Posts

Interview – Machine Learning in Marketing und CRM

Interview mit Herrn Laurenz Wuttke von der datasolut GmbH über Machine Learning in Marketing und CRM.

Laurenz Wuttke ist Data Scientist und Gründer der datasolut GmbH. Er studierte Wirtschaftsinformatik an der Hochschule Hannover und befasst sich bereits seit 2011 mit Marketing- bzw. CRM-Systemen und der Datenanalyse. Heute ist er Dozent für Big Data im Marketing an der Hochschule Düsseldorf und unterstützt Unternehmen dabei, durch den Einsatz von künstlicher Intelligenz, individuell auf die Kundenbedürfnisse tausender Kunden einzugehen. Damit jeder Marketing Manager jedem Kunden das richtige Angebot zur richtigen Zeit machen kann.

Data Science Blog: Herr Wuttke, Marketing gilt als einer der Pionier-Bereiche der Unternehmen für den Einstieg in Big Data Analytics. Wie etabliert ist Big Data und Data Science heute im Marketing?  

Viele Unternehmen in Deutschland erkennen gerade Chancen und den Wert ihrer Daten. Dadurch investieren die Unternehmen in Big Data Infrastruktur und Data Science Teams.

Gleichzeitig denke ich, wir stehen im Marketing gerade am Anfang einer neuen Daten-Ära. Big Data und Data Science sind im Moment noch ein Thema der großen Konzerne. Viele kleine und mittelständische Unternehmen haben noch viele offene Potentiale in Bezug auf intelligente Kundenanalysen.

Durch stetig steigende Preise für die Kundenakquise, wird die Erhaltung und Steigerung einer guten Kundenbindung immer wichtiger. Und genau hier sehe ich die Vorteile durch Data Science im Marketing. Unternehmen können viel genauer auf Kundenbedürfnisse eingehen, antizipieren welches Produkt als nächstes gekauft wird und so ihr Marketing zielgenau ausrichten. Dieses „personalisierte Marketing“ führt zu einer deutlich stärkeren Kundenbindung und steigert langfristig Umsätze.

Viele amerikanische Unternehmen machen es vor, aber auch deutsche Unternehmen wie Zalando oder AboutYou investieren viel Geld in die Personalisierung ihres Marketings. Ich denke, die Erfolge sprechen für sich.

Data Science Blog: Ein häufiges Anliegen für viele Marketing Manager ist die treffsichere Kundensegmentierung nach vielerlei Kriterien. Welche Verbesserungen sind hier möglich und wie können Unternehmen diese erreichen?

Kundensegmentierungen sind ein wichtiger Bestandteil vieler Marketingstrategien. Allerdings kann man hier deutlich weitergehen und Marketing im Sinne von „Segments of One“ betreiben. Das bedeutet wir haben für jeden einzelnen Kunden eine individuelle „Next Best Action und Next Best Offer“.

Somit wird jeder Kunde aus Sicht des Marketings individuell betrachtet und bekommt individuelle Produktempfehlungen sowie Marketingmaßnahmen, welche auf das jeweilige Kundenbedürfnis zugeschnitten sind.

Dies ist auch ein wichtiger Schritt für die Marketingautomatisierung, denn wir können im Marketing schlichtweg keine tausenden von Kunden persönlich betreuen.

Data Science Blog: Sind die Kundencluster dann erkannt, stellt sich die Frage, wie diese besser angesprochen werden können. Wie funktioniert die dafür notwendige Kundenanalyse?

Ganz unterschiedlich, je nach Geschäftsmodell und Branche fällt die Kundenanalyse anders aus. Wir schauen uns unterschiedliche Merkmale zum historischen Kaufverhalten, Demografie und Produktnutzung an. Daraus ergeben sich in der Regel sehr schnell Kundenprofile oder Personas, die gezielt angesprochen werden können.

Data Science Blog: Oft werden derartige Analyse-Vorhaben auf Grund der Befürchtung, die relevanten Daten seien nicht verfügbar oder die Datenqualität sei einer solchen Analyse nicht würdig, gar nicht erst gestartet. Sind das begründete Bedenken?

Nein, denn oft kommen die Daten, die für eine Kundenanalyse oder die Vorhersage von Ergebnissen braucht, aus Datenquellen wie z.B. den Transaktionsdaten. Diese Daten hat jedes Unternehmen in guter Qualität vorliegen.

Natürlich werden die Analysen besser, wenn weitere Datenquellen wie bspw. Produktmetadaten, Kundeneigenschaften oder das Klickverhalten zur Verfügung stehen, aber es ist kein Muss.

Aus meiner Praxiserfahrung kann ich sagen, dass hier oft ungenutzte Potentiale schlummern.

Data Science Blog: Wie ist da eigentlich Ihre Erfahrung bzgl. der Interaktion zwischen Marketing und Business Intelligence? Sollten Marketing Manager ihre eigenen Datenexperten haben oder ist es besser, diese Ressourcen zentral in einer BI-Abteilung zu konzentrieren?

Aus meiner Sicht funktioniert moderenes Marketing heute nicht mehr ohne valide Datenbasis. Aus diesem Grund ist die Zusammenarbeit von Marketing und Business Intelligence unersetzbar, besonders wenn es um Bestandskundenmarketing geht. Hier laufen idealerweise alle Datenquellen in einer 360 Grad Kundensicht zusammen.

Dies kann dann auch als die Datenquelle für Machine Learning und Data Science verwendet werden. Alle wichtigen Daten können aus einer strukturierten 360 Grad Sicht zu einer Machine Learning Datenbasis (ML-Feature Store) umgewandelt werden. Das spart enorm viel Zeit und viel Geld.

Zu Ihrer zweiten Frage: Ich denke es gibt Argumente für beide Konstrukte, daher habe ich da keine klare Präferenz. Mir ist immer wichtig, dass der fachliche Austausch zwischen Technik und Fachbereich gut funktioniert. Ziele müssen besprochen und gegeben falls angepasst werden, um immer in die richtige Richtung zu gehen. Wenn diese Voraussetzung mit einer guten Data Science Infrastruktur gegeben ist, wird Data Science für wirklich skalierbar.

Data Science Blog: Benötigen Unternehmen dafür eine Customer Data Platform (CDP) oder zumindest ein CRM? Womit sollten Unternehmen beginnen, sollten sie noch ganz am Anfang stehen?

Eine Customer Data Platform (CDP) ist von Vorteil, ist aber kein Muss für den Anfang. Ein guts CRM-System oder gute gepflegte Kundendatenbank reicht zunächst für den Anfang.

Natürlich bietet eine CDP einen entscheidenden Vorteil durch die Zusammenführung von der Online- und der CRM-Welt. Das Klickverhalten hat einen enormen Einfluss auf die analytischen Modelle und hilft dabei, Kunden immer besser zu verstehen. Das ist besonders wichtig in unserer Zeit, da wir immer weniger direkten Kundenkontakt haben und zukünftig wird dieser auch noch weiter abnehmen.

Zusammengefasst: Wer diese Kundendaten intelligent miteinander verknüpft hat einen großen Vorteil.

Data Science Blog: Wie integrieren Sie App- und Webtracking in Ihre Analysen?

Trackingdaten aus Apps und Webseiten sind ein wichtiger Bestandteil unserer Machine Learning Modelle. Sie geben wichtige Informationen über das Kundenverhalten preis. So können die Trackingdaten gute Merkmale für Anwendungsfälle wie Churn Prediction, Customer Lifetime Value und Next Best Offer sein.

Häufig sind die Trackingdaten von unterschiedlichen Anbietern (Google Analytics, Piwik etc.) leicht anders in ihrer Struktur, dafür haben wir uns einen intelligenten Ansatz überlegt, um diese zu vereinheitlichen und in unseren Modellen anzuwenden.

Data Science Blog: Zurück zum Kunden. Seine Bedürfnisse stehen bei erfolgreichen Unternehmen im Fokus stehen. Einige Geschäftsmodelle basieren auf Abonnements oder Mitgliedschaften. Wie können Sie solchen Unternehmen helfen?

Abonnements und Subscriptions sind ein großer Trend: Der Kunde wird zum Nutzer und es fallen viele Kundendaten an, die gesammelt werden können. Viele unserer Kunden haben subscription- oder vertragsbasierte Geschäftsmodelle, was ich persönlich sehr interessante Geschäftsmodelle finde.

Diese haben häufig die Herausforderung ihre Kunden langfristig zu binden und eine gesunde Kundenbindung aufzubauen. Die Akquisition ist meistens sehr teuer und die Kundenabwanderung oder Customer Churn zu reduzieren damit ein strategisches Ziel. Wirklich erfolgreich werden diese dann, wenn die Churn Rate geringgehalten wird.

Die Lösung für eine niedrige Kundenabwanderung, neben einem guten Produkt und gutem Kundenservice, ist eine Churn Prediction und darauf aufbauende Churn Prevention Maßnahmen. Wir nehmen uns dazu das historische Kundenverhalten, schauen uns die Kündiger an und modellieren daraus eine Vorhersage für die Kundenabwanderung. So können Unternehmen abwanderungsgefährdete Kunden schon frühzeitig erkennen und entsprechend handeln. Das hat den entscheidenden Vorteil, dass man nicht einen schon verlorenen Kunden erneut gewinnen muss.

Es gibt aber auch Möglichkeiten schon weit vor der eigentlichen Churn-Gefahr anzusetzen, bei drohender Inaktivität. So haben wir für einen großen Fitness-App-Anbieter ein Alarmsystem entwickelt, das Kunden automatisiert Engagement-Kampagnen versendet, um bei drohender Inaktivität, den Kunden auf die Angebote aufmerksam zu machen. Sie kennen das von der Netflix-App, welche Ihnen jeden Abend einen guten Tipp für das Fernsehprogramm bereitstellt.

Data Science Blog: Gehen wir mal eine Ebene höher. So mancher CMO hat mit dem CFO den Deal, jährlich nur einen bestimmten Betrag ins Marketing zu stecken. Wie hilft Data Science bei der Budget-Verteilung auf die Bestandskunden?

Da gibt es eine einfache Lösung für „Customer Lifetime Value Prognosen“. Durch Machine Learning wird für jeden einzelnen Kunden eine Umsatz-Vorhersage für einen bestimmten Zeitraum getroffen. So kann das Bestandkundenmarketing das Marketingbudget ganz gezielt einsetzen und nach dem Kundenwert steuern. Ich gebe Ihnen ein Beispiel: Kundenreaktivierung im Handel. Sie haben ein bestimmtes Budget und können nicht jedem Kunden eine Reaktivierungsmaßnahme zukommen lassen. Wenn Sie einen gut berechneten Customer Lifetime Value haben, können Sie sich so auf die wertigen Kunden konzentrieren und diese reaktivieren.

Data Science Blog: Mit welchen Technologien arbeiten Sie bevorzugt? Welche Tools sind gerade im Kontext von analytischen Aufgaben im Marketing besonders effizient?

Wir haben uns in den letzten Jahren besonders auf Python und PySpark fokussiert. Mit der Entwicklung von Python für Data Science konnten die anderen Umgebungen kaum mithalten und somit ist Python aus meiner Sicht derzeit die beste Umgebung für unsere Lösungen.

Auch die Cloud spielt eine große Rolle für uns. Als kleines Unternehmen haben wir uns bei datasolut auf die AWS Cloud fokussiert, da wir gar nicht in der Lage wären, riesige Datenbestände unserer Kunden zu hosten.

Vor allem von dem hohen Automatisierungsgrad in Bezug auf Datenverarbeitung und Machine Learning bietet AWS alles, was das Data Science Herz begehrt.

Data Science Blog: Was würden Sie einem Junior Marketing Manager und einem Junior Data Scientist für den Ausbau seiner Karriere raten? Wie werden diese jungen Menschen zukünftig beruflich erfolgreich?

Dem Junior Marketing Manager würde ich immer raten, dass er sich Datenanalyse-Skills erarbeiten soll. Aber vor allem sollte er verstehen, was mit Daten alles möglich ist und wie diese eingesetzt werden können. Auch in meiner Vorlesung zu „Big Data im Marketing“ an der Hochschule Düsseldorf unterrichte ich Studierende, die auf Marketing spezialisiert sind. Hier gebe ich stets diesen Ratschlag.

Bei den Junior Daten Scientist ist es andersherum. Ich sehe in der Praxis immer wieder Data Scientists, die den Transfer zwischen Marketing und Data Science nicht gut hinbekommen. Daher rate ich jedem Data Scientist, der sich auf Marketing und Vertrieb fokussieren will, dass hier fachliches Know-How essentiell ist. Kein Modell oder Score hat einen Wert für ein Unternehmen, wenn es nicht gut im Marketing eingesetzt wird und dabei hilft, Marketingprozesse zu automatisieren.

Ein weiterer wichtiger Aspekt ist, dass sich Data Science und Machine Learning gerade rasant ändern. Die Automatisierung (Stichwort: AutoML) von diesen Prozessen ist auf der Überholspur, dass zeigen die großen Cloudanbieter ganz deutlich. Auch wir nutzen diese Technologie schon in der Praxis. Was der Algorithmus aber nicht übernehmen kann, ist der Transfer und Enablement der Fachbereiche.

Data Science Blog: Zum Schluss noch eine Bitte: Was ist Ihre Prophezeiung für die kommenden Jahre 2021/2022. What is the next big thing in Marketing Analytics?

Es gibt natürlich viele kleinere Trends, welche das Marketing verändern werden. Ich denke jedoch, dass die größte Veränderung für die Unternehmen sein wird, dass es einen viel großflächigeren Einsatz von Machine Learning im Marketing geben wird. Dadurch wird der Wettbewerb härter und für viele Unternehmen wird Marketing Analytics ein essentieller Erfolgsfaktor sein.

Interview: Operationalisierung von Data Science

Interview mit Herrn Dr. Frank Block von Roche Diagnostics über Operationalisierung von Data Science

Herr Dr. Frank Block ist Head of IT Data Science bei Roche Diagnostics mit Sitz in der Schweiz. Zuvor war er Chief Data Scientist bei der Ricardo AG nachdem er für andere Unternehmen die Datenanalytik verantwortet hatte und auch 20 Jahre mit mehreren eigenen Data Science Consulting Startups am Markt war. Heute tragen ca. 50 Mitarbeiter bei Roche Diagnostics zu Data Science Projekten bei, die in sein Aktivitätsportfolio fallen: 

Data Science Blog: Herr Dr. Block, Sie sind Leiter der IT Data Science bei Roche Diagnostics? Warum das „IT“ im Namen dieser Abteilung?

Roche ist ein großes Unternehmen mit einer großen Anzahl von Data Scientists in ganz verschiedenen Bereichen mit jeweils sehr verschiedenen Zielsetzungen und Themen, die sie bearbeiten. Ich selber befinde mich mit meinem Team im Bereich „Diagnostics“, d.h. der Teil von Roche, in dem Produkte auf den Markt gebracht werden, die die korrekte Diagnose von Krankheiten und Krankheitsrisiken ermöglichen. Innerhalb von Roche Diagnostics gibt es wiederum verschiedene Bereiche, die Data Science für ihre Zwecke nutzen. Mit meinem Team sind wir in der globalen IT-Organisation angesiedelt und kümmern uns dort insbesondere um Anwendungen von Data Science für die Optimierung der internen Wertschöpfungskette.

Data Science Blog: Sie sind längst über die ersten Data Science Experimente hinaus. Die Operationalisierung von Analysen bzw. analytischen Applikationen ist für Sie besonders wichtig. Welche Rolle spielt das Datenmanagement dabei? Und wo liegen die Knackpunkte?

Ja, richtig. Die Zeiten, in denen sich Data Science erlauben konnte „auf Vorrat“ an interessanten Themen zu arbeiten, weil sie eben super interessant sind, aber ohne jemals konkrete Wertschöpfung zu liefern, sind definitiv und ganz allgemein vorbei. Wir sind seit einigen Jahren dabei, den Übergang von Data Science Experimenten (wir nennen es auch gerne „proof-of-value“) in die Produktion voranzutreiben und zu optimieren. Ein ganz essentielles Element dabei stellen die Daten dar; diese werden oft auch als der „Treibstoff“ für Data Science basierte Prozesse bezeichnet. Der große Unterschied kommt jedoch daher, dass oft statt „Benzin“ nur „Rohöl“ zur Verfügung steht, das zunächst einmal aufwändig behandelt und vorprozessiert werden muss, bevor es derart veredelt ist, dass es für Data Science Anwendungen geeignet ist. In diesem Veredelungsprozess wird heute noch sehr viel Zeit aufgewendet. Je besser die Datenplattformen des Unternehmens, umso größer die Produktivität von Data Science (und vielen anderen Abnehmern dieser Daten im Unternehmen). Ein anderes zentrales Thema stellt der Übergang von Data Science Experiment zu Operationalisierung dar. Hier muss dafür gesorgt werden, dass eine reibungslose Übergabe von Data Science an das IT-Entwicklungsteam erfolgt. Die Teamzusammensetzung verändert sich an dieser Stelle und bei uns tritt der Data Scientist von einer anfänglich führenden Rolle in eine Beraterrolle ein, wenn das System in die produktive Entwicklung geht. Auch die Unterstützung der Operationalisierung durch eine durchgehende Data Science Plattform kann an dieser Stelle helfen.

Data Science Blog: Es heißt häufig, dass Data Scientists kaum zu finden sind. Ist Recruiting für Sie tatsächlich noch ein Thema?

Generell schon, obwohl mir scheint, dass dies nicht unser größtes Problem ist. Glücklicherweise übt Roche eine große Anziehung auf Talente aus, weil im Zentrum unseres Denkens und Handelns der Patient steht und wir somit durch unsere Arbeit einen sehr erstrebenswerten Zweck verfolgen. Ein zweiter Aspekt beim Aufbau eines Data Science Teams ist übrigens das Halten der Talente im Team oder Unternehmen. Data Scientists suchen vor allem spannenden und abwechselnden Herausforderungen. Und hier sind wir gut bedient, da die Palette an Data Science Anwendungen derart breit ist, dass es den Kollegen im Team niemals langweilig wird.

Data Science Blog: Sie haben bereits einige Analysen erfolgreich produktiv gebracht. Welche Herausforderungen mussten dabei überwunden werden? Und welche haben Sie heute noch vor sich?

Wir konnten bereits eine wachsende Zahl an Data Science Experimenten in die Produktion überführen und sind sehr stolz darauf, da dies der beste Weg ist, nachhaltig Geschäftsmehrwert zu generieren. Die gleichzeitige Einbettung von Data Science in IT und Business ist uns bislang gut gelungen, wir werden aber noch weiter daran arbeiten, denn je näher wir mit unseren Kollegen in den Geschäftsabteilungen arbeiten, umso besser wird sichergestellt, das Data Science sich auf die wirklich relevanten Themen fokussiert. Wir sehen auch guten Fortschritt aus der Datenperspektive, wo zunehmend Daten über „Silos“ hinweg integriert werden und so einfacher nutzbar sind.

Data Science Blog: Data Driven Thinking wird heute sowohl von Mitarbeitern in den Fachbereichen als auch vom Management verlangt. Sind wir schon so weit? Wie könnten wir diese Denkweise im Unternehmen fördern?

Ich glaube wir stecken mitten im Wandel, Data-Driven Decisions sind im Kommen, aber das braucht auch seine Zeit. Indem wir zeigen, welches Potenzial ganz konkrete Daten und Advanced Analytics basierte Entscheidungsprozesse innehaben, helfen wir, diesen Wandel voranzutreiben. Spezifische Weiterbildungsangebote stellen eine andere Komponente dar, die diesen Transformationszrozess unterstützt. Ich bin überzeugt, dass wenn wir in 10-20 Jahren zurückblicken, wir uns fragen, wie wir überhaupt ohne Data-Driven Thinking leben konnten…

Interview: Künstliche Intelligenz in der Pharma-Forschung und -Entwicklung

Interview mit Anna Bauer-Mehren, Head of Data Science in der Pharma-Forschung und -Entwicklung bei Roche in Penzberg

Frau Dr. Bauer-Mehren ist Head of Data Science im Bereich Pharma-Forschung und -Entwicklung bei Roche in Penzberg. Sie studierte Bioinformatik an der LMU München und schloss ihre Promotion im Bereich Biomedizin an der Pompeu Fabra Universität im Jahr 2010 in Spanien ab. Heute befasst sie sich mit dem Einsatz von Data Science zur Verbesserung der medizinischen Produkte und Prozesse bei Roche. Ferner ist sie Speaker der Predictive Analytics World Healthcare (Virtual Conference, Mai 2020).

Data Science Blog: Frau Bauer-Mehren, welcher Weg hat Sie bis an die Analytics-Spitze bei Roche geführt?

Ehrlich gesagt bin ich eher zufällig zum Thema Data Science gekommen. In der Schule fand ich immer die naturwissenschaftlich-mathematischen Fächer besonders interessant. Deshalb wollte ich eigentlich Mathematik studieren. Aber dann wurde in München, wo ich aufgewachsen und zur Schule gegangen bin, ein neuer Studiengang eingeführt: Bioinformatik. Diese Kombination aus Biologie und Informatik hat mich so gereizt, dass ich die Idee des Mathe-Studiums verworfen habe. Im Bioinformatik-Studium ging es unter anderem um Sequenzanalysen, etwa von Gen- oder Protein-Sequenzen, und um Machine Learning. Nach dem Masterabschluss habe ich an der Universitat Pompeu Fabra in Barcelona in biomedizinischer Informatik promoviert. In meiner Doktorarbeit und auch danach als Postdoktorandin an der Stanford School of Medicine habe ich mich mit dem Thema elektronische Patientenakten beschäftigt. An beiden Auslandsstationen kam ich auch immer wieder in Berührung mit Themen aus dem Pharma-Bereich. Bei meiner Rückkehr nach Deutschland hatte ich die Pharmaforschung als Perspektive für meine berufliche Zukunft fest im Blick. Somit kam ich zu Roche und leite seit 2014 die Abteilung Data Science in der Pharma-Forschung und -Entwicklung.

Data Science Blog: Was sind die Kernfunktionen der Data Science in Ihrem Bereich der Pharma-Forschung und -Entwicklung?

Ich bin Abteilungsleiterin für Data Science von pREDi (Pharma Research and Early Development Informatics), also von Roches Pharma-Forschungsinformatik. Dieser Bereich betreut alle Schritte von der Erhebung der Daten bis zur Auswertung und unterstützt alle Forschungsgebiete von Roche, von den Neurowissenschaften und der Onkologie bis hin zu unseren Biologie- und Chemielaboren, die die Medikamente herstellen. Meine Abteilung ist für die Auswertung der Daten zuständig. Wir beschäftigen uns damit, Daten so aufzubereiten und auszuwerten, dass daraus neue Erkenntnisse für die Erforschung und Entwicklung sowie die Optimierung von pharmazeutischen Produkten und Therapien gewonnen werden könnten. Das heißt, wir wollen die Daten verstehen, interpretieren und zum Beispiel einen Biomarker finden, der erklärt, warum manche Patienten auf ein Medikament ansprechen und andere nicht.

Data Science Blog: Die Pharmaindustrie arbeitet schon seit Jahrzehnten mit Daten z. B. über Diagnosen, Medikationen und Komplikationen. Was verbessert sich hier gerade und welche Innovationen geschehen hier?

Für die medizinische Forschung ist die Qualität der Daten sehr wichtig. Wenn ein Medikament entwickelt wird, fallen sehr große Datenmengen an. Früher hat niemand dafür gesorgt, dass diese Daten so strukturiert und aufbereitet werden, dass sie später auch in der Forschung oder bei der Entwicklung anderer Medikamente genutzt werden können. Es gab noch kein Bewusstsein dafür, dass die Daten auch über den eigentlichen Zweck ihrer Erhebung hinaus wertvoll sein könnten. Das hat sich mittlerweile deutlich verbessert, auch dank des Bereichs Data Science. Heute ist es normal, die eigenen Daten „FAIR“ zu machen. Das Akronym FAIR steht für findable, accessible, interoperable und reusable. Das heißt, dass man die Daten so sauber managen muss, dass Forscher oder andere Entwickler sie leicht finden, und dass diese, wenn sie die Berechtigung dafür haben, auch wirklich auf die Daten zugreifen können. Außerdem müssen Daten aus unterschiedlichen Quellen zusammengebracht werden können. Und man muss die Daten auch wiederverwenden können.

Data Science Blog: Was sind die Top-Anwendungsfälle, die Sie gerade umsetzen oder für die Zukunft anstreben?

Ein Beispiel, an dem wir zurzeit viel forschen, ist der Versuch, so genannte Kontrollarme in klinischen Studien zu erstellen. In einer klinischen Studie arbeitet man ja immer mit zwei Patientengruppen: Eine Gruppe der Patienten bekommt das Medikament, das getestet werden soll, während die anderen Gruppe, die Kontrollgruppe, beispielsweise ein Placebo oder eine Standardtherapie erhält. Und dann wird natürlich verglichen, welche der zwei Gruppen besser auf die Therapie anspricht, welche Nebenwirkungen auftreten usw. Wenn wir jetzt in der Lage wären, diesen Vergleich anhand von schon vorhanden Patientendaten durchzuführen, quasi mit virtuellen Patienten, dann würden wir uns die Kontrollgruppe bzw. einen Teil der Kontrollgruppe sparen. Wir sprechen hierbei auch von virtuellen oder externen Kontrollarmen. Außerdem würden wir dadurch auch Zeit und Kosten sparen: Neue Medikamente könnten schneller entwickelt und zugelassen werden, und somit den ganzen anderen Patienten mit dieser speziellen Krankheit viel schneller helfen.

Data Science Blog: Mit welchen analytischen Methoden arbeiten Sie und welche Tools stehen dabei im Fokus?

Auch wir arbeiten mit den gängigen Programmiersprachen und Frameworks. Die meisten Data Scientists bevorzugen R und/oder Python, viele verwenden PyTorch oder auch TensorFlow neben anderen.  Generell nutzen wir durchaus viel open-source, lizenzieren aber natürlich auch Lösungen ein. Je nachdem um welche Fragestellungen es sich handelt, nutzen wir eher statistische Modelle- Wir haben aber auch einige Machine Learning und Deep Learning use cases und befassen uns jetzt auch stark mit der Operationalisierung von diesen Modellen. Auch Visualisierung ist sehr wichtig, da wir die Ergebnisse und Modelle ja mit Forschern teilen, um die richtigen Entscheidungen für die Forschung und Entwicklung zu treffen. Hier nutzen wir z.B. auch RShiny oder Spotfire.

Data Science Blog: Was sind Ihre größten Herausforderungen dabei?

In Deutschland ist die Nutzung von Patientendaten noch besonders schwierig, da die Daten hier, anders als beispielsweise in den USA, dem Patienten gehören. Hier müssen erst noch die notwendigen politischen und rechtlichen Rahmenbedingungen geschaffen werden. Das Konzept der individualisierten Medizin funktioniert aber nur auf Basis von großen Datenmengen. Aktuell müssen wir uns also noch um die Fragen kümmern, wo wir die Datenmengen, die wir benötigen, überhaupt herbekommen. Leider sind die Daten von Patienten, ihren Behandlungsverläufen etc. in Deutschland oft noch nicht einmal digitalisiert. Zudem sind die Daten meist fragmentiert und auch in den kommenden Jahren wird uns sicherlich noch die Frage beschäftigen, wie wir die Daten so sinnvoll erheben und sammeln können, dass wir sie auch integrieren können. Es gibt Patientendaten, die nur der Arzt erhebt. Dann gibt es vielleicht noch Daten von Fitnessarmbändern oder Smartphones, die auch nützlich wären. Das heißt, dass wir aktuell, auch intern, noch vor der Herausforderung stehen, dass wir die Daten, die wir in unseren klinischen Studien erheben, nicht ganz so einfach mit den restlichen Datenmengen zusammenbringen können – Stichwort FAIRification. Zudem reicht es nicht nur, Daten zu besitzen oder Zugriff auf Daten zu haben, auch die Datenqualität und -organisation sind entscheidend. Ich denke, es ist sehr wichtig, genau zu verstehen, um was für Daten es sich handelt, wie diese Erhoben wurden und welche (wissenschaftliche) Frage ich mit den Daten beantworten möchte. Ein gutes Verständnis der Biologie bzw. Medizin und der dazugehörigen Daten sind also für uns genauso wichtig wie das Verständnis von Methoden des Machine Learning oder der Statistik.

Data Science Blog: Wie gehen Sie dieses Problem an? Arbeiten Sie hier mit dedizierten Data Engineers? Binden Sie Ihre Partner ein, die über Daten verfügen? Freuen Sie sich auf die Vorhaben der Digitalisierung wie der digitalen Patientenakte?

Roche hat vor ein paar Jahren die Firma Flatiron aus den USA übernommen. Diese Firma bereitet Patientendaten zum Beispiel aus der Onkologie für Krankenhäuser und andere Einrichtungen digital auf und stellt sie für unsere Forschung – natürlich in anonymisierter Form – zur Verfügung. Das ist möglich, weil in den USA die Daten nicht den Patienten gehören, sondern dem, der sie erhebt und verwaltet. Zudem schaut Roche auch in anderen Ländern, welche patientenbezogenen Daten verfügbar sind und sucht dort nach Partnerschaften. In Deutschland ist der Schritt zur elektronischen Patientenakte (ePA) sicherlich der richtige, wenn auch etwas spät im internationalen Vergleich. Dennoch sind die Bestrebungen richtig und ich erlebe auch in Deutschland immer mehr Offenheit für eine Wiederverwendung der Daten, um die Forschung voranzutreiben und die Patientenversorgung zu verbessern.

Data Science Blog: Sollten wir Deutsche uns beim Datenschutz lockern, um bessere medizinische Diagnosen und Behandlungen zu erhalten? Was wäre Ihr Kompromiss-Vorschlag?

Generell finde ich Datenschutz sehr wichtig und erachte unser Datenschutzgesetz in Deutschland als sehr sinnvoll. Ich versuche aber tatsächlich auf Veranstaltungen und bei anderen Gelegenheiten Vertreter der Politik und der Krankenkassen immer wieder darauf aufmerksam zu machen, wie wichtig und wertvoll für die Gesellschaft eine Nutzung der Versorgungsdaten in der Pharmaforschung wäre. Aber bei der Lösung der Problematik kommen wir in Deutschland nur sehr langsam voran. Ich sehe es kritisch, dass viel um dieses Thema diskutiert wird und nicht einfach mal Modelle ausprobiert werden. Wenn man die Patienten fragen würde, ob sie ihre Daten für die Forschung zur Verfügung stellen möchte, würden ganz viele zustimmen. Diese Bereitschaft vorher abzufragen, wäre technisch auch möglich. Ich würde mir wünschen, dass man in kleinen Pilotprojekten mal schaut, wie wir hier mit unserem Datenschutzgesetz zu einer ähnlichen Lösung wie beispielsweise Flatiron in den USA kommen können. Ich denke auch, dass wir mehr und mehr solcher Pilotprojekte sehen werden.

Data Science Blog: Gehört die Zukunft weiterhin den Data Scientists oder eher den selbstlernenden Tools, die Analysen automatisiert für die Produkt- oder Prozessverbesserung entwickeln und durchführen?

In Bezug auf Künstliche Intelligenz (KI) gibt es ein interessantes Sprichwort: Garbage in, Garbage out. Wenn ich also keine hochqualitativen Daten in ein Machine Learning Modell reinstecke, dann wird höchstwahrscheinlich auch nichts qualitativ Hochwertiges rauskommen. Das ist immer die Illusion, die beim Gedanken an KI entsteht: Ich lass einfach mal die KI über diesen Datenwust laufen und dann wird die gute Muster erkennen und wird mir sagen, was funktioniert. Das ist aber nicht so. Ich brauche schon gute Daten, ich muss die Daten gut organisieren und gut verstehen, damit meine KI wirklich etwas Sinnvolles berechnen kann. Es reichen eben nicht irgendwelche Daten, sondern die Daten müssen auch eine hohe Qualität haben, da sie sich sonst nicht integrieren und damit auch nicht interpretieren lassen. Dennoch arbeiten wir auch mit der Vision “Data Science” daran, immer mehr zu demokratisieren, d.h. es möglichst vielen Forschern zu ermöglichen, die Daten selbst auszuwerten, oder eben gewisse Prozessschritte in der Forschung durch KI zu ersetzen. Auch hierbei ist es wichtig, genau zu verstehen, was in welchem Bereich möglich ist. Und wieder denke ich, dass die richtige Erfassung/Qualität der Daten auch hier das A und O ist und dennoch oft unterschätzt wird.

Data Science Blog: Welches Wissen und welche Erfahrung setzen Sie für Ihre Data Scientists voraus? Und nach welchen Kriterien stellen Sie Data Science Teams für Ihre Projekte zusammen?

Generell sucht Roche als Healthcare-Unternehmen Bewerber mit einem Hintergrund in Informatik und Life Sciences zum Beispiel über ein Nebenfach oder einen Studiengang wie Biotechnologie oder Bioinformatik. Das ist deswegen wichtig, weil man bei Roche in allen Projekten mit Medizinern, Biologen oder Chemikern zusammenarbeitet, deren Sprache und Prozesse man verstehen sollte. Immer wichtiger werden zudem Experten für Big Data, Datenanalyse, Machine Learning, Robotics, Automatisierung und Digitalisierung.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder auch der Biologie, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie einen guten Einstieg ins Data Science bewältigen können?

Generell empfehle ich jungen Absolventen herauszufinden für welchen Bereich ihr Herz schlägt: Interessiere ich mich dafür, tief in die Biologie einzusteigen und grundlegende Prozesse zu verstehen? Möchte ich nahe am Patienten sei? Ooder ist mir wichtiger, dass ich auf möglichst große Datenmengen zugreifen kann?  Je nachdem, kann ich als Einstieg durchaus Traineeprogramme empfehlen, die es ermöglichen, in mehrere Abteilungen einer Firma Einblicke zu bekommen, oder würde eher eine Promotion empfehlen. Ich denke, das lässt sich eben nicht pauschalisieren. Für die Arbeit bei Roche ist sicherlich entscheidend, dass ich mich neben der Informatik/Data Science auch für das Thema Medizin und Biologie interessiere. Nur dann kann ich in den interdisziplinären Teams einen wertvollen Beitrag leisten und gleichzeitig auch meiner Leidenschaft folgen. Ich denke, dass das auch in anderen Branchen ähnlich ist.


Frau Bauer-Mehren ist Speaker der Predictive Analytics World Healthcare zum Thema Unlocking the Potential of FAIR Data Using AI at Roche.

The Predictive Analytics World Healthcare is the premier machine learning conference for the Healthcare Industry. Due to the corona virus crisis, this conference will be a virtual edition from 11 to 12 MAY 2020.

Im Interview mit Henny Selig zu Process Mining: “Für den Kunden sind solche Aha-Momente toll“

Henny Selig ist Spezialistin für Process Mining und verfügt über umfassende Erfahrung bei der Umsetzung von Process-Mining-Lösungen und der Unterstützung von Kunden bei der Prozessanalyse. Als Solution Owner bei Signavio ist Henny auch mit der Implementierung von Signavio Process Intelligence bei Unternehmen jeglicher Größe bestens vertraut. In diesem Interview geht Henny auf die Herausforderungen und Chancen von Process Mining ein. 


Read this interview in English:

Looking for the ‘aha moment’: An expert’s insights on process mining

 


Henny, wie würdest du das Konzept „Process Mining“ erklären?

Process Mining ist eine Kombination aus Datenanalyse und Business Process Management. Nahezu jeder Geschäftsprozess stützt sich auf IT-Systeme und hinterlässt digitale Spuren. Aus diesen IT-Systemen extrahieren wir alle Daten, die einen bestimmten Prozess betreffen, visualisieren sie und werten diese dann mithilfe von Data Science-Technologien aus.

Kurz gesagt: Process Mining bildet eine wichtige Brücke zwischen Fachabteilungen, Prozessverantwortlichen und dem Management. Damit sind datengestützte und faktenbasierte Diskussionen zur Optimierung von Geschäftsprozessen möglich. So lassen sich vor allem Übergaben und abteilungsübergreifende Schritte transparent gestalten und Silo-Denken vermeiden.

Welche Fragen beschäftigen Unternehmen, die mit Process Mining beginnen? Gibt es bestimmte Erwartungen, die durch den Einsatz von Process Mining erfüllt werden sollen?

Jedes Unternehmen ist anders und hat unterschiedliche Fragen und Erwartungen. Ein Beispiel: Ein Beschaffungsmanager, mit dem ich vor Kurzem zusammengearbeitet habe, war von den analysierten Daten überrascht. Denn es stellte sich heraus, dass zu einem bestimmten Zeitpunkt im Prozess eine Genehmigung vorlag, die eigentlich in einem anderen Moment erfolgen sollte. Für den Kunden sind solche Aha-Momente toll. Sie treten ganz automatisch auf, wenn man eine objektive und transparente Sicht auf den jeweiligen Prozess hat. 

Es wurden auch Fragen von uns aufgeworfen, die das Unternehmen bisher nicht berücksichtigt hatte, z. B. wie sich der Prozessablauf bei einem Bestellbetrag unter 1.000 Euro gestaltet und wie oft dies vorkommt. Fragen, die einem Außenstehenden klar erscheinen, die sich Prozessverantwortliche aber oft nicht stellen.

Ahnen Unternehmen häufig nur, dass ein Prozess nicht wie gewünscht läuft? Oder wissen die Meisten um spezifische Probleme in einem Bereich? 

Es gibt Unternehmen, die wissen, dass ein Prozess prinzipiell gut läuft, ein bestimmtes Problem aber immer wieder auftritt. Die involvierten Mitarbeiter sagen in diesen Fällen häufig, dass sie kein bestimmtes Anliegen oder keine konkrete Frage haben. Das stimmt natürlich nicht: Bei genauerem Nachfragen äußern sie dann erste Vermutungen oder Ideen.

Wenn man Mitarbeiter eines Unternehmens direkt fragt, wie sie bestimmte Dinge erledigen, sorgt das oft völlig unbeabsichtigt für Stress. Viele halten zunächst Informationen zurück, weil sie das Gefühl haben, dass der von ihnen beschriebene Prozess oder Workflow nicht perfekt ist. So wollen sie Vorwürfe vermeiden. 

Das oben erwähnte Genehmigungsbeispiel ist mein Favorit, weil es so eindeutig ist. Im betreffenden Unternehmen gab es zum Beispiel ein Team, das immer wieder sagte: „Diese Art von Anträgen genehmigen wir nicht.“ Die Daten sagten jedoch etwas ganz anderes – dem Team war das überhaupt nicht bewusst. 

Wir sprachen dann mit dem Manager. Dieser hatte sich bisher über ganz andere Dinge Gedanken gemacht wie etwa Risiken, den Prozessfluss im Allgemeinen und vieles andere. Nur allein durch dieses Gespräch konnten wir schon die Unstimmigkeiten zwischen dem Management und dem Team beseitigen, noch bevor der eigentliche Prozess selbst optimiert wurde. 

Gibt es noch andere Aspekte, die Unternehmen beachten sollten, wenn sie mit ihrer Process Mining-Initiative beginnen?

Nicht jede Varianz jenseits des Soll-Modells eines Prozesses ist automatisch negativ. Die wenigsten Prozesse, die nicht rein automatisiert ablaufen, sind zu 100% prozesskonform – selbst wenn die Rahmenbedingungen ideal sind. Daher wird es immer Ausnahmen geben, die einen anderen Ansatz erfordern. Und genau das ist die Herausforderung im Projekt: Man muss herausfinden, welche Variationen gewünscht und wo notwendige Ausnahmen zu treffen sind.

Würdest du sagen, dass eine datenbasierte Prozessanalyse eine Teamleistung ist?

Absolut! In jeder Phase eines Process Mining-Projekts sind ganz unterschiedliche Projektmitglieder involviert. Die IT stellt die Daten bereit und hilft bei deren Interpretation. Analysten führen dann die Prozessanalyse durch und diskutieren die gefundenen Auffälligkeiten mit der IT, den Prozessverantwortlichen und den Experten aus den Fachabteilungen. Denn manchmal gibt es gute Gründe für ein bestimmtes Prozessverhalten, das ohne das Wissen der Experten nicht erklärbar ist. 

Bei der Diskussion hilft es natürlich ungemein, den Gedankengang des Teams mit technischen Mitteln wie Signavio Process Intelligence zu dokumentieren. Auf diese Weise ist es möglich, die Analyse auf einzelne Prozesse herunterzubrechen und die richtige Person an der richtigen Stelle in die Diskussion einzubeziehen. So verliert man auch nicht den roten Faden. Und der nächste Kollege, der sich mit dem Thema beschäftigt, kann die Analyse nachvollziehen und das Ergebnis richtig einordnen.

Weitere Informationen dazu, wie Sie mit Process Mining Ihre Geschäftsprozesse besser verstehen und optimieren können, finden Sie auf der Produktseite von Signavio Process Intelligence. Oder melden Sie sich noch heute für eine kostenlose  bei Signavio an und legen Sie direkt los.

Interview – Künstliche Intelligenz im Unternehmen & der Mangel an IT-Fachkräften

Interview mit Sebastian van der Meer über den Einsatz von künstlicher Intelligenz im Unternehmen und dem Mangel an IT-Fachkräften

Sebastian van der Meer

Sebastian van der Meer ist Managing Partner der lexoro Gruppe, einem Technologie- und Beratungsunternehmen in den Zukunftsmärkten: Data-Science, Machine-Learning, Big-Data, Robotics und DevOps. Das Leistungsspektrum ist vielschichtig. Sie vermitteln Top-Experten an Unternehmen (Perm & IT-Contracting), arbeiten mit eigenen Teams für innovative Unternehmen an spannenden IT-Projekten und entwickeln zugleich eigene Produkte und Start-Ups in Zukunftsmärkten. Dabei immer im Mittelpunkt: Menschen und deren Verbindung mit exzellenter Technologiekompetenz.

Data Science Blog: Herr van der Meer, wenn man Google News mit den richtigen Stichwörtern abruft, scheinen die Themen Künstliche Intelligenz, Data Science und Machine Learning bei vielen Unternehmen bereits angekommen zu sein – Ist das so?

Das ist eine sehr gute Frage! Weltweit, vor allem in der USA und China, sind diese bereits „angekommen“, wenn man es so formulieren kann. Allerdings sind wir in Europa leider weit hinterher. Dazu gibt es ja bereits viele Studien und Umfragen, die dies beweisen. Vereinzelt gibt es große mittelständische- und Konzernunternehmen in Deutschland, die bereits eigene Einheiten und Teams in diesen Bereich und auch neue Geschäftsbereiche dadurch ermöglicht haben. Hier gibt es bereits tolle Beispiele, was mit K.I. erreichbar ist. Vor allem die Branchen Versicherungs- und Finanzdienstleistungen, Pharma/Life Science und Automotive sind den anderen in Deutschland etwas voraus.

Data Science Blog: Wird das Thema Data Science oder Machine Learning früher oder später für jedes Unternehmen relevant sein? Muss jedes Unternehmen sich mit K.I. befassen?

Data Science, Machine Learning, künstliche Intelligenz – das sind mehr als bloße Hype-Begriffe und entfernte Zukunftsmusik! Wir stecken mitten in massiven strukturellen Veränderungen. Die Digitalisierungswelle der vergangenen Jahre war nur der Anfang. Jede Branche ist betroffen. Schnell kann ein Gefühl von Bedrohung und Angst vor dem Unbekannten aufkommen. Tatsächlich liegen aber nie zuvor dagewesene Chancen und Potentiale vor unseren Füßen. Die Herausforderung ist es diese zu erkennen und dann die notwendigen Veränderungen umzusetzen. Daher sind wir der Meinung, dass jedes Unternehmen sich damit befassen muss und soll, wenn es in der Zukunft noch existieren will.

Wir unterstützen Unternehmen dabei ihre individuellen Herausforderungen, Hürden und Möglichkeiten zu identifizieren, die der große Hype „künstliche Intelligenz“ mit sich bringt. Hier geht es darum genau zu definieren, welche KI-Optionen überhaupt für das Unternehmen existieren. Mit Use-Cases zeigen wir, welchen Mehrwert sie dem Unternehmen bieten. Wenn die K.I. Strategie festgelegt ist, unterstützen wir bei der technischen Implementierung und definieren und rekrutieren bei Bedarf die relevanten Mitarbeiter.

Data Science Blog: Die Politik strebt stets nach Vollbeschäftigung. Die K.I. scheint diesem Leitziel entgegen gerichtet zu sein. Glauben Sie hier werden vor allem Ängste geschürt oder sind die Auswirkungen auf den Arbeitsmarkt durch das Vordringen von K.I. wirklich so gravierend?

Zu diesem Thema gibt es bereits viele Meinungen und Studien, die veröffentlicht worden sind. Eine interessante Studie hat vorhergesagt, dass in den nächsten 5 Jahren, weltweit 1.3 Millionen Stellen/Berufe durch K.I. wegfallen werden. Dafür aber in den gleichen Zeitnahmen 1.7 Millionen neue Stellen und Berufe entstehen werden. Hier gehen die Meinungen aber ganz klar auseinander. Die Einen sehen die Chancen, die Möglichkeiten und die Anderen sehen die Angst oder das Ungewisse. Eins steht fest, der Arbeitsmarkt wird sich in den nächsten 5 bis 10 Jahren komplett verändern und anpassen. Viele Berufe werden wegfallen, dafür werden aber viele neue Berufe hinzukommen. Vor einigen Jahren gab es noch keinen „Data Scientist“ Beruf und jetzt ist es einer der best bezahltesten IT Stellen in Unternehmen. Allein das zeigt doch auch, welche Chancen es in der Zukunft geben wird.

Data Science Blog: Wie sieht der Arbeitsmarkt in den Bereichen Data Science, Machine Learning und Künstliche Intelligenz aus?

Der Markt ist sehr intransparent. Jeder definiert einen Data Scientist anders. Zudem wird sich der Beruf und seine Anforderungen aufgrund des technischen Fortschritts stetig verändern. Der heutige Data Scientist wird sicher nicht der gleiche Data Scientist in 5 oder 10 Jahren sein. Die Anforderungen sind enorm hoch und die Konkurrenz, der sogenannte „War of Talents“ ist auch in Deutschland angekommen. Der Anspruch an Veränderungsbereitschaft und technisch stets up to date und versiert zu sein, ist extrem hoch. Das gleiche gilt auch für die anderen K.I. Berufe von heute, wie z.B. den Computer Vision Engineer, der Robotics Spezialist oder den DevOps Engineer.

Data Science Blog: Worauf sollten Unternehmen vor, während und nach der Einstellung von Data Scientists achten?

Das Allerwichtigste ist der Anfang. Es sollte ganz klar definiert sein, warum die Person gesucht wird, was die Aufgaben sind und welche Ergebnisse sich das Unternehmen mit der Einstellung erwartet bzw. erhofft. Oftmals hören wir von Unternehmen, dass sie Spezialisten in dem Bereich Data Science / Machine Learning suchen und große Anforderungen haben, aber diese gar nicht umgesetzt werden können, weil z.B. die Datengrundlage im Unternehmen fehlt. Nur 5% der Data Scientists in unserem Netzwerk sind der Ansicht, dass vorhandene Daten in ihrem Unternehmen bereits optimal verwertet werden. Der Data Scientist sollte schnell ins Unternehmen integriert werde um schnellstmöglich Ergebnisse erzielen zu können. Um die wirklich guten Leute für sich zu gewinnen, muss ein Unternehmen aber auch bereit sein finanziell tiefer in die Tasche zu greifen. Außerdem müssen die Unternehmen den top Experten ein technisch attraktives Umfeld bieten, daher sollte auch die Unternehmen stets up-to-date sein mit der heutigen Technologie.

Data Science Blog: Was macht einen guten Data Scientist eigentlich aus?

Ein guter Data Scientist sollte in folgenden Bereichen sehr gut aufgestellt sein: Präsentations- und Kommunikationsfähigkeiten, Machine Learning Kenntnisse, Programmiersprachen und ein allgemeines Business-Verständnis. Er sollte sich stets weiterentwickeln und von den Trends up to date sein. Auf relevanten Blogs, wie dieser Data Science Blog, aktiv sein und sich auf Messen/Meetups etc bekannt machen.

Außerdem sollte er sich mit uns in Verbindung setzen. Denn ein weiterer, wie wir finden, sehr wichtiger Punkt, ist es sich gut verkaufen zu können. Hierzu haben wir uns in dem letzten Jahr sehr viel Gedanken gemacht und auch Studien durchgeführt. Wir wollen es jedem K.I. -Experten ermöglichen einen eigenen Fingerabdruck zu haben. Bei uns ist dies als der SkillPrint bekannt. Hierfür haben wir eine holistische Darstellung entwickelt, die jeden Kandidaten einen individuellen Fingerabdruck seiner Kompetenzen abbildet. Hierfür durchlaufen die Kandidaten einen Online-Test, der von uns mit top K.I. Experten entwickelt wurde. Dieser bildet folgendes ab: Methoden Expertise, Applied Data Science Erfahrung, Branchen know-how, Technology & Tools und Business knowledge. Und die immer im Detail in 3 Ebenen.

Der darauf entstehende SkillPrint/Fingerprint ist ein Qualitätssigel für den Experten und damit auch für das Unternehmen, das den Experten einstellt.

Interesse an einem Austausch zu verschiedenen Karriereperspektiven im Bereich Data Science/ Machine Learning? Dann registrieren Sie sich direkt auf dem lexoro Talent Check-In und ein lexoro-Berater wird sich bei Ihnen melden.

Interview – Von der Utopie zur Realität der KI: Möglichkeiten und Grenzen

Interview mit Prof. Dr. Sven Buchholz über die Evolution von der Utopie zur Realität der KI – Möglichkeiten und Grenzen

Prof. Sven Buchholz hat eine Professur für die Fachgebiete Data Management und Data Mining am Fachbereich Informatik und Medien an der TH Brandenburg inne. Er ist wissenschaftlicher Leiter des an der Agentur für wissenschaftliche Weiterbildung und Wissenstransfer – AWW e. V. angesiedelten Projektes „Datenkompetenz 4.0 für eine digitale Arbeitswelt“ und Dozent des Vertiefungskurses „Machine Learning mit Python“, der seit 2018 von der AWW e. V. in Kooperation mit der TH Brandenburg angeboten wird.

Data Science Blog: Herr Prof. Buchholz, künstliche Intelligenz ist selbst für viele datenaffine Fachkräfte als Begriff noch zu abstrakt und wird mit Filmen wir A.I. von Steven Spielberg oder Terminator assoziiert. Gibt es möglicherweise unterscheidbare Stufen bzw. Reifegrade einer KI?

Für den Reifegrad einer KI könnte man, groß gedacht, ihre kognitiven Leistungen bewerten. Was Kognition angeht, dürfte Hollywood zurzeit aber noch meilenweit führen.  Man kann natürlich KIs im selben Einsatzgebiet vergleichen. Wenn von zwei Robotern einer lernt irgendwann problemlos durch die Tür zu fahren und der andere nicht, dann gibt es da schon einen Sieger. Wesentlich ist hier das Lernen, und da geht es dann auch weiter. Kommt er auch durch andere Türen, auch wenn ein Sensor
ausfällt?

Data Science Blog: Künstliche Intelligenz, Machine Learning und Deep Learning sind sicherlich die Trendbegriffe dieser Jahre. Wie stehen sie zueinander?

Deep Learning ist ein Teilgebiet von Machine Learning und das ist wiederum ein Teil von KI. Deep Learning meint eigentlich nur tiefe neuronale Netze (NN). Das sind Netze, die einfach viele Schichten von Neuronen haben und folglich als tief bezeichnet werden. Viele Architekturen, insbesondere auch die oft synonym mit Deep Learning assoziierten sogenannten Convolutional NNs gibt es seit Ewigkeiten. Solche Netze heute einsetzen zu können verdanken wir der Möglichkeit auf Grafikkarten rechnen zu können. Ohne Daten würde das uns aber auch nichts nützen. Netze lernen aus Daten (Beispielen) und es braucht für erfolgreiches Deep Learning sehr viele davon. Was wir oft gerade sehen ist also, was man mit genug vorhandenen Daten „erschlagen“ kann. Machine Learning sind alle Algorithmen, die ein Modell als Ouput liefern. Die Performanz von Modellen ist messbar, womit ich quasi auch noch eine Antwort zur ersten Frage nachreichen will.

Data Science Blog: Sie befassen sich beruflich seit Jahren mit künstlicher Intelligenz. Derzeitige Showcases handeln meistens über die Bild- oder Spracherkennung. Zweifelsohne wichtige Anwendungen, doch für Wirtschaftsunternehmen meistens zu abstrakt und zu weit weg vom Kerngeschäft. Was kann KI für Unternehmen noch leisten?

Scherzhaft oder vielleicht boshaft könnte man sagen, alles was Digitalisierung ihnen versprochen hat.
Wenn sie einen Chat-Bot einsetzen, sollte der durch KI besser werden. Offensichtlich ist das jetzt kein Anwendungsfall, der jedes Unternehmen betrifft. Mit anderen Worten, es hängt vom Kerngeschäft ab. Das klingt jetzt etwas ausweichend, meint aber auch ganz konkret die Ist-Situation.
Welche Prozesse sind jetzt schon datengetrieben, welche Infrastruktur ist vorhanden. Wo ist schon wie optimiert worden? Im Einkauf, im Kundenmanagement und so weiter.

Data Science Blog: Es scheint sich also zu lohnen, in das Thema fachlich einzusteigen. Was braucht man dazu? Welches Wissen sollte als Grundlage vorhanden sein? Und: Braucht man dazu einen Mindest-IQ?

Gewisse mathematische und informatorische Grundlagen braucht man sicher relativ schnell. Zum Beispiel: Wie kann man Daten statistisch beschreiben, was darf man daraus folgern? Wann ist etwas signifikant? Einfache Algorithmen für Standardprobleme sollte man formal hinschreiben können und implementieren können. Welche Komplexität hat der Algorithmus, wo genau versteckt sie sich? Im Prinzip geht es aber erst einmal darum, dass man mit keinem Aspekt von Data Science Bauchschmerzen hat. Einen Mindest-IQ braucht es also nur insofern, um diese Frage für sich selbst beantworten zu können.

Data Science Blog: Gibt es aus Ihrer Sicht eine spezielle Programmiersprache, die sich für das Programmieren einer KI besonders eignet?

Das dürfte für viele Informatiker fast eine Glaubensfrage sein, auch weil es natürlich davon abhängt,
was für eine KI das sein soll. Für Machine Learning und Deep Learning lautet meine Antwort aber ganz klar Python. Ein Blick auf die bestimmenden Frameworks und Programmierschnittstellen ist da
ziemlich eindeutig.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach im kommenden Jahr 2019 von Bedeutung werden?

Bei den Deep Learning Anwendungen interessiert mich, wie es mit Sprache weitergeht. Im Bereich Machine Learning denke ich, dass Reinforcement Learning weiter an Bedeutung gewinnt. KI-Chips halte ich für einen der kommenden Trends.

Data Science Blog: Es heißt, dass Data Scientist gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden Tools Data Scientists bald ersetzen?

Die Prognosen für das jährliche Datenwachstum liegen ja momentan so bei 30%. Wichtiger als diese Zahl alleine ist aber, dass dieses Wachstum von Daten kommt, die von Unternehmen generiert werden. Dieser Anteil wird über die nächsten Jahre ständig und rasant weiter wachsen. Nach den einfachen Problemen kommen also erst einmal mehr einfache Probleme und/oder mehr anspruchsvollere Probleme statt Arbeitslosigkeit. Richtig ist aber natürlich, dass Data Scientists zukünftig methodisch mehr oder speziellere Kompetenzen abdecken müssen. Deswegen haben die AWW e. V. und die TH Brandenburg ihr Weiterbildungsangebot um das Modul ‚Machine Learning mit Python‘ ergänzt.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik, Ingenieurwesen oder Wirtschaftswissenschaften, abgeschlossen haben, was würden Sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists mit gutem Verständnis für Machine Learning werden können?

Neugierig sein wäre ein Tipp von mir. Im Bereich Deep Learning gibt es ja ständig neue Ideen, neue Netze. Die Implementierungen sind meist verfügbar, also kann und sollte man die Sachen ausprobieren. Je mehr Netze sie selbst zum Laufen gebracht und angewendet haben, umso besser werden sie.  Und auch nur so  verlieren sie nicht den Anschluss.

Interview – Nutzen und Motivation der medizinischen Datenanalyse

Interview mit Prof. Thomas Schrader zur Motivation des Erlernens von Clinical Data Analytics

Prof. Dr. Thomas Schrader ist Fachbereichsleiter Informatik und Medien an der TH Brandenburg und hat seinen Projekt- und Lehrschwerpunkt in der Medizininformatik. Als Experte für Data Science verknüpft er das Wissen um Informatik und Statistik mit einem medizinischen Verständnis. Dieses Wissen wird genutzt, um eine beweisorientierte Diagnose stellen, aber auch, um betriebswirtschaftliche Prozesse zu verbessern. Prof. Thomas Schrader ist zudem Dozent und Mitgestalter des Zertifikatskurses Clinical Data Analytics.

Data Science Blog: Wie steht es um die medizinische Datenanalyse? Welche Motivation gibt es dafür, diese zu erlernen und anzuwenden?

Die Digitalisierung ist inzwischen auch in der Medizin angekommen. Befunde, Laborwerte und Berichte werden elektronisch ausgetauscht und stehen somit digital zur Verfügung. Ob im Krankenhaus, im Medizinischen Versorgungszentrum oder in der ambulanten Praxis, medizinische Daten dienen zur Befunderhebung, Diagnosestellung oder zur Therapiekontrolle.

Über mobile Anwendungen, Smart Phones und Smart Watches werden ebenfalls Daten erhoben und PatientInnen stellen diese zur Einsicht zur Verfügung.

Die Verwaltung der Daten und die richtige Nutzung der Daten wird zunehmend zu einer notwendigen Kompetenz im medizinischen Berufsalltag. Jetzt besteht die Chance, den Umgang mit Daten zu erlernen, deren Qualität richtig zu beurteilen und den Prozess der fortschreitenden Digitalisierung zu gestalten.

Daten haben Eigenschaften, Daten haben eine Lebenszeit, einen Lebenszyklus. Ähnlich einem Auto, sind verschiedene Personen in unterschiedlichen Rollen daran beteiligt und verantwortlich , Daten zu erheben, zu speichern oder Daten zur Verfügung zu stellen. Je nach Art der Daten, abhängig von der Datenqualität lassen sich diese Daten weiterverwenden und ggf. Schlussfolgerungen ziehen. Die Möglichkeit aus Daten Wissen zu generieren, ist für die medizinische Arbeit eine große Chance und Herausforderung.

Data Science Blog: Bedeutet MDA gleich BigData?

Big Data ist inzwischen ein Buzzwort: Alles soll mit BigData und der Anwendung von künstlicher Intelligenz gelöst werden. Es entsteht aber der Eindruck, dass nur die großen Firmen (Google, Facebook u.a.) von BigData profitieren. Sie verwenden ihre Daten, um Zielgruppen zu differenzieren, zu identifizieren und Werbung zu personalisieren.

Medizinische Datenanalyse ist nicht BigData! Medizinische Datenanalyse kann lokal mit den Daten eines Krankenhauses, eines MVZ oder ambulanten Praxis durchgeführt werden. Explorativ wird das Wissen aus diesen Daten erschlossen. Es können schon auf dieser Ebene Indikatoren der medizinischen Versorgung erhoben werden. Es lassen sich Kriterien berechnen, die als Indikatoren für die Detektion von kritischen Fällen dienen.

Mit einer eigenen Medizinischen Datenanalyse lassen sich eigene Daten analysieren, ohne jemals die Kontrolle über die Daten abzugeben. Es werden dabei Methoden verwendet, die teilweise auch bei Big Data Anwendung finden.

Data Science Blog: Für wen ist das Erlernen der medizinischen Datenanalyse interessant?

Die Medizinische Datenanalyse ist für alle interessant, die sich mit Daten und Zahlen in der Medizin auseinandersetzen. Die Frage ist eigentlich, wer hat nichts mit Daten zu tun?

Im ersten Augenblick fallen die ambulant und klinisch tätigen ÄrztInnen ein, für die MDA wichtig wäre: in einer Ambulanz kommt ein für diese Praxis typisches Spektrum an PatientInnen mit ihren Erkrankungsmustern. MDA kann diese spezifischen Eigenschaften charakterisieren, denn darin liegt ja Wissen: Wie häufig kommen meine PatientInnen mit der Erkrankung X zu mir in die Praxis? Dauert bei einigen PatientInnen die Behandlungszeit eigentlich zu lange? Bleiben PatientInnen weg, obwohl sie noch weiter behandelt werden müssten? Dahinter liegen also viele Fragen, die sich sowohl mit der Wirtschaftlichkeit als auch mit der Behandlungsqualität auseinandersetzen. Diese sehr spezifischen Fragen wird Big Data übrigens niemals beantworten können.

Aber auch die Pflegekräfte benötigen eigentlich dringend Werkzeuge für die Bereitstellung und Analyse der Pflegedaten. Aktuell wird sehr über die richtige Personalbesetzung von Stationen und Pflegeeinrichtungen diskutiert. Das eigentliche Problem dabei ist, dass für die Beantwortung dieser Frage Zahlen notwendig sind: über dokumentierte Pflegehandlungen, Arbeitszeiten und Auslastung. Inzwischen wird damit begonnen, dieses Daten zu erheben, aber es fehlen eine entsprechende Infrastruktur dieses Daten systematisch zu erfassen, auszuwerten und in einen internationalen, wissenschaftlichen Kontext zu bringen. Auch hier wird Big Data keine Erkenntnisse bringen: weil keine Daten vorhanden sind und weil keine ExpertIn aus diesem Bereich die Daten untersucht.

Die Physio-, ErgotherapeutInnen und LogopädInnen stehen aktuell unter dem hohen Druck, einen Nachweis ihrer therapeutischen Intervention zu bringen. Es geht auch hier schlicht darum, ob auch zukünftig alle Therapieformen bezahlt werden. Über die Wirksamkeit von Physio-, Ergo- und Logopädie können nur Statistiken Auskunft geben. Auch diese Berufsgruppen profitieren von der Medizinischen Datenanalyse.

In den Kliniken gibt es Qualitäts- und Risikomanager. Deren Arbeit basiert auf Zahlen und Statistiken. Die Medizinische Datenanalyse kann helfen, umfassender, besser über die Qualität und bestehende Risiken Auskunft zu geben.

Data Science Blog: Was kann genau kann die medizinische Datenanalyse leisten?

Die Technische Hochschule Brandenburg bietet einen Kurs Medizinische/ Klinische Datenanalyse an. In diesem Kurs wird basierend auf dem Lebenszyklus von Daten vermittelt, welche Aufgaben zu leisten sind, um gute Analysen durchführen zu können. Das fängt bei der Datenerhebung an, geht über die richtige und sichere Speicherung der Daten unter Beachtung des Datenschutzes und die Analyse der Daten. Da aber gerade im medizinischen Kontext die Ergebnisse eine hohe Komplexität aufweisen können, kommt auch der Visualisierung und Präsentation von Daten eine besondere Bedeutung zu. Eine zentrale Frage, die immer beantwortet werden muss, ist, ob die Daten für bestimmte Aussagen oder Entscheidungen tauglich sind. Es geht um die Datenqualität. Dabei ist nicht immer die Frage zu beantworten, ob das “gute” oder “schlechte” Daten sind, sondern eher um die Beschreibung der spezifischen Eigenschaften von Daten und die daraus resultierenden Verwendungsmöglichkeiten.

Data Science Blog: Sie bieten an der TH Brandenburg einen Zertifikatskurs zum Erlernen der Datenanalyse im Kontext der Medizin an. Was sind die Inhalte des Kurses?

Der Kurs gliedert sich in drei Module:

– Modul 1 – Daten aus Klinik und Pflege – Von den Daten zur Information: In diesem Modul wird auf die unterschiedlichen Datenquellen eingegangen und deren Qualität näher untersucht. Daten allein sagen zuweilen sehr wenig, sie müssen in einen Zusammenhang gebracht werden, damit daraus verwertbare Informationen. Im Mittelpunkt stehen die Teile des Datenlebenszyklus, die sich mit der Erhebung und Speicherung der Daten beschäftigen.

– Modul 2 – Anwenden der Werkzeuge: Analysieren, Verstehen und Entscheiden – Von Information zum Wissen. Der Schritt von Information zu Wissen wird dann begangen, wenn eine Strukturierung und Analyse der Informationen erfolgt: Beschreiben, Zusammenfassen und Zusammenhänge aufdecken.

– Modul 3 – Best practice – Fallbeispiele: Datenanalyse für die Medizin von morgen – von smart phone bis smart home, von Registern bis sozialen Netzen: In diesem Modul wird an Hand von verschiedenen Beispielen der gesamte Datenlebenszyklus dargestellt und mit Analysen sowie Visualisierung abgeschlossen.

Data Science Blog: Was unterscheidet dieser Kurs von anderen? Und wie wird dieser Kurs durchgeführt?

Praxis, Praxis, Praxis. Es ist ein anwendungsorientierter Kurs, der natürlich auch seine theoretische Fundierung erhält aber immer unter dem Gesichtspunkt, wie kann das theoretische Wissen direkt für die Lösung eines Problems angewandt werden. Es werden Problemlösungsstrategien vermittelt, die dabei helfen sollen verschiedenste Fragestellung in hoher Qualität aufarbeiten zu können.

In wöchentlichen Online-Meetings wird das Wissen durch Vorlesungen vermittelt und in zahlreichen Übungen trainiert. In den kurzen Präsenzzeiten am Anfang und am Ende eines Moduls wird der Einstieg in das Thema gegeben, offene Fragen diskutiert oder abschließend weitere Tipps und Tricks gezeigt. Jedes Modul wird mit einer Prüfung abgeschlossen und bei Bestehen vergibt die Hochschule ein Zertifikat. Für den gesamten Kurs gibt es dann das Hochschulzertifikat „Clinical Data Analyst“.

Der Zertifikatskurs „Clinical Data Analytics“ umfasst die Auswertung von klinischen Daten aus Informationssystemen im Krankenhaus und anderen medizinischen und pflegerischen Einrichtungen. Prof. Thomas Schrader ist einer der Mitgestalter des Kurses. Weitere Informationen sind stets aktuell auf www.th-brandenburg.de abrufbar.

Interview – Über die Kunst, Daten als Produktionsfaktor zu erkennen

Interview mit Dr. Christina Bender über die Digitalisierung und Data Science in einem 270-jährigem Familienunternehmen.

Dr. Christina Bender ist Senior Digital Strategist mit Schwerpunkt auf Data Science bei der Villeroy & Boch AG. Sie ist Diplom-Finanzökonomin und promovierte Mathematikerin. Als „Quant“ bei der UniCredit und Unternehmensberaterin bei der d‑fine GmbH sammelte sie bereits langjährige Erfahrung in der Konzeption und Umsetzung interdisziplinärer Digitalisierungs- und Prozessthemen in diversen Branchen. Als letzte Herausforderung im „echten“ Beraterleben hat sie bei d-fine als Prokuristin den Geschäftsbereich „Digitalisierung im Gesundheitswesen“ mit aufgebaut.

In der Digital Unit bei V&B bündelt sie als eine Art interne Beraterin alle Aktivitäten rund um Data Science (interimsweise inklusive Process Digitisation) für den Gesamtkonzern von Produktion über SCM bis CRM und Sales von der Strategie bis zur Betreuung der Umsetzung. Als Gründungsmitglied der Digital Unit hat sie die neue Unit und die digitale Roadmap von V&B aktiv gestaltet.

In ihrer beruflichen Karriere spielten komplexe Zusammenhänge und Daten also schon früh eine Rolle. Durch ihr breites Erfahrungsspektrum hat sie gelernt, dass Daten erst zum Produktionsfaktor werden, wenn sie in Anwendungsgebieten richtig angepasst eingesetzt und überzeugend präsentiert werden.

Data Science Blog: Frau Dr. Bender, womit genau befassen Sie sich als Digital Strategist? Und wie passt Data Science in dieses Konzept?

Zunächst war es die Aufgabe eine digitale Roadmap zu entwickeln und zwar abgestimmt auf ein Traditionsunternehmen, das sich in den letzten 270 Jahren ständig durch Innovation verändert hat. Als Beispiel, V&B hatte einen erfolgreichen „Merger“ vollzogen, da gab es das Wort „M&A“ noch gar nicht.

Ein erster Schritt war es dabei Themen zu sammeln und ein Vorgehen zu entwickeln, diese zu verstehen, zu priorisieren und sie dann stets als Ziel im Blick umzusetzen. Die meisten der Themen haben immer mit Daten und damit häufig mit Data Science zu tun. Das geht von Fragestellungen z.B. im Vertrieb, die durch einen Bericht im ERP-System abbildbar sind, bis hin zu komplexen Fragen der Bild­er­kennungstechnologie in der Produktion oder im Customer Relationship Management.

Um weiterhin die wirklich wichtigen Themen zu finden, ist es entscheidend die Chancen und Risiken der Digitalisierung und den Wert der richtigen Daten weit in die Fläche des Unternehmens zu tragen. Dieser Aufbau interner Kompetenzen durch uns als Digital Unit schafft Vertrauen und ist neben dem Vorantreiben konkreter Anwendungsfälle essentieller Bestandteil für eine erfolgreiche Digitalisierung.

Data Science Blog: An was für Anwendungsfällen arbeiten Sie konkret? Und wohin geht die Reise langfristig?

Derzeit arbeiten wir sowohl an kleineren Fragestellungen als auch an ca. vier größeren Projekten. Letztere sollen pain points gemeinsam mit den Fachexperten lösen und dadurch zu Leuchtturm­projekten werden, um eben Vertrauen zu schaffen. Dafür müssen wir ein “Henne-Ei”-Problem lösen. Oft sind die richtigen Daten für die Fragestellung noch nicht erfasst und/oder einige Menschen involviert, die eben erst durch ihnen nahestehende Leuchtturmprojekte überzeugt werden müssten. Daher arbeiten wir für eine erfolgreiche Umsetzung mit im täglichen Geschäft involvierten Fachexperten und erfahrenen Data Scientists mit gewissem Fach-Know-How, die uns einen gewissen Vertrauensvorsprung geben.

Das dauert seine Zeit, insbesondere weil wir stark agil vorgehen, um uns nicht zu verheddern. D.h. oft sieht eine Fragestellung am Anfang leicht aus und ist dann schlicht weg nicht realisierbar. Das muss man dann akzeptieren und eben auf die nächst priorisierte Fragestellung setzen. “Keramik ist halt anders als die Autoindustrie.” Über genaue Use Cases möchte ich daher noch nicht sprechen. Wir sind auf einem guten Weg.

Langfristig wünsche ich mir persönlich, dass Werte aus Daten – insbesondere bessere Ent­schei­dun­gen durch Wissen aus Daten – möglichst selbständig durch Business-Experten geschaffen werden und dies durch ein schlagkräftiges zentrales Team ermöglicht wird. D.h. das Team sorgt für eine entsprechen­de stets aktuell für Data Science geeignete Infrastruktur und steht bei komplexen Fragestellungen zur Verfügung.

Data Science Blog: Welche Algorithmen und Tools verwenden Sie für Ihre Anwendungsfälle?

Wir arbeiten auch mit Methoden im Bereich „Deep Learning“, zum Beispiel für die Bilderkennung. Allerdings gerade um die Erwartungshaltung im Unternehmen nicht zu hoch zu hängen, schauen wir immer wofür sich diese Methodik eignet und wo sie nicht unsere eigentliche Frage beantworten kann (siehe unten) oder schlicht weg nicht genügend Daten verfügbar sind. Insbesondere, wenn wir die eigentlich Ursache eines Problems finden und darauf reagieren wollen, ist es schlecht, wenn sich die Ursache „tief“ im Algorithmus versteckt. Dafür eignet sich z.B. eine logistische Regression, sofern gut parametrisiert und mit gut aufbereiteten Daten befüttert, häufig deutlich besser.

Wir nutzen kostenpflichtige Software und Open Source. Wunsch wäre, möglichst jedem im Unternehmen die richtige Anwendung zur Verfügung zu stellen, damit sie oder er leicht selbst die richtige Exploration erstellen kann, um die richtige Entscheidung zu treffen. Für den Data Scientist mag das ein anderes Tool sein als für den Fachexperten im Geschäftsbereich.

Data Science Blog: Daten werden von vielen Unternehmen, vermutlich gerade von traditionsreichen Familienunternehmen, hinsichtlich ihres Wertes unterschätzt. Wie könnten solche Unternehmen Daten besser bewerten?

Unternehmen müssen sich genau überlegen, was die für sie richtigen Fragen sind. Aus welchen Daten oder deren Verknüpfung kann ich Wissen generieren, dass diese für mich relevante Fragen (überhaupt) beantwortet werden können, um mit vertretbarem Aufwand nachhaltig Mehrwerte zu generieren. Natürlich sind die schlimmsten „pain points“ immer am schwierigsten, sonst hätte sie vermutlich jemand vor mir gelöst. Dies wird stets begleitet, warum mit den schon gesammelten Daten noch kein Mehrwert generiert wurde und somit ggf. begründet warum kein (Zeit-)Budget frei gegeben wird, um weitere (dann hoffentlich die richtigen) Daten zu sammeln.

Als erstes ist es m.E. daher wichtig dem Entscheidungsträger klar zu machen, dass es keine Maschine gibt in die ggf. wahllos gesammelte Daten reingeworfen werden und die „KI“ spuckt dann die richtigen Antworten auf die richtigen nie gestellten Fragen heraus. Denn gäbe es diese Art künstlicher Intelligenz, wäre der Erfinder wohl längst der reichste Mensch der Welt.

Nein, dafür wird menschliche Intelligenz gebraucht und Freiraum für die Mitarbeiterinnen und Mitarbeiter, die richtigen Fragen und Antworten zu suchen und auch auf diesem Weg manchmal kurzfristig zu scheitern. Kurz gesagt, braucht es eine Datenstrategie, um alle, Vorstand und Mitarbeiterinnen und Mitarbeiter, auf diesen Weg mitzunehmen.

Data Science Blog: Wie erstellen Unternehmen eine Datenstrategie?

Unternehmensleiter wollen Ergebnisse sehen und verstehen oft nicht gleich, warum sie Geld in Daten investieren sollen, wenn erst mittel- bis langfristig ein Mehrwert herausspringt. Die alleinige Drohkulisse, wenn nicht jetzt, dann eben in 10 Jahren ohne uns, hilft da oft nur bedingt oder ist gar kontraproduktiv.

Wichtig ist es daher, alle an einen Tisch zu holen und gemeinsam eine Unternehmensvision und Ziele zu diskutieren, zu begreifen und zu vereinbaren, dass Daten dafür ein Faktor sind (oder ggf. vorerst auch nicht). Noch wichtiger ist der Weg dahin, die Datenstrategie, nämlich wie aus Daten langfristig nachhaltige Mehrwerte gehoben werden.

Um eine Datenstrategie zu erstellen, braucht es eine gewisse Mindestausstattung einerseits an dafür zumindest zum Teil freigestellten Experten aus dem Business und anderseits Datenexperten, die mit diesen Experten reden können. Sie müssen nach erfolgreicher Zielbildung einen minimalen Werkzeug­kasten aus KnowHow und Technologie schaffen, der es erst ermöglicht Leuchtturmprojekte erfolgreich umzusetzen. Diese Leuchtturmprojekte dienen als erste erfolgreiche Beispielwege. Damit fällt es auch leichter den Werkzeugkasten als Grundlage zur Lösung größerer pain points weiter auszubauen. In Zeiten, wo halbwegs kommunikative Data Scientists mit Businessverständnis Mangelware sind, ist dies manchmal nur mit externer Unterstützung möglich. Doch Obacht, wichtig ist ein interner Koordinator, der alle Zügel in Händen behält, damit nicht viele richtige Antworten auf irrelevante nicht gestellte Fragen gegeben werden. Denn dann geht anfängliche Akzeptanz leicht verloren.

Data Science Blog: Wie stellen Sie ein Data Science Team auf? Und suchen Sie für dieses Team eher Nerds oder extrovertierte Beratertypen?

Kurz und knapp: Die gesunde Mischung wie ich selbst.

Natürlich ist je nach Aufgabengebiet die Gewichtung etwas verschoben. Gerade in einem Unternehmen, das gerade erst den Wert von Daten am entdecken ist, ist es entscheidend, dass diese Werte den Businessexperten auch begreiflich gemacht bzw. mehr noch zusammen entwickelt werden. Dafür brauchen wir Menschen, die beides beherrschen. D.h. sie können komplizierte Inhalte anschaulich vermitteln – „Anteil extrovertierter  Berater“, und hinter den Kulissen den tatsächlichen Wert aus Daten finden. Für letzteres brauchen wir die Eigenschaften eines „Nerds“. Mal ehrlich, durch meine Lehrtätigkeit habe ich selbst gelernt: Erst wenn ich etwas selbst verständlich erklären kann, habe ich es selbst verstanden und kann mein Tun stetig verbessern.


Dr. Christina Bender präsentiert am 15. November 2018, dem zweiten Tag der Data Leader Days 2018, über die „Tradition und digitale Innovation bei einem Keramikhersteller – warum Deep Learning nicht immer das Allheilmittel ist“. Mehr über die Data Leader Days erfahren Sie hier: www.dataleaderdays.com


Interview – Berufsbegleitender Zertifikatskurs “Data Science”

Interview mit Dr. Peter Lauf, dem wissenschaftlichen Leiter des berufsbegleitenden Zertifikatskurses „Data Science“  der Technischen Hochschule Brandenburg, über die Erfahrungen aus bisher drei erfolgreichen Zertifikatskursen.

Dr. Peter Lauf studierte im Anschluss an eine kaufmännische Ausbildung Volkswirtschaft. Sein Diplom und die Promotion machte er an der Uni Köln. Heute ist er vor allem als Datenanalytiker, Marketing Manager, Management Consultant, Leiter Database und Manager Big Data tätig. Er verfügt über mehr als 20 Jahre Erfahrung mit SPSS, ist zertifizierter SAS‑Programmierer und nutzt die Programmiersprache R seit 2004. Neben seinen Tätigkeiten als Consultant für Daten, steht er in Lehraufträgne an verschiedenen Hochschulen. 

Data Science Blog: Vor welchem Hintergrund haben Sie das Curriculum für die Weiterbildung zum Data Scientist entwickelt?

Maßgeblich waren hier zunächst eigene, über Jahrzehnte hinweg gesammelte Erfahrungen. Ich arbeitete unter anderem als Sozialforscher, Datenbankmanager, Management Consultant und Manager Big Data in den unterschiedlichsten Branchen mit den unterschiedlichsten Technologien. Weil ich bis heute parallel an verschiedenen Hochschulen tätig bin, besitze ich auch einen guten Überblick über aktuelle Webseiten, Blogs und Publikationen.

Data Science Blog: Wie setzen sie diese Erfahrungen und dieses Wissen konkret um?
Durch konsequenten Praxisbezug. Ein Beispiel: In der Praxis besitzt Excel für die Datenvorbereitung eine überragende Rolle. Da werden dann Inputdateien in verformelten Arbeitsblättern vielfach hin und her kopiert. Derartige Lösungen bedingen einen hohen manuellen Aufwand, sind praktisch nicht dokumentierbar und führen zu einer hohen Abhängigkeit von einzelnen Mitarbeitern. Weil ich selbst an der Ablösung solcher Systeme durch ETL-Lösungen mitgearbeitet habe, kann ich den Übergang von der einen zur anderen Lösung und die damit verbundenen Vorteile praxisnah und überzeugend darstellen.

Data Science Blog: Wie kommunizieren Sie mit den Teilnehmern?
Auf durchaus vielfältige Weise. In den Präsenzen spielt das direkte Gespräch eine große Rolle und zwar sowohl in den Unterrichtseinheiten, wie auch im Off, den Kaffeepausen zum Beispiel. Ein offenes Ohr bildet eine Grundvoraussetzung für einen guten Kurs. In den Web-Konferenzen werden ebenfalls Fragen gestellt und beantwortet. Mit Moodle verfügen wir auch über eine leistungsfähige und gern genutzte Lern- und Kommunikationsplattform. Schließlich unterstützen wir aktiv die Bildung einer Community unter den Teilnehmern. Es ist erstaunlich, wieviel Teilnehmer (und Dozenten!) aus diesem Austausch lernen können.

Data Science Blog: Lassen Sie uns hier einhaken, was lernen Sie von den Teilnehmern?

Bisher streut der Kurs ganz erheblich bezüglich Branchen, Alter, Vorerfahrungen, Job-Titles und anderer Kriterien. Diese Diversität konfrontiert uns immer wieder mit neuen Anwendungsfällen, die wir gerne aufgreifen und für die wir Lösungen zur Diskussion stellen. Es ist wie in der Medizin: ein breites Fallspektrum steigert die Qualität.

Data Science Blog: Welche Pläne haben Sie für die Zukunft?

Die dynamische Weiterentwicklung unserer Inhalte. Wir betreiben einen hohen Aufwand um á jour zu bleiben. Die Aktivitäten international führender Data Scientists werden aufmerksam verfolgt und wir werten z. B. Verlagsprogramme und Konferenzen aus. Soweit neue Entwicklungen bereits in Software umgesetzt wurden und für uns interessant sind, testen wir diese Lösungen und integrieren sie in unsere Lernprogramme. Abgesehen von der reinen Datenseite sehen wir einen zukünftigen Schwerpunkt in der Berücksichtigung der Kognitionswissenschaft mit dem Ziel, die Urteilskraft unserer Teilnehmer weiter zu stärken.

Dr. Peter Lauf ist wissenschaftlicher Leiter des berufsbegleitenden Zertifikatskurses „Data Science“, der von der Agentur für wissenschaftliche Weiterbildung und Wissenstransfer (AWW e. V.) an der Technischen Hochschule Brandenburg angeboten wird. Die Module sind als eigene Einheiten konzipiert, so dass ein Einsteigen in den Kurs mit jedem Modul möglich ist. Weitere Hinweise zu diesem Fortbildungsangebot finden sich direkt auf www.aww-brandenburg.de.

Interview – Die Bedeutung von Machine Learning für das Data Driven Business

Um das Optimum aus ihren Daten zu holen, müssen Unternehmen Data Analytics vorantreiben, um Entscheidungsprozesse für Innovation und Differenzierung stärker zu automatisieren. Die Data Science scheint hier der richtige Ansatz zu sein, ist aber ein neues und schnelllebiges Feld, das viele Sackgassen kennt. Cloudera Fast Forward Labs unterstützt Unternehmen dabei sich umzustrukturieren, Prozesse zu automatisieren und somit neue Innovationen zu schaffen.

Alice Albrecht ist Research Engineer bei Cloudera Fast Forward Labs. Dort widmet sie sich der Weiterentwicklung von Machine Learning und Künstlicher Intelligenz. Die Ergebnisse ihrer Forschungen nutzt sie, um ihren Kunden konkrete Ratschläge und funktionierende Prototypen anzubieten. Bevor sie zu Fast Forward Labs kam, arbeitete sie in Finanz- und Technologieunternehmen als Data Science Expertin und Produkt Managerin. Alice Albrecht konzentriert sich nicht nur darauf, Maschinen “coole Dinge” beizubringen, sondern setzt sich auch als Mentorin für andere Wissenschaftler ein. Während ihrer Promotion der kognitiven Neurowissenschaften in Yale untersuchte Alice, wie Menschen sensorische Informationen aus ihrer Umwelt verarbeiten und zusammenfassen.

english-flagRead this article in English:
“Interview – The Importance of Machine Learning for the Data Driven Business”


Data Science Blog: Frau Albrecht, Sie sind eine bekannte Keynote-Referentin für Data Science und Künstliche Intelligenz. Während Data Science bereits im Alltag vieler Unternehmen angekommen ist, scheint Deep Learning der neueste Trend zu sein. Ist Künstliche Intelligenz für Unternehmen schon normal oder ein überbewerteter Hype?

Ich würde sagen, nichts von beidem stimmt. Data Science ist inzwischen zwar weit verbreitet, aber die Unternehmen haben immer noch Schwierigkeiten, diese neue Disziplin in ihr bestehendes Geschäft zu integrieren. Ich denke nicht, dass Deep Learning mittlerweile Teil des Business as usual ist – und das sollte es auch nicht sein. Wie jedes andere Tool, braucht auch die Integration von Deep Learning Modellen in die Strukturen eines Unternehmens eine klar definierte Vorgehensweise. Alles andere führt ins Chaos.

Data Science Blog: Nur um sicherzugehen, worüber wir reden: Was sind die Unterschiede und Überschneidungen zwischen Data Analytics, Data Science, Machine Learning, Deep Learning und Künstlicher Intelligenz?

Hier bei Cloudera Fast Forward Labs verstehen wir unter Data Analytics das Sammeln und Addieren von Daten – meist für schnelle Diagramme und Berichte. Data Science hingegen löst Geschäftsprobleme, indem sie sie analysiert, Prozesse mit den gesammelten Daten abgleicht und anschließend entsprechende Vorgänge prognostiziert. Beim Machine Learning geht es darum, Probleme mit neuartigen Feedbackschleifen zu lösen, die sich mit der Anzahl der zur Verfügung stehenden Daten noch detaillierter bearbeiten lassen. Deep Learning ist eine besondere Form des Machine Learnings und ist selbst kein eigenständiges Konzept oder Tool. Künstliche Intelligenz zapft etwas Komplizierteres an, als das, was wir heute sehen. Hier geht es um weit mehr als nur darum, Maschinen darauf zu trainieren, immer wieder dasselbe zu tun oder begrenzte Probleme zu lösen.

Data Science Blog: Und wie können wir hier den Kontext zu Big Data herstellen?

Theoretisch gesehen gibt es Data Science ja bereits seit Jahrzehnten. Die Bausteine für modernes Machine Learning, Deep Learning und Künstliche Intelligenz basieren auf mathematischen Theoremen, die bis in die 40er und 50er Jahre zurückreichen. Die Herausforderung bestand damals darin, dass Rechenleistung und Datenspeicherkapazität einfach zu teuer für die zu implementierenden Ansätze waren. Heute ist das anders. Nicht nur die Kosten für die Datenspeicherung sind erheblich gesunken, auch Open-Source-Technologien wie etwa Apache Hadoop haben es möglich gemacht, jedes Datenvolumen zu geringen Kosten zu speichern. Rechenleistung, Cloud-Lösungen und auch hoch spezialisierte Chip-Architekturen, sind jetzt auch auf Anfrage für einen bestimmten Zeitraum verfügbar. Die geringeren Kosten für Datenspeicherung und Rechenleistung sowie eine wachsende Liste von Tools und Ressourcen, die über die Open-Source-Community verfügbar sind, ermöglichen es Unternehmen jeder Größe, von sämtlichen Daten zu profitieren.

Data Science Blog: Was sind die Herausforderungen beim Einstieg in Data Science?

Ich sehe zwei große Herausforderungen: Eine davon ist die Sicherstellung der organisatorischen Ausrichtung auf Ergebnisse, die die Data Scientists liefern werden (und das Timing für diese Projekte).  Die zweite Hürde besteht darin, sicherzustellen, dass sie über die richtigen Daten verfügen, bevor sie mit dem Einstellen von Data Science Experten beginnen. Das kann “tricky” sein, wenn man im Unternehmen nicht bereits über Know-how in diesem Segment verfügt. Daher ist es manchmal besser, im ersten Schritt einen Data Engineer oder Data Strategist einzustellen, bevor man mit dem Aufbau eines Data Science Team beginnt.

Data Science Blog: Es gibt viele Diskussionen darüber, wie man ein datengesteuertes Unternehmen aufbauen kann. Geht es bei Data Science nur darum, am Ende das Kundenverhalten besser zu verstehen?

Nein “Data Driven” bedeutet nicht nur, die Kunden besser zu verstehen – obwohl das eine Möglichkeit ist, wie Data Science einem Unternehmen helfen kann. Abgesehen vom Aufbau einer Organisation, die sich auf Daten und Analysen stützt, um Entscheidungen über das Kundenverhalten oder andere Aspekte zu treffen, bedeutet es, dass Daten das Unternehmen und seine Produkte voranbringen.

Data Science Blog: Die Zahl der Technologien, Tools und Frameworks nimmt zu, was zu mehr Komplexität führt. Müssen Unternehmen immer auf dem Laufenden bleiben oder könnte es ebenso hilfreich sein, zu warten und Pioniere zu imitieren?

Obwohl es generell für Unternehmen nicht ratsam ist, pauschal jede neue Entwicklung zu übernehmen, ist es wichtig, dass sie mit den neuen Rahmenbedingungen Schritt halten. Wenn ein Unternehmen wartet, um zu sehen, was andere tun, und deshalb nicht in neue Entwicklungen investiert, haben sie den Anschluss meist schon verpasst.

Data Science Blog: Global Player verfügen meist über ein großes Budget für Forschung und den Aufbau von Data Labs. Mittelständische Unternehmen stehen immer unter dem Druck, den Break-Even schnell zu erreichen. Wie können wir die Wertschöpfung von Data Science beschleunigen?

Ein Team zu haben, das sich auf ein bestimmtes Set von Projekten konzentriert, die gut durchdacht und auf das Geschäft ausgerichtet sind, macht den Unterschied aus. Data Science und Machine Learning müssen nicht auf Forschung und Innovation verzichten, um Werte zu schaffen. Der größte Unterschied besteht darin, dass sich kleinere Teams stärker bewusst sein müssen, wie sich ihre Projektwahl in neue Rahmenbedingungen und ihre besonderen akuten und kurzfristigen Geschäftsanforderungen einfügt.

Data Science Blog: Wie hilft Cloudera Fast Forward Labs anderen Unternehmen, den Einstieg in Machine Learning zu beschleunigen?

Wir beraten Unternehmen, basierend auf ihren speziellen Bedürfnissen, über die neuesten Trends im Bereich Machine Learning und Data Science. Und wir zeigen ihnen, wie sie ihre Datenteams aufbauen und strukturieren können, um genau die Fähigkeiten zu entwickeln, die sie benötigen, um ihre Ziele zu erreichen.

Data Science Blog: Zum Schluss noch eine Frage an unsere jüngeren Leser, die eine Karriere als Datenexperte anstreben: Was macht einen guten Data Scientist aus? Arbeiten sie lieber mit introvertierten Coding-Nerds oder den Data-loving Business-Experten?

Ein guter Data Scientist sollte sehr neugierig sein und eine Liebe für die Art und Weise haben, wie Daten zu neuen Entdeckungen und Innovationen führen und die nächste Generation von Produkten antreiben können.  Menschen, die im Data Science Umfeld erfolgreich sind, kommen nicht nur aus der IT. Sie können aus allen möglichen Bereichen kommen und über die unterschiedlichsten Backgrounds verfügen.