prozessen ist auf der Überholspur, dass zeigen die großen Cloudanbieter ganz deutlich. Auch wir nutzen diese Technologie schon in der Praxis. Was der Algorithmus aber nicht übernehmen kann, ist der Transfer und Enablement der Fachbereiche.

Data Science Blog: Zum Schluss noch eine Bitte: Was ist Ihre Prophezeiung für die kommenden Jahre 2021/2022. What is the next big thing in Marketing Analytics?

Es gibt natürlich viele kleinere Trends, welche das Marketing verändern werden. Ich denke jedoch, dass die größte Veränderung für die Unternehmen sein wird, dass es einen viel großflächigeren Einsatz von Machine Learning im Marketing geben wird. Dadurch wird der Wettbewerb härter und für viele Unternehmen wird Marketing Analytics ein essentieller Erfolgsfaktor sein.