Von BI zu PI: Der nächste Schritt auf dem Weg zu datengetriebenen Entscheidungen

„Alles ist stetig und fortlaufend im Wandel.“ „Das Tempo der Veränderungen nimmt zu.“ „Die Welt wird immer komplexer und Unternehmen müssen Schritt halten.“ Unternehmen jeder Art und Größe haben diese Sätze schon oft gehört – vielleicht zu oft! Und dennoch ist es für den Erfolg eines Unternehmens von entscheidender Bedeutung, sich den Veränderungen anzupassen.


Read this article in English: 
“From BI to PI: The Next Step in the Evolution of Data-Driven Decisions”


Sie müssen die zugrunde liegenden organisatorischen Bausteine verstehen, um sicherzustellen, dass die von Ihnen getroffenen Entscheidungen sich auch in die richtige Richtung entwickeln. Es geht sozusagen um die DNA Ihres Unternehmens: die Geschäftsprozesse, auf denen Ihre Arbeitsweise basiert, und die alles zu einer harmonischen Einheit miteinander verbinden. Zu verstehen, wie diese Prozesse verlaufen und an welcher Stelle es Verbesserungsmöglichkeiten gibt, kann den Unterschied zwischen Erfolg und Misserfolg ausmachen.

Unternehmen, die ihren Fokus auf Wachstum gesetzt haben, haben dies bereits erkannt. In der Vergangenheit wurde Business Intelligence als die Lösung für diese Herausforderung betrachtet. In jüngerer Zeit sehen sich zukunftsorientierte Unternehmen damit konfrontiert, Lösungen zu überwachen, die mit dem heutigen Tempo der Veränderungen Schritt halten können. Gleichzeitig erkennen diese Unternehmen, dass die zunehmende Komplexität der Geschäftsprozesse dazu führt, dass herkömmliche Methoden nicht mehr ausreichen.

Anpassung an ein sich änderndes Umfeld? Die Herausforderungen von BI

Business Intelligence ist nicht notwendigerweise überholt oder unnötig. In einer schnelllebigen und sich ständig verändernden Welt stehen die BI-Tools und -Lösungen jedoch vor einer Reihe von Herausforderungen. Hierzu können zählen:

  • Hohe Datenlatenz – Die Datenlatenz gibt an, wie lange ein Benutzer benötigt, um Daten beispielsweise über ein Business-Intelligence-Dashboard abzurufen. In vielen Fällen kann dies mehr als 24 Stunden dauern. Ein geschäftskritischer Zeitraum, da Unternehmen Geschäftschancen für sich nutzen möchten, die möglicherweise ein begrenztes Zeitfenster haben.
  • Unvollständige Datensätze – Business Intelligence verfolgt einen breiten Ansatz, sodass Prüfungen möglicherweise zwar umfassend, aber nicht tief greifend sind. Dies erhöht die Wahrscheinlichkeit, dass Daten übersehen werden; insbesondere in Fällen, in denen die Prüfungsparameter durch die Tools selbst nur schwer geändert werden können.
  • Erkennung statt Analyse – Business-Intelligence-Tools sind in erster Linie darauf ausgelegt, Daten zu finden. Der Fokus hierbei liegt vor allem auf Daten, die für ihre Benutzer nützlich sein können. An dieser Stelle endet jedoch häufig die Leistungsfähigkeit der Tools, da sie Benutzern keine einfachen Optionen bieten, die Daten tatsächlich zu analysieren. Die Möglichkeit, umsetzbare Erkenntnisse zu gewinnen, verringert sich somit.
  • Eingeschränkte Skalierbarkeit – Im Allgemeinen bleibt Business Intelligence ein Bereich für Spezialisten und Experten mit dem entsprechenden Know-how, über das Mitarbeiter im operativen Bereich oftmals nicht verfügen. Ohne umfangreiches Verständnis für die geschäftlichen Prozesse und deren Analyse innerhalb des Unternehmens bleibt die optimierte Anwendung eines bestimmten Business-Intelligence-Tools aber eingeschränkt.
  • Nicht nachvollziehbare Metriken – Werden Metriken verwendet, die nicht mit den Geschäftsprozessen verknüpft sind, kann Business Intelligence kaum positive Veränderungen innerhalb eines Unternehmens unterstützen. Für Benutzer ist es schwierig, Ergebnisse richtig auszuwerten und zu verstehen und diese Ergebnisse zweckdienlich zu nutzen.

Process Intelligence: der nächste wegweisende Schritt

Es bedarf einer effektiveren Methode zur Prozessanalyse, um eine effiziente Arbeitsweise und fundierte Entscheidungsfindung sicherzustellen. An dieser Stelle kommt Process Intelligence (PI) ins Spiel. PI bietet die entscheidenden Hintergrundinformationen für die Beantwortung von Fragen, die mit Business-Intelligence-Tools unbeantwortet bleiben.

Process Intelligence ermöglicht die durchgehende Visualisierung von Prozessabläufen mithilfe von Rohdaten. Mit dem richtigen Process-Intelligence-Tool können diese Rohdaten sofort analysiert werden, sodass Prozesse präzise angezeigt werden. Der Endbenutzer kann diese Informationen nach Bedarf einsehen und bearbeiten, ohne eine Vorauswahl für die Analyse treffen zu müssen.

Zum Vergleich: Da Business Intelligence vordefinierte Analysekriterien benötigt, kann BI nur dann wirklich nützlich sein, wenn diese Kriterien auch definiert sind. Unternehmen können verzögerte Analysen vermeiden, indem sie Process Intelligence zur Ermittlung der Hauptursache von Prozessproblemen nutzen, und dann die richtigen Kriterien zur Bestimmung des Analyserahmens auswählen.

Anschließend können Sie Ihre Systemprozesse analysieren und erkennen die Diskrepanzen und Varianten zwischen dem angestrebten Geschäftsprozess und dem tatsächlichen Verlauf Ihrer Prozesse. Und je schneller Sie Echtzeit-Einblicke in Ihre Prozesse gewinnen, desto schneller können Sie in Ihrem Unternehmen positive Veränderungen auf den Weg bringen.

Kurz gesagt: Business Intelligence eignet sich dafür, ein breites Verständnis über die Abläufe in einem Unternehmen zu gewinnen. Für einige Unternehmen kann dies ausreichend sein. Für andere hingegen ist ein Überblick nicht genug.

Sie suchen nach einer Möglichkeit um festzustellen, wie jeder Prozess in Ihrer Organisation tatsächlich funktioniert? Die Antwort hierauf lautet Software. Software, die Prozesserkennung, Prozessanalyse und Konformitätsprüfung miteinander kombiniert.

Mit den richtigen Process-Intelligence-Tools können Sie nicht nur Daten aus den verschiedenen IT-Systemen in Ihrem Unternehmen gewinnen, sondern auch Ihre End-to-End-Prozesse kontinuierlich überwachen. So erhalten Sie Erkenntnisse über mögliche Risiken und Verbesserungspotenziale. PI steht für einen kollaborativen Ansatz zur Prozessverbesserung, der zu einem bahnbrechenden Verständnis über die Abläufe in Ihrem Unternehmen führt, und wie diese optimiert werden können.

Erhöhtes Potenzial mit Signavio Process Intelligence

Mit Signavio Process Intelligence erhalten Sie wegweisende Erkenntnisse über Ihre Prozesse, auf deren Basis Sie bessere Geschäftsentscheidungen treffen können. Erlangen Sie eine vollständige Sicht auf Ihre Abläufe und ein Verständnis dafür, was in Ihrer Organisation tatsächlich geschieht.

Als Teil der Signavio Business Transformation Suite lässt sich Signavio Process Intelligence perfekt mit der Prozessmodellierung und -automatisierung kombinieren. Als eine vollständig cloudbasierte Process-Mining-Lösung erleichtert es die Software, organisationsweit zusammenzuarbeiten und Wissen zu teilen.

Generieren Sie neue Ideen, sparen Sie Aufwand und Kosten ein und optimieren Sie Ihre Prozesse. Erfahren Sie mehr über Signavio Process Intelligence.

Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

Den Prozessdaten auf der Spur: Systematische Datenanalyse kombiniert mit Prozessmanagement

Die Digitalisierung verändert Organisationen aller Branchen. In zahlreichen Unternehmen werden alltägliche Betriebsabläufe softwarebasiert modelliert, automatisiert und optimiert. Damit hinterlässt fast jeder Prozess elektronische Spuren in den CRM-, ERP- oder anderen IT-Systemen einer Organisation. Process Mining gilt als effektive Methode, um diese Datenspuren zusammenzuführen und für umfassende Auswertungen zu nutzen. Sie kombiniert die systematische Datenanalyse mit Geschäftsprozessmanagement: Dabei werden Prozessdaten aus den verschiedenen IT-Systemen einer Organisation extrahiert und mit Hilfe von Data-Science-Technologien visualisiert und ausgewertet.


Read this article in English: From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

 


Professionelle Process-Mining-Lösungen erlauben, die Ergebnisse dieser Prozessauswertungen auf Dashboards darzustellen und nach bestimmten Prozessen, Transaktionen, Abteilungen oder Kunden zu filtern. So ist es möglich, die Performance, Durchlaufzeiten und die Kosten einzelner Betriebsabläufe zu erfassen. Prozessverantwortliche werden auf diesem Wege auf Verzögerungen, ineffiziente Abläufe und mögliche Prozessverbesserungen aufmerksam.

Praxisbeispiel: Einkaufsprozess – Prozessabweichungen als Kosten- und Risikofaktor

Ein Beispiel aus dem Unternehmensalltag ist ein einfacher Einkaufsprozess: Ein Mitarbeiter benötigt einen neuen Laptop. Im Normalfall beginnt der Prozess mit der Anfrage des Mitarbeiters, die durch seinen Manager bestätigt wird. Ist kein Laptop vorrätig, löst das für den Einkauf zuständige Team die Bestellung aus. Zu einem späteren Zeitpunkt wird der Laptop dem Mitarbeiter übergeben und das Unternehmen erhält eine Rechnung. Diese Rechnung wird geprüft und fristgemäß gemäß den vorgegebenen Konditionen beglichen. Obwohl dieser alltägliche Prozess nicht sehr komplex ist, weicht er im Unternehmensalltag häufig vom modellierten Idealzustand ab, was unnötige Kosten und möglicherweise auch Risiken verursacht.

Die Gründe sind vielfältig:

  • Freigaben fehlen
  • Während des Bestellprozesses sind Informationen unvollständig
  • Rechnungen werden aufgrund von unvollständigen Informationen mehrfach korrigiert

Process Mining ermöglicht, den gesamten Prozessverlauf alltäglicher Betriebsabläufe unter die Lupe zu nehmen und faktenbasierte Diskussionen zwischen den Fachabteilungen, Prozessverantwortlichen sowie dem Management in einer Organisation anzuregen. So werden unternehmensweite Prozessverbesserungen möglich – vorausgesetzt, die Methode wird richtig angewandt und ist strategisch durchdacht. Doch wie gelingt eine erfolgreiche unternehmensweite Process-Mining-Initiative über Abteilungsgrenzen hinaus?

Wie sich eine erfolgreiche Process-Mining-Initiative auf den Weg bringen lässt

Jedes Unternehmen ist einzigartig und geht mit unterschiedlichen Fragestellungen an eine Process-Mining-Initiative heran: ob einzelne Prozesse gezielt verbessert, Prozesslebenszyklen verkürzt oder abteilungsübergreifende Abläufe an unterschiedlichen Standorten miteinander verglichen werden. Sie alle haben etwas gemeinsam: Eine erfolgreiche Process-Mining-Initiative erfordert ein strategisches Vorgehen.

Schritt 1: Mit Weitsicht planen und richtig kommunizieren

Wie definiere ich die Ziele und den Umfang der Process-Mining-Initiative?

Die Anfangsphase einer Process-Mining-Initiative dient der Planung und entscheidet häufig über den Erfolg eines Projektes. In erster Linie kommt es darauf an, die Ziele des Projektes zu definieren und die Erfolgsfaktoren zu bestimmen. Die Ziele einer erfolgreichen Process-Mining-Initiative sind SMART definiert: spezifisch, messbar, attainable/relevant, reasonable/umsetzbar und zeitgebunden/time-bound. Mögliche Ziele für das Projekt lassen sich zum Beispiel wie folgt formulieren:

  • Prozessdauer auf 25 Tage reduzieren
  • Hauptunterschiede zwischen zwei Ländern hinsichtlich bestimmter Prozesse identifizieren
  • Prozessautomatisierung um 25% steigern

Unter diesen Voraussetzungen lässt sich auch der Rahmen der Process-Mining-Initiative festlegen: Sie halten fest, welche Prozesse, konkret betroffen sind und wie sie mit den IT-Systemen und Mitarbeiterrollen in Ihrer Organisation verknüpft sind.

Welche Rollen und Verantwortlichkeiten gibt es?

Die Ziele Ihrer Process-Mining-Initiative sollten unternehmensweit geteilt werden: Dies erfordert neben einer klaren Strategie eine transparente Kommunikation in der gesamten Organisation: Indem Sie Ihren Mitarbeitern das nötige Wissen an die Hand geben, um die Initiative erfolgreich mitzugestalten, sichern Sie sich auch ihre Unterstützung.

So verstehen sie nicht nur, warum dieses Projekt sinnvoll ist, sondern sind auch in der Lage, das Wissen auf ihre individuelle Rolle und Situation zu übertragen. Im Rahmen einer Process-Mining-Initiative sind verschiedene Projektbeteiligte in unterschiedlichen Rollen aktiv:

Während Projektträger verantwortlich für die Prozessanalyse sind (z. B. Chief Procurement Officer oder Process Owner), wissen Prozessexperten, wie ein bestimmter Prozess verläuft und kennen die verschiedenen Variationen. Sie nutzen Methoden wie Process Mining, um ihr Wissen zu vertiefen und Diskussionen über die gewonnenen Daten anzustoßen. Sie arbeiten eng mit Business-Analysten zusammen, die die Prozessanalyse vorantreiben. Datenexperten wiederum verfolgen die einzelnen Spuren, die ein Prozess in der IT-Landschaft einer Organisation hinterlässt und bereiten sie so auf, dass sie Aufschluss über die Performance eines Prozesses geben.

Wie gestaltet sich die Zusammenarbeit?

Diese unterschiedlichen Rollen gilt es im Rahmen einer erfolgreichen Process-Mining-Initiative an einen Tisch zu bringen: So können die gewonnen Erkenntnisse gemeinsam im Team interpretiert und diskutiert werden, um die richtigen Veränderungen anzustoßen. Die daraus gewonnen Prozessverbesserungen spiegeln das Know-how des gesamten Teams wider und sind das Ergebnis einer erfolgreichen Zusammenarbeit.

Schritt 2: Die technischen Voraussetzungen schaffen

Wie werden Prozessdaten systemübergreifend aggregiert und aufbereitet?

Nun wird es Zeit für die technischen Vorbereitungen: Entscheidend ist es, alle Anforderungen an die beteiligten IT-Systeme zu durchdenken und die IT-Verantwortlichen so früh wie möglich einzubeziehen. Um valide Daten für Prozessverbesserungen zu generieren, sind diese drei Teilschritte nötig:

  1.  Datenextraktion: Relevante Daten aus unterschiedlichen IT-Systemen werden aggregiert (Datenquellen sind datenbasierte Tabellen aus ERP- und CRM-Lösungen, analytische Daten wie Reports, Logdateien, CSV-Dateien usw.)
  2.  Datenumwandlung gemäß den Anforderungen für Process Mining: Die extrahierten Daten werden in Cases (Abfolge verschiedener Prozessschritte) umgewandelt, mit einem Zeitstempel versehen und in Event-Logs gespeichert.
  3.  Datenübertragung: Die Process-Mining-Software greift auf die gespeicherten Event-Logs zu.

Welche Rolle spielen Konnektoren?

Diese Teilschritte werden erfahrungsgemäß mittels eines Software-Konnektors durchgeführt und in regelmäßigen Abständen wiederholt. Ein Software-Konnektor hat die Aufgabe, die Daten aus der IT-Landschaft eines Unternehmens nach den Anforderungen der Process-Mining-Lösung zu übersetzen. Er wird speziell für die Kombination mit bestimmten IT-Systemen wie SAP, Oracle oder Salesforce entwickelt und steuert die gesamte Datenintegration von der Extraktion über die Umwandlung bis zur Datenübertragung.

Process-Mining-Lösungen wie Signavio Process Intelligence verfügen über Standardkonnektoren sowie über eine API für individuell entwickelte Konnektoren. Im Rahmen der technischen Vorbereitungen gilt es, mit Blick auf das jeweilige Szenario über die Möglichkeiten der Umsetzbarkeit zu entscheiden und andere technische Lösungen zu evaluieren.

Schritt 3: Von der Prozessanalyse zur Prozessverbesserung

Wie lassen sich die ermittelten Daten für Verbesserungen nutzen?

Sind die umgewandelten Daten in der Process-Mining-Lösung verfügbar, beginnt die Prozessauswertung. Durch IT-gestütztes Process Mining erhalten Prozessexperten die Möglichkeit, alle vorliegenden Daten zu visualisieren und einzelne Prozesse detailliert auszuwerten. Die vorliegenden Prozesse werden nun hinsichtlich unterschiedlicher Faktoren untersucht, etwa mit Blick auf Durchlaufzeiten, Performance und den Prozessfluss. Im direkten Vergleich lässt sich auf diesem Wege ermitteln, welche Faktoren sich auf die Erfolgskennzahlen auswirken und an welchen Stellen Verzögerungen oder Abweichungen auftreten.

Die so gewonnen Erkenntnisse bilden eine wichtige Grundlage für faktenbasierte Diskussionen zwischen den verschiedenen Stakeholdern der Process-Mining-Initiative. Doch erst die konkreten Schritte, die aus dieser Datenbasis abgeleitet werden, entscheiden über den Erfolg des Projektes: Entscheidend ist, wie diese Erkenntnisse in die Praxis umgesetzt werden.

 

Eine Process-Mining-Lösung, die nicht als reines Analysetool zur Verfügung steht, sondern in eine umfassende Lösung für die Modellierung, Automatisierung und Analyse professioneller Geschäftsprozesse integriert ist, erleichtert den Schritt von der Business Process Discovery zur Prozessverbesserung. Schließlich gilt es, konkrete Prozessverbesserungen und Änderungen zu planen, in den Unternehmensalltag zu integrieren und die Ergebnisse auszuwerten – auch über das Ende der Process-Mining-Initiative hinaus.

Warum ist ein Process-Mining-Projekt nie vollständig abgeschlossen?  

Wer einmal mit der Prozessverbesserung beginnt, wird feststellen: Viele weitere Stellen in den Prozessen warten nur darauf, verbessert zu werden. Daher lohnt es sich, einige Wochen nach der initialen Prozessverbesserung neue Daten zu extrahieren, um herauszufinden, welche Veränderungen nachweislich zu mehr Effizienz geführt haben. Eine kontinuierliche Messung und Auswertung erleichtert einen umfassenden Blick auf die eigene Organisation:

  • Funktionieren die überarbeiteten Prozesse wie geplant?
  • Haben Prozessveränderungen unvorhersehbare Effekte?
  • Treten Schwachstellen in anderen Prozessen auf?
  • Haben sich die Prozesse verändert, seitdem sie überarbeitet wurden?
  • Wie lässt sich ein bestimmter Prozess weiter verbessern?

Somit lässt sich zusammenfassen: Wem es gelingt, die Datenspuren in den IT-Systemen der eigenen Organisation zu verfolgen, ist auf dem richtigen Weg zur kontinuierlichen Verbesserung. Davon profitieren nicht nur die Prozesse und IT-Systeme, sondern auch die Mitarbeiter in den Organisationen.

Interview – Die Herausforderungen der Sensor-Datenanalyse für die Automobilindustrie

Interview mit Andreas Festl von VIRTUAL VEHICLE

Andreas Festl ist Data Scientist bei VIRTUAL VEHICLE, ein führendes F&E Zentrum für die Automobil- und Bahnindustrie mit Sitz in Graz, Österreich. Das Zentrum konzentriert sich auf die konsequente Virtualisierung der Fahrzeugentwicklung. Wesentliches Element dabei ist die Verknüpfung von numerischer Simulation und Hardware-Testen, welche ein umfassendes HW-SW Systemdesign sicherstellt. Herr Festl forscht dort an Kontext-basierten Informationssystemen für den Einsatz im Fahrzeug und in der Entwicklung. Er ist ausgebildeter Mathematiker, der sich schon früh dem Thema Data Science verschrieben hat. Zusätzlich ist Herr Festl in der Lehre für Data and Information Science an der Fachhochschule Joanneum tätig.

Data Science Blog: Herr Festl, Sie sind technischer Data Scientist und arbeiten mit Daten, die zum großen Teil von Maschinen generiert werden. Was unterscheidet Ihren Arbeitsalltag vermutlich von den Data Scientists, die sich mit geschäftlichen Daten befassen?

Das wesentliche Merkmal an den Daten, mit denen wir arbeiten, ist die nicht vernachlässigbare zeitliche Komponente. Stellen Sie sich zum Beispiel eine Messung der Fahrzeuggeschwindigkeit vor: Dieses Messsignal kann natürlich nur dann sinnvoll interpretiert und verarbeitet werden, wenn die Zeit mitberücksichtigt wird. Die bloße Kenntnis der einzelnen Geschwindigkeitswerte hilft Ihnen ohne die korrekte Abfolge nicht weiter. Das führt dazu, dass viele Algorithmen aus dem Bereich des maschinellen Lernens nicht direkt auf diesen Daten arbeiten können.

Es existieren hier natürlich dennoch viele Möglichkeiten und Ansätze dafür, Wissen aus den Daten zu gewinnen; diese werden jedoch scheinbar noch nicht so oft verwendet, weshalb die verfügbare Software meist nicht für industrielle, sondern für akademische Nutzer ausgelegt ist. Ein wesentlicher Teil meiner Arbeit besteht deshalb darin, die passenden Libraries zu finden und diese für unsere Use-Cases anzupassen oder die Methode neu zu implementieren. Es gibt durchaus immer wieder Zeiten in denen meine Job-Beschreibung „mathematischer Programmierer“ lauten sollte und nicht “Data Scientist“. Ich denke, das ist im klassischen Bereich, der sich geschäftlichen Daten beschäftigt, vielleicht nicht mehr so häufig, da dort die verfügbare Software schon sehr ausgreift ist.

Außerdem beschreiben unsere Daten oft komplexe technische Prozesse in Fahrzeugkomponenten. Hier ist eine rege Kommunikation mit den jeweiligen Domänenexperten unerlässlich, damit ich auch als fachfremder Data Scientist den Prozess, der die Daten erzeugt, zumindest in Grundzügen verstehen kann. Dieser kommunikative Teil, in dem man sehr viel über verschiedenste Fachbereiche erfährt, ist für mich einer der schönsten Aspekte meiner Arbeit.

Data Science Blog: Wenn Data Science einem Laien erklärt wird, kommen häufig Beispiele von Kaufempfehlungen oder Gesundheitsprognosen von Fitness-Apps zur Sprache. Welches Beispiel würden Sie im Kontext von Automotive verwenden?

Die Möglichkeiten für den Einsatz von Data Science im Automotive Bereich sind extrem vielfältig – sie kann eigentlich über den gesamten Lebenszyklus eines Fahrzeugs gewinnbringend eingesetzt werden. Ein Einsatzbeispiel, das der Fahrer direkt positiv erleben kann, wäre die Predictive Maintenance von Fahrzeugteilen. Ähnlich zu den von Ihnen angesprochenen Fitness-Apps geht es hier darum eine „Gesundheitsprognose“ für die einzelnen Fahrzeugteile anhand von Messwerten zu erstellen. Im Idealfall müssen Sie Ihr Auto dann nicht mehr in fixen Service-Intervallen in die Werkstatt stellen, sondern das Auto meldet sich automatisch kurz bevor ein Teil ausgetauscht werden muss. Diese Meldung erschiene dann deshalb, weil die Messwerte darauf schließen lassen, dass es bald zu einem Defekt kommen wird und nicht einfach nach einem fixen, vorher definierten Zeitraum. Heute werden ja Teile oft einfach deswegen ausgetauscht, weil es der Wartungsplan so vorsieht – unabhängig von ihrer tatsächlichen Abnutzung.

Data Science Blog: Was sind denn gegenwärtig besonders interessante Anwendungsfälle und an welchen arbeiten Sie für die Zukunft?

Aus Sicht der Anwendung finde ich es besonders spannend durch Sensor-Signale auf Eigenschaften des Fahrers zu schließen. Die Methodik dazu entwickeln wir gerade in aktuellen Projekten. Es ist zum Beispiel durchaus denkbar, sicherheitsrelevante Ereignisse und Fahrmanöver zu identifizieren. Diese Informationen können dann vielseitig verwendet werden. Einige Beispiele dazu: Verkehrsplaner könnten damit automatisiert besonders gefährliche Kreuzungen angezeigt bekommen, Versicherer könnten ihren Kunden auf das individuelle Risikoverhalten abgestimmte Produkte anbieten oder Kunden könnten sich Ihren Taxifahrer über eine App nach seinem Fahrstil aussuchen. Denkbar wäre auch eine Diebstahlsicherung: Das Fahrzeug erkennt über den Fahrstil, dass es von einer unbefugten Person benutzt wird und löst daraufhin einen Alarm aus. Hier eröffnen sich viele Möglichkeiten.

Aus Sicht der Datenanalyse finde ich es besonders interessant, Algorithmen, die für ganz andere Aufgabenstellung entwickelt wurden, auf Probleme aus dem Automotive-Bereich anzuwenden. In einem unserer Projekte analysieren wir beispielsweise Software-Logfiles von Prüfständen und verwenden dazu Association Rules (eine Technik aus der Warenkorbanalyse) und Methoden, die normalerweise für das Untersuchen von Interaktionen in sozialen Netzwerken verwendet werden. Dass diese Übertragbarkeit gegeben ist finde ich extrem spannend.

Data Science Blog: Über welche Datenquellen verfügen Sie? Gibt es auch fahrzeugexterne Datenquellen, die sinnvoll sein könnten?

Da sprechen Sie natürlichen einen kritischen Punkt in jedem Data Science Projekt an: Ohne Daten geht nichts. Zusätzlich müssen die verwendeten Daten eine gewisse Qualität aufweisen und natürlich mit dem zu lösenden Problem in möglichst direktem Zusammenhang stehen.

Welche Datenquellen wir genau verwenden, hängt natürlich sehr stark vom konkretem Projekt ab. In industrienahen Projekten werden die Daten in der Regel vom Industriepartner bereitgestellt. Das kann dann alles Mögliche sein: Messungen von Prüfständen, Fertigungs-Protokolle, Wartungsdaten und vieles mehr.

Diese „Industrie-Daten“ unterliegen dann aber üblicherweise einer strengen Geheimhaltung und dürfen nicht in anderen Projekten verwendet werden. Deshalb haben wir im Unternehmen einen eigenen Datenlogger entwickelt, mit dem wir selber Daten aufnehmen können, die dann uns gehören. Diese Daten verwenden wir hauptsächlich in forschungsnahen Projekten, in denen die Ergebnisse publiziert werden sollen.

Fahrzeugexterne Datenquellen sind definitiv sinnvoll und werden immer mehr mit den klassischen Sensor-Daten fusioniert; oft ergibt sich dann durch eine Kombination von proprietären und offen verfügbaren Daten ein großer Mehrwert. In der vorhin angesprochenen Erkennung von sicherheitsrelevanten Ergebnissen spielt zum Beispiel das Wetter eine wesentliche Rolle: Eine zu schnell gefahrene Kurve ist bei Nässe oder Glätte deutlich gefährlicher als auf trockener Fahrbahn. Generell werden Daten über Umwelt und Infrastruktur immer wichtiger. Praktisch jeder fahrerzentrierte Dienst benötigt sie. Denken Sie zum Beispiel an Google Maps, das bereits heute die Bewegungsdaten von vielen Verkehrsteilnehmern gemeinsam analysiert um Vorhersagen über die Verkehrsdichte und damit über die optimale Route zu treffen.

Data Science Blog: Wie aufwändig gestaltet sich das Data Engineering, also die Datenbereitstellung und -zusammenführung?

Das ist definitiv ein schwieriges Unterfangen. Gerade Sensordaten erreichen schnell eine beachtliche Größe, die den Einsatz eines Big Data Technologie-Stacks erforderlich macht. Hier macht uns aber wieder die bereits angesprochene zeitliche Komponente unserer Daten zu schaffen. Die meisten Big Data Technologien skalieren ja, indem sie die Datenpunkte mehr oder weniger zufällig auf mehrere Rechner verteilen. Das ist bei unseren Daten aber nicht zulässig, die Reihenfolge der Daten ist hochrelevant! Hier müssen wir also entweder auf einer anderen Ebene parallelisieren oder Technologie mit spezieller Funktionalität für Zeitreihen verwenden.

Data Science Blog: Welche Technologien setzen Sie für die Datenbereitstellung und -analyse ein? Was halten Sie vom Einsatz von Open Source Software?

Wir implementieren unsere Analysen meist in R oder Python, manchmal kommen auch Matlab oder C# (letzteres meist für User Interfaces) zum Einsatz. Für Big Data Analysen verwenden wir meist Apache Spark über die R und Python APIs. Für die Datenablage und Bereitstellung verwenden wir hauptsächlich PostgreSQL mit Timescale Erweiterung, InfluxDB sowie Apache Hadoop. Grundsätzlich sind wir jedoch nicht auf bestimmte Technologien fixiert, sondern versuchen immer das jeweils beste Tool für den jeweiligen Einsatzzweck zu verwenden.

Ich finde es spricht nichts gegen den Einsatz von Open Source Software – wie Sie ja auch an unserem Technologie-Stack erkennen können. Ich habe aber auch nichts gegen Closed Source Software – es gibt in beiden Bereichen genug gute und schlechte Software. Worauf ich aber achte, ist keine neue Technologie zu verwenden, hinter der ein zu kleines Entwicklerteam oder gar nur ein einzelner Entwickler steht. Hier ist mir die Gefahr zu groß, dass die Entwicklung bald eingestellt wird und die Ergebnisse meiner Analysen nicht mehr nachvollziehbar sind.

Data Science Blog: Zum Abschluss noch eine Frage von jungen Nachwuchskräften, die davon träumen, eine Karriere als Data Scientist im Ingenieurwesen zu machen: Welche Voraussetzungen bzw. Eigenschaften sollte ein Data Scientist in Ihrem Bereich mitbringen?

Neben einer fundierten fachlichen Ausbildung sind Neugier und der Wille, Zusammenhänge zu verstehen, Eigenschaften, die für jeden Data Scientist sehr wichtig sind. Zusätzlich hilft es durchaus eine kommunikative Persönlichkeit zu sein: Es gilt in Workshops die richtigen Informationen über die Daten einzuholen – das ist nicht immer ganz leicht. Zusätzlich müssen natürlich regelmäßig die Resultate der jeweiligen Analysen einem oft fachfremden Publikum präsentiert werden.

Process Mining: Innovative Analyse von Datenspuren für Audit und Forensik

Step-by-Step:

Neue Möglichkeiten zur Aufdeckung von Compliance-Verstößen mit Process Analytics

Im Zuge der fortschreitenden Digitalisierung findet derzeit ein enormer Umbruch der alltäglichen Arbeit hin zur lückenlosen Erfassung aller Arbeitsschritte in IT-Systemen statt. Darüber hinaus sehen sich Unternehmen mit zunehmend verschärften Regulierungsanforderungen an ihre IT-Systeme konfrontiert.

Der unaufhaltsame Trend hin zur vernetzten Welt („Internet of Things“) wird die Möglichkeiten der Prozesstransparenz noch weiter vergrößern – jedoch werden bereits jetzt viele Prozesse im Unternehmensbereich über ein oder mehrere IT-Systeme erfasst. Jeder Mitarbeiter, aber auch jeder automatisiert ablaufende Prozess hinterlässt viele Datenspuren in IT-Backend-Systemen, aus denen Prozesse rückwirkend oder in Echtzeit nachgebildet werden können. Diese umfassen sowohl offensichtliche Prozesse, wie etwa den Eintrag einer erfassten Bestellung oder Rechnung, als auch teilweise verborgene Prozesse, wie beispielsweise die Änderung bestimmter Einträge oder Löschung dieser Geschäftsobjekte. 


english-flagRead this article in English:
“Process Analytics – Data Analysis for Process Audit & Improvement”


1 Das Verständnis von Process Analytics

Process Analytics ist eine datengetriebene Methodik der Ist-Prozessanalyse, die ihren Ursprung in der Forensik hat. Im Kern des dieser am Zweck orientierten Analyse steht das sogenannte Process Mining, eine auf die Rekonstruktion von Prozessen ausgerichtetes Data Mining. Im Zuge der steigenden Bedeutung der Computerkriminalität wurde es notwendig, die Datenspuren, die potenzielle Kriminelle in IT-Systemen hinterließen, zu identifizieren und zu analysieren, um das Geschehen so gut wie möglich zu rekonstruieren.

Mit dem Trend hin zu Big Data Analytics hat Process Analytics nicht nur neue Datengrundlagen erhalten, sondern ist als Analysemethode weiterentwickelt worden. Zudem ermöglicht die Visualisierung dem Analysten oder Berichtsempfänger ein tief gehendes Verständnis auch komplexerer Geschäftsprozesse.

Während in der konventionellen Prozessanalyse vor allem Mitarbeiterinterviews und Beobachtung der Mitarbeiter am Schreibtisch durchgeführt werden, um tatsächlich gelebte Prozesse zu ermitteln, ist Process Analytics eine führende Methode, die rein faktenbasiert und damit objektiv an die Prozesse herangeht. Befragt werden nicht die Mitarbeiter, sondern die IT-Systeme, die nicht nur alle erfassten Geschäftsobjekte tabellenorientiert abspeichern, sondern auch im Hintergrund – unsichtbar für die Anwender – jegliche Änderungsvorgänge z. B. an Bestellungen, Rechnungen oder Kundenaufträgen lückenlos mit einem Zeitstempel (oft Sekunden- oder Millisekunden-genau) protokollieren.

2 Die richtige Auswahl der zu betrachtenden Prozesse

Heute arbeitet nahezu jedes Unternehmen mit mindestens einem ERP-System. Da häufig noch weitere Systeme eingesetzt werden, lässt sich klar herausstellen, welche Prozesse nicht analysiert werden können: Solche Prozesse, die noch ausschließlich auf Papier und im Kopf der Mitarbeiter ablaufen, also typische Entscheiderprozesse auf oberster, strategischer Ebene, die nicht in IT-Systemen erfasst und dementsprechend nicht ausgewertet werden können. Operative Prozesse werden hingegen in der Regel nahezu lückenlos in IT-Systemen erfasst und operative Entscheidungen protokolliert.

Zu den operativen Prozessen, die mit Process Analytics sehr gut rekonstruiert und analysiert werden können und gleichermaßen aus Compliance-Sicht von höchstem Interesse sind, gehören beispielsweise Prozesse der:

  • Beschaffung
  • Logistik / Transport
  • Vertriebs-/Auftragsvorgänge
  • Gewährleistungsabwicklung
  • Schadensregulierung
  • Kreditgewährung

Process Analytics bzw. Process Mining ermöglicht unabhängig von der Branche und dem Fachbereich die größtmögliche Transparenz über alle operativen Geschäftsprozesse. Für die Audit-Analyse ist dabei zu beachten, dass jeder Prozess separat betrachtet werden sollte, denn die Rekonstruktion erfolgt anhand von Vorgangsnummern, die je nach Prozess unterschiedlich sein können. Typische Vorgangsnummern sind beispielsweise Bestell-, Auftrags-, Kunden- oder Materialnummern.

3 Auswahl der relevanten IT-Systeme

Grundsätzlich sollte jedes im Unternehmen eingesetzte IT-System hinsichtlich der Relevanz für den zu analysierenden Prozess untersucht werden. Für die Analyse der Einkaufsprozesse ist in der Regel nur das ERP-System (z. B. SAP ERP) von Bedeutung. Einige Unternehmen verfügen jedoch über ein separates System der Buchhaltung (z.B. DATEV) oder ein CRM/SRM (z. B. von Microsoft), die dann ebenfalls einzubeziehen sind.

Bei anderen Prozessen können außer dem ERP-/CRM-System auch Daten aus anderen IT-Systemen eine entscheidende Rolle spielen. Gelegentlich sollten auch externe Daten integriert werden, wenn diese aus extern gelagerten Datenquellen wichtige Prozessinformationen liefern – beispielsweise Daten aus der Logistik.

4 Datenaufbereitung

Vor der datengetriebenen Prozessanalyse müssen die Daten, die auf Prozessaktivitäten direkt oder indirekt hindeuten, in den Datenquellen identifiziert, extrahiert und aufbereitet werden. Die Daten liegen in Datenbanktabellen und Server-Logs vor und werden über ein Data Warehousing Verfahren zusammengeführt und in ein Prozessprotokoll (unter den Process Minern i.d.R. als Event Log bezeichnet) umformuliert.

Das Prozessprotokoll ist in der Regel eine sehr große und breite Tabelle, die neben den eigentlichen Prozessaktivitäten auch Parameter enthält, über die sich Prozesse filtern lassen, beispielsweise Informationen über Produktgruppen, Preise, Mengen, Volumen, Fachbereiche oder Mitarbeitergruppen.

5 Prüfungsdurchführung

Die eigentliche Prüfung erfolgt visuell und somit intuitiv vor einem Prozessflussdiagramm, das die tatsächlichen Prozesse so darstellt, wie sie aus den IT-Systemen extrahiert werden konnten.

Process Mining – Beispielhafter Process Flow mit Fluxicon Disco (www.fluxicon.com)

Das durch die Datenaufbereitung erstellte Prozessprotokoll wird in eine Datenvisualisierungssoftware geladen, die dieses Protokoll über die Vorgangsnummern und Zeitstempel in einem grafischen Prozessnetzwerk darstellt. Die Prozessflüsse werden also nicht modelliert, wie es bei den Soll-Prozessen der Fall ist, sondern es „sprechen“ die IT-Systeme.

Die Prozessflüsse werden visuell dargestellt und statistisch ausgewertet, so dass konkrete Aussagen über die im Hinblick auf Compliance relevante Prozess-Performance und -Risiken getroffen werden können.

6 Abweichung von Soll-Prozessen

Die Möglichkeit des intuitiven Filterns der Prozessdarstellung ermöglicht auch die gezielte Analyse von Ist-Prozessen, die von den Soll-Prozessverläufen abweichen.

Die Abweichung der Ist-Prozesse von den Soll-Prozessen wird in der Regel selbst von IT-affinen Führungskräften unterschätzt – mit Process Analytics lassen sich nun alle Abweichungen und die generelle Prozesskomplexität auf ihren Daten basierend untersuchen.

6 Erkennung von Prozesskontrollverletzungen

Die Implementierung von Prozesskontrollen sind Bestandteil eines professionellen Internen Kontrollsystems (IKS), die tatsächliche Einhaltung dieser Kontrollen in der Praxis ist jedoch häufig nicht untersucht oder belegt. Process Analytics ermöglicht hier die Umgehung des Vier-Augen-Prinzips bzw. die Aufdeckung von Funktionstrennungskonflikten. Zudem werden auch die bewusste Außerkraftsetzung von internen Kontrollmechanismen durch leitende Mitarbeiter oder die falsche Konfiguration der IT-Systeme deutlich sichtbar.

7 Erkennung von bisher unbekannten Verhaltensmustern

Nach der Prüfung der Einhaltung bestehender Kontrollen, also bekannter Muster, wird Process Analytics weiterhin zur Neuerkennung von bislang unbekannten Mustern in Prozessnetzwerken, die auf Risiken oder gar konkrete Betrugsfälle hindeuten und aufgrund ihrer bisherigen Unbekanntheit von keiner Kontrolle erfasst werden, genutzt. Insbesondere durch die – wie bereits erwähnt – häufig unterschätzte Komplexität der alltäglichen Prozessverflechtung fallen erst durch diese Analyse Fraud-Szenarien auf, die vorher nicht denkbar gewesen wären. An dieser Stelle erweitert sich die Vorgehensweise des Process Mining um die Methoden des maschinellen Lernens (Machine Learning), typischerweise unter Einsatz von Clustering, Klassifikation und Regression.

8 Berichterstattung – auch in Echtzeit möglich

Als hocheffektive Audit-Analyse ist Process Analytics bereits als iterative Prüfung in Abständen von drei bis zwölf Monaten ausreichend. Nach der erstmaligen Durchführung werden bereits Compliance-Verstöße, schwache oder gar unwirksame Kontrollen und gegebenenfalls sogar Betrugsfälle zuverlässig erkannt. Die Erkenntnisse können im Nachgang dazu genutzt werden, um die Schwachstellen abzustellen. Eine weitere Durchführung der Analyse nach einer Karenzzeit ermöglicht dann die Beurteilung der Wirksamkeit getroffener Maßnahmen.

In einigen Anwendungsszenarien ist auch die nahtlose Anbindung der Prozessanalyse mit visuellem Dashboard an die IT-Systemlandschaft zu empfehlen, so dass Prozesse in nahezu Echtzeit abgebildet werden können. Diese Anbindung kann zudem um Benachrichtigungssysteme ergänzt werden, so dass Entscheider und Revisoren via SMS oder E-Mail automatisiert über aktuellste Prozessverstöße informiert werden. Process Analytics wird somit zum Realtime Analytics.

Fazit

Process Analytics ist im Zuge der Digitalisieurng die hocheffektive Methodik aus dem Bereich der Big Data Analyse zur Aufdeckung Compliance-relevanter Tatbestände im gesamten Unternehmensbereich und auch eine visuelle Unterstützung bei der forensischen Datenanalyse.

 

In eigener Sache: Der Data Leader Day 2017

Der Data Science Blog ist Co-Organisator des Data Leader Day 2017

Der Data Leader Day am 09.11.2017 ist ein Event für Unternehmen aus dem deutschsprachigen Raum, das sich mit den Möglichkeiten und Lösungen rund um die Datennutzung zur Geschäftsoptimierung oder der Bildung von neuen Geschäftsmodellen beschäftigt. Zu den Speakern zählen CIOs, CDOs und Chief Data Scientists aus der ganzen DACH-Region. Das Event eignet sich für Entscheider, Absolventen und Studenten, die neue Kontakte knüpfen und wichtige Impulse für die eigene digitale Weiterentwicklung erhalten möchten. In einem innovativem Programm mit Keynote, Präsentationen sowie Use & Business Cases wird aufgezeigt, wie die Digitalisierung im Unternehmen umgesetzt und als neues Wertschöpfungsinstrument eingesetzt werden kann.

Der Data Leader Day wendet sich gezielt an Entscheider und Data Scientists mit Digitalisierungsauftrag/-bezug sowie alle Interessenten rund um die Trendthemen Big Data und Industrie 4.0.

Zu den Highlights des Events zählen ein Fireside Chat “CIO vs CDO – Wem gehört die Zukunft” und der Data Leader Award in den Kategorien Retail, Finance und Industry 4.0. Aktuelle Informationen erhalten Sie auf www.dataleaderday.com.

Die Location

Passend zu einem herausragenden Event ein einmaliges Ambiente: Die Spreespeicher waren ein Symbol für fortschrittliches Denken in der Gründerzeit. Heute sind sie das Synonym einer dynamischen Entwicklung im 21. Jahrhundert. Der Spreespeicher im Spreequartier Berlin war bereits die Location für den Data Leader Day 2016 und wurde sowohl von den Organisatoren als auch von den Teilnehmern sehr gut bewertet.

Spreequartier Berlin
Stralauer Allee 2,

10245 Berlin

Job-Titel der Teilnehmer

Was den Data Leader Day von anderen Veranstaltungen absetzt: Wir wenden uns vor allem an Führungskräfte mit Digitalisierungsauftrag.
Typische Job-Bezeichnungen der Teilnehmer (basierend auf den Teilnehmern im vergangenen Jahr):

Chief Executive Officer Leiter Operations Chief Data Scientist
Chief Data Officer Leiter Einkauf Big Data Engineer
Chief Digital Office Leiter Finanzen Data Scientist
Chief Information Officer Leiter Produktion BI Consultant
Chief Technology Officer Leiter Marketing Data Architect

25% Nachlass für Data Scientists (nur 20x verfügbar!)

Wer ein Ticket zum besten Preis erwerben möchte, sollte jetzt zugreifen und folgenden Rabatt-Code verwenden:

DATASCIENCEBLOG

Der Rabattcode kann einfach in das Feld unten links im Buchungsfenster auf www.dataleaderday.com eingegeben werden und führt zu einer Reduzierung des Ticketpreises um 25%.

Hinweis: Das Kontingent für den Rabatt-Code ist auf 20 Tickets begrenzt! Besser jetzt zugreifen!

 

 

Künstliche Intelligenz und Data Science in der Automobilindustrie

Data Science und maschinelles Lernen sind die wesentlichen Technologien für die automatisch lernenden und optimierenden Prozesse und Produkte in der Automobilindustrie der Zukunft. In diesem Beitrag werde die zugrundeliegenden Begriffe Data Science (bzw. Data Analytics) und maschinelles Lernen sowie deren Zusammenhang definiert. Darüber hinaus wird der Begriff Optimizing Analytics definiert und die Rolle der automatischen Optimierung als Schlüsseltechnologie in Kombination mit Data Analytics dargelegt. Der Stand der Nutzung dieser Technologien in der Automobilindustrie wird anhand der wesentlichen Teilprozesse in der automobilen Wertschöpfungskette (Entwicklung, Einkauf, Logistik, Produktion, Marketing, Sales und Aftersales, Connected Customer) an exemplarischen Beispielen erläutert. Dass die Industrie heute erst am Anfang der Nutzungsmöglichkeiten steht, wird anhand von visionären Anwendungsbeispielen verdeutlicht, die die revolutionären Möglichkeiten dieser Technologien darstellen. Der Beitrag zeigt auf, wie die Automobilindustrie umfassend, vom Produkt und dessen Entstehungsprozess bis zum Kunden und dessen Verbindung zum Produkt, durch diese Technologie effizienter und kundenorientierter wird.

english-flagRead this article in English:
“Artificial Intelligence and Data Science in the Automotive Industry”

Read more