Kiano – visuelle Exploration mit Deep Learning

Kiano – eine iOS-App zur visuellen Exploration und Suche der eigenen Fotos.

Menschen haben kein Problem, komplexe Bilder zu verstehen, es fällt ihnen aber schwer, gezielt Bilder in großen Bildersammlungen (wieder) zu finden. Da die Anzahl von Bildern, insbesondere auch auf Smartphones zusehends zunimmt – mehrere tausend Bilder pro Gerät sind keine Seltenheit, wird die Suche nach bestimmten Bildern immer schwieriger. Ist bei einem gesuchten Foto dessen Aufnahmedatum unbekannt, so kann es sehr lange dauern, bis es gefunden ist. Werden dem Nutzer zu viele Bilder auf einmal präsentiert, so geht der Überblick schnell verloren. Aus diesem Grund besteht eine typische Bildsuche heutzutage meist im endlosen Scrollen über viele Bildschirmseiten mit langen Bilderlisten.

Dieser Artikel stellt das Prinzip und die Funktionsweise der neuen iOS-App “Kiano” vor, die es Nutzern ermöglicht, alle ihre Bilder explorativ mittels visuellem Browsen zu erkunden. Der Name “Kiano” steht hierbei für “Keep Images Arranged & Neatly Organized”. Mit der App ist es außerdem möglich, zu einem Beispielbild gezielt nach ähnlichen Fotos auf dem Gerät zu suchen.

Um Bilder visuell durchsuch- und sortierbar zu machen, werden sogenannte Merkmalsvektoren bzw. Featurevektoren verwendet, die Aussehen und Inhalt von Bildern kompakt repräsentieren können. Zu einem Bild lassen sich ähnliche Bilder finden, indem die Bilder bestimmt werden, deren Featurevektoren eine geringe Distanz zum Featurevektor des Suchbildes haben.

Werden Bilder zweidimensional so angeordnet, dass die Featurevektoren benachbarter Bilder sehr ähnlich sind, so erhält man eine visuell sortierte Bilderlandkarte. Bei einer visuell sortierten Anordnung der Bilder fällt es Menschen deutlich leichter, mehr Bilder gleichzeitig zu erfassen, als dies im unsortierten Fall möglich wäre. Durch die graduelle Veränderung der Bildinhalte wird es möglich, über diese Karte visuell zu navigieren.

Generierung von Featurevektoren zur Bildbeschreibung

Convolutional Neural Networks (CNNs) sind nicht nur in der Lage, Bilder mit hoher Genauigkeit zu klassifizieren, d.h. zu erkennen, welches Objekt – entsprechend einer Menge von gelernten Objektkategorien auf einem Bild zu sehen ist, die Aktivierungen der Netzwerkschichten lassen sich auch als universelle Featurevektoren zur Bildbeschreibung nutzen. Während die vorderen Netzwerkschichten von CNNs einfache visuelle Bildmerkmale wie Farben und einfache Muster detektieren, repräsentieren die Ausgangsschichten des Netzwerks die semantischen Informationen bezüglich der gelernten Objektkategorien. Die Zwischenschichten des Netzwerks sind weniger von den Objektkategorien abhängig und können somit als generelle abstrakte Repräsentationen des Inhalts der Bilder angesehen werden. Hierbei ist es möglich, bereits fertig trainierte Klassifikationsnetzwerke für die Featureextraktion wiederzuverwenden. In der Visual Computing Gruppe der HTW Berlin wurden umfangreiche Evaluierungen durchgeführt, um zu bestimmen, welche Netzwerkschichten von welchen CNNs mit welchen zusätzlichen Transformationen zu verwenden sind, um aus Netzwerkaktivierungen Feature-Vektoren zu erzeugen, die sehr gut für die Suche nach beliebigen Bildern geeignet sind.

Beste Ergebnisse hinsichtlich der Suchgenauigkeit (der Mean Average Precision) wurden mit einem Deep Residual Learning Network (ResNet-200) erzielt. Die 2048 Aktivierungen vor dem vollvernetzten letzten Layer werden als initiale Featurevektoren verwendet, wobei sich die Suchgenauigkeit durch eine L1-Normierung, gefolgt von einer PCA-Transformation (Principal Component Analysis) sogar noch verbessern lässt. Hierdurch ist es möglich, die Featurevektoren auf eine Größe von nur 64 Bytes zu reduzieren. Leider ist die rechnerische Komplexität der Bestimmung dieser hochwertigen Featurevektoren zu groß, um sie auf mobilen Geräten verwenden zu können. Eine gute Alternative stellen die Mobilenets dar, die sich durch eine erheblich reduzierte Komplexität auszeichnen. Als Kompromiss zwischen Klassifikationsgenauigkeit und Komplexität wurde für die Kiano-App das Mobilenet_v2_0.5_128 verwendet. Die mit diesem Netzwerk bestimmten Featurevektoren wurden ebenfalls auf eine Größe von 64 Bytes reduziert.

Die aus CNNs erzeugten Featurevektoren sind gut für die Suche nach Bildern mit ähnlichem Inhalt geeignet. Für die Suche nach Bilder, mit ähnlichen visuellen Eigenschaften (z.B. die auftretenden Farben oder deren örtlichen Verteilung) sind diese Featurevektoren nur bedingt geeignet. Hierfür eignen sich klassische sogenannte “Low-Level”-Featurevektoren besser. Da für eine ansprechende und leicht erfassbare Bildsortierung auch eine Übereinstimmung dieser visuellen Bildattribute wichtig ist, kommt bei Kiano ein weiterer Featurevektor zum Einsatz, mit dem sich diese “primitiven” visuellen Bildattribute beschreiben lassen. Dieser Featurevektor hat eine Größe von 50 Bytes. Bei Kiano kann der Nutzer in den Einstellungen wählen, ob bei der visuellen Sortierung und Bildsuche größerer Wert auf den Bildinhalt oder die visuelle Erscheinung eines Bildes gelegt werden soll.

Visuelle Bildsortierung

Werden Bilder entsprechend ihrer Ähnlichkeiten sortiert angeordnet, so können mehrere hundert Bilder gleichzeitig wahrgenommen bzw. erfasst werden. Dies hilft, Regionen interessanter Bildern leichter zu erkennen und gesuchte Bilder schneller zu entdecken. Die Möglichkeit, viele Bilder gleichzeitig präsentieren zu können, ist neben Bildverwaltungssystemen besonders auch für E-Commerce-Anwendungen interessant.

Herkömmliche Dimensionsreduktionsverfahren, die hochdimensionale Featurevektoren auf zwei Dimensionen projizieren, sind für die Bildsortierung ungeeignet, da sie die Bilder so anordnen, dass Lücken und Bildüberlappungen entstehen. Sollen Bilder sortiert auf einem dichten regelmäßigen 2D-Raster angeordnet werden, kommen als Verfahren nur selbstorganisierende Karten oder selbstsortierende Karten in Frage.

Eine selbstorganisierende Karte (Self Organizing Map / SOM) ist ein künstliches neuronales Netzwerk, das durch unbeaufsichtigtes Lernen trainiert wird, um eine niedrigdimensionale, diskrete Darstellung der Daten des Eingangsraums als sogenannte Karte (Map) zu erzeugen. Im Gegensatz zu anderen künstlichen neuronalen Netzen, werden SOMs nicht durch Fehlerkorrektur, sondern durch ein Wettbewerbsverfahren trainiert, wobei eine Nachbarschaftsfunktion verwendet wird, um die lokalen Ähnlichkeiten der Eingangsdaten zu bewahren.

Eine selbstorganisierende Karte besteht aus Knoten, denen einerseits ein Gewichtsvektor der gleichen Dimensionalität wie die Eingangsdaten und anderseits eine Position auf der 2D-Karte zugeordnet sind. Die SOM-Knoten sind als zweidimensionales Rechteckgitter angeordnet. Das vom der SOM erzeugte Mapping ist diskret, da jeder Eingangsvektor einem bestimmten Knoten zugeordnet wird. Zu Beginn werden die Gewichtsvektoren aller Knoten mit Zufallswerten initialisiert. Wird ein hochdimensionaler Eingangsvektor in das Netz eingespeist, so wird dessen euklidischer Abstand zu allen Gewichtsvektoren berechnet. Der Knoten, dessen Gewichtsvektor dem Eingangsvektor am ähnlichsten ist, wird als Best Matching Unit (BMU) bezeichnet. Die Gewichte des BMU und seiner auf der Karte örtlich benachbarten Knoten werden an den Eingangsvektor angepasst. Dieser Vorgang wird iterativ wiederholt. Das Ausmaß dieser Anpassung nimmt im Laufe der Iterationen und der örtlichen Entfernung zum BMU-Knoten ab.

Um SOMs an die Bildsortierung anzupassen, sind zwei Modifikationen notwendig. Jeder Knoten darf nicht von mehr als einem Featurevektor (der ein Bild repräsentiert) ausgewählt werden. Eine Mehrfachauswahl würde zu einer Überlappung der Bilder führen. Aus diesem Grund muss die Anzahl der SOM-Knoten mindestens so groß wie die Anzahl der Bilder sein. Eine sinnvolle Erweiterung einer SOM verwendet ein Gitter, bei dem gegenüberliegende Kanten verbunden sind. Werden diese Torus-förmigen Karten für große SOMs verwendet, kann der Eindruck einer endlosen Karte erzeugt werden, wie es in Kiano umgesetzt ist. Ein Problem der SOMs ist ihre hohe rechnerische Komplexität, die quadratisch mit der Anzahl der zu sortierenden Bilder wächst, wodurch die maximale Anzahl an zu sortierenden Bildern beschränkt wird. Eine Lösung stellt eine selbstsortierende Karte (Self Sorting Map / SSM) dar, deren Komplexität nur n log(n) beträgt.

Selbstsortierende Karten beginnen mit einer zufälligen Positionierung der Bilder auf der Karte. Diese Karte wird dann in 4×4-Blöcke aufgeteilt und für jeden Block wird der Mittelwert der zugehörigen Featurevektoren bestimmt. Als nächstes werden aus 2×2 benachbarten Blöcken jeweils vier korrespondierende Bild-Featurevektoren untersucht und ihre zugehörigen Bilder gegebenenfalls getauscht. Aus den 4! = 24 Anordnungsmöglichkeiten wird diejenige gewählt, die die Summe der quadrierten Differenzen zwischen den jeweiligen Featurevektoren und den Featuremittelwerten der Blöcke minimiert. Nach mehreren Iterationen wird jeder Block in vier kleinere Blöcke halber Breite und Höhe aufgeteilt und wiederum in der beschriebenen Weise überprüft, wie die Bildpositionen dieser kleineren Blöcke getauscht werden sollten. Dieser Vorgang wird solange wiederholt, bis die Blockgröße auf 1×1 Bild reduziert ist.

In der Visual-Computing Gruppe der HTW Berlin wurde untersucht, wie die Sortierqualität des SSM-Algorithmus verbessert werden kann. Anstatt die Mittelwerte der Featurevektoren als konstanten Durchschnittsvektor für den gesamten Block zu berechnen, verwenden wir gleitende Tiefpassfilter, die sich effizient mittels Integralbildern berechnen lassen. Hierdurch entstehen weichere Übergänge auf der sortierten Bilderkarte. Weiterhin wird die Blockgröße nicht für mehrere Iterationen konstant gehalten, sondern kontinuierlich zusammen mit dem Radius des Filterkernels reduziert. Durch die Verwendung von optimierten Algorithmen von “Linear Assignment” Algorithmen wird es weiterhin möglich, den optimalen Positionstausch nicht nur für jeweils vier Featurevektoren bzw. Bildern sondern für eine deutlich größere Anzahl zu überprüfen. All diese Maßnahmen führen zu einer deutlich verbesserten Sortierungsqualität bei gleicher Komplexität.

Effiziente Umsetzung für iOS

Wie so oft, liegen die softwaretechnischen Herausforderungen an ganz anderen Stellen, als man zunächst vermutet. Für eine effiziente Implementierung der zuvor beschriebenen Algorithmen, insbesondere der SSM, stellte es sich heraus, dass die Programmiersprache Swift, in der iOS Apps normaler Weise entwickelt werden, erheblich mehr Rechenzeit benötigt, als eine Umsetzung in der Sprache C. Im Zuge der stetigen Weiterentwicklung von Swift und dessen Compiler mag sich die Lücke zu C zwar immer weiter schließen, zum Zeitpunkt der Umsetzung war die Implementierung in C aber um einen Faktor vier schneller als in Swift. Hierbei liegt die Vermutung nahe, dass der Zugriff auf und das Umsortieren von Featurevektoren als native C-Arrays deutlich effektiver passiert, als bei der Verwendung von Swift-Arrays. Da Swift-Arrays Value-Type sind, kommt es in Swift vermutlich zu unnötigen Kopieroperationen der Fließkommazahlen in den einzelnen Featurevektoren.

Die Berechnung des Mobilenet-Anteils der Featurevektoren konnte sehr komfortabel mit Apples CoreML Machine Learning Framework umgesetzt werden. Hierbei ist zu beachten, dass es sich wie oben beschrieben, nicht um eine Klassifikation handelt, sondern um das Abgreifen der Aktivierungen einer tieferen Schicht. Für Klassifikationen findet man praktisch sofort nutzbare Beispiele, für den Zugriff auf die Aktivierungen waren jedoch Anpassungen notwendig, die bei der Portierung eines vortrainierten Mobilenet nach CoreML vorgenommen wurden. Das stellte sich als erheblich einfacher heraus, als der Versuch, auf die tieferen Schichten eines Klassifizierungsnetzes in CoreML zuzugreifen.

Für die Verwaltung der Bilder, ihrer Featurevektoren und ihrer Position in der sortieren Karte wird in Kiano eine eigene Datenstruktur verwendet, die es zu persistieren gilt. Es ist dem Nutzer ja nicht zuzumuten, bei jedem Start der App auf die Berechnung aller Featurevektoren zu warten. Die Strategie ist es hierbei, bereits bekannte Bilder zu identifizieren und deren Features nur dann neu zu berechnen, falls sich das Bild verändert hat. Die über Appels Photos Framework zur Verfügung gestellten local Identifier identifizieren dabei die Bilder. Veränderungen werden über das Modifikationsdatum eines Bildes detektiert. Die größte Herausforderung ist hierbei das Zeichnen der Karte. Die Benutzerinteraktion soll schnell und flüssig erscheinen, auf Animationen wie das Nachlaufen der Karte beim Verschieben möchte man nicht verzichten. Die Umsetzung geschieht hierbei nicht in OpenGL ES, welches ab iOS 12 ohnehin als deprecated bezeichnet wird. Auf der anderen Seite wird aber auch nicht der „Standardweg“ des Überschreibens der draw-Methode einer Ableitung von UIView gewählt. Letztes führt bekanntlich zu Performanceeinbußen. Insbesondere deshalb, weil das System sehr oft Backing-Images der Ansichten erstellt. Um die Kontrolle über das Neuzeichnen zu behalten, wird in Kiano ein eigenes Backing-Image implementiert, das auf Ebene des Core Animation Frameworks dem View als Layer zugweisen wird. Diesem Layer kann dann sehr komfortabel eine 3D-Transformation zugewiesen werden und man profitiert von der GPU-Beschleunigung, ohne OpenGL ES direkt verwenden zu müssen.

 

Trotz der Verwendung eines Core Animation Layers ist das Zeichnen der Karte immer noch sehr zeitaufwendig. Das liegt an der Tatsache, dass je nach Zoomstufe tausende von Bildern darzustellen sind, die alle über das Photos Framework angefordert werden müssen. Das Nadelöhr ist dann weniger das Zeichnen, als die Zeit, die vergeht, bis einem das Bild zur Verfügung gestellt wird. Diese Vorgänge sind praktisch alle nebenläufig. Zur Erinnerung: Ein Foto kann in der iCloud liegen und zum Zeitpunkt der Anfrage noch gar nicht (oder noch nicht in geeigneter Auflösung) heruntergeladen sein. Netzwerkbedingt gibt es keine Vorhersage, wann oder ob überhaupt das Bild zur Verfügung gestellt wird. In Kiano werden zum einen Bilder in sehr kleiner Auflösung gecached, zum anderen wird beim Navigieren auf der Karte im Hintergrund ein neues Kartenteil als Backing-Image vorbereitet, das dem Nutzer nach Fertigstellung angezeigt wird. Die vorberechneten Kartenteile sind dabei drei Mal so breit und drei Mal so hoch wie das Display, so dass man diese „Hintergrundaktivität“ beim Verschieben der Karte in der Regel nicht bemerkt. Nur wenn die Bewegung zu schnell wird oder die Bilder zu langsam „geliefert“ werden, erkennt man schwarze Flächen, die sich dann verzögert mit Bildern füllen.

Vergleichbares passiert beim Hineinzoomen in die Karte. Der Nutzer sieht zunächst eine vergrößerte und damit unscharfe Version des aktuellen Kartenteils, während im Hintergrund ein Kartenteil in höherer Auflösung und mit weniger Bildern vorbereitet wird. In der Summe geht Kiano hier einen Kompromiss ein. Die Pixeldichte der Geräte würde eine schärfere Darstellung der Bilder auf der Karte erlauben. Allerdings müssten dann die Bilder in so höher Auflösung angefordert werden, dass eine flüssige Kartennavigation nicht mehr möglich wäre. So sieht der Nutzer in der Regel eine Karte mit Bildern in halber Auflösung gemessen an den physikalischen Pixeln seines Displays.

Ein anfangs unterschätzter Arbeitsaufwand bei der Umsetzung von Kiano liegt darin begründet, dass sich die Photo Library des Nutzers jederzeit während der Benutzung der App verändern kann. Bilder können durch Synchronisationen mit der iCloud oder mit iTunes verschwinden, sich in andere Alben bewegen, oder neue können auftauchen. Der Nutzer kann Bildschirmfotos machen. Das Photos Framework stellt komfortable Benachrichtigungen für solche Events zur Verfügung. Der Implementierung obliegt es dabei aber herauszubekommen, ob die Karte neu zu sortieren ist oder nicht, ob das gerade anzeigte Bild überhaupt noch existiert und was zu tun ist, wenn es verschwunden ist.

Zusammenfassend kann man feststellen, dass natürlich die Umsetzung der Algorithmen und die Darstellung dessen auf einer Karte zu den spannendsten Teilen der Arbeiten an Kiano zählen, dass aber der Umgang mit einer sich dynamisch ändernden Datenbasis nicht unterschätzt werden sollte.

Autoren

Prof. Dr. Klaus JungProf. Dr. Klaus Jung studierte Physik an der TU Berlin, wo er im Bereich der Mathematischen Physik promovierte. Bis 2008 arbeitete er als Leiter F&E bei der Firma LuraTech im Bereich der Dokumentenverarbeitung und Langzeitarchivierung. In der JPEG-Gruppe leitete er die deutsche Delegation bei der Standardisierung von JPEG2000. Seit 2008 ist er Professor für Medieninformatik an der HTW Berlin mit dem Schwerpunkt „Visual Computing“.

Prof. Dr. Kai Uwe Barthel

Prof. Dr. Kai Uwe Barthel studierte Elektrotechnik an der TU Berlin, bevor er Assistent am Institut für Nachrichtentechnik wurde und im Bereich Bildkompression promovierte. Seit 2001 ist er Professor der HTW Berlin. Hauptforschungsbereiche sind visuelle Bildsuche und automatisches Bildverstehen. 2009 gründete er die pixolution GmbH www.pixolution.de, ein Unternehmen, das Technologien für die visuelle Bildsuche anbietet.

I. Einführung in TensorFlow: Einleitung und Inhalt

 

 

 

1. Einleitung und Inhalt

Früher oder später wird jede Person, welche sich mit den Themen Daten, KI, Machine Learning und Deep Learning auseinander setzt, mit TensorFlow in Kontakt geraten. Für diejenigen wird der Zeitpunkt kommen, an dem sie sich damit befassen möchten/müssen/wollen.

Und genau für euch ist diese Artikelserie ausgelegt. Gemeinsam wollen wir die ersten Schritte in die Welt von Deep Learning und neuronalen Netzen mit TensorFlow wagen und unsere eigenen Beispiele realisieren. Dabei möchten wir uns auf das Wesentlichste konzentrieren und die Thematik Schritt für Schritt in 4 Artikeln angehen, welche wie folgt aufgebaut sind:

  1. In diesem und damit ersten Artikel wollen wir uns erst einmal darauf konzentrieren, was TensorFlow ist und wofür es genutzt wird.
  2. Im zweiten Artikel befassen wir uns mit der grundlegenden Handhabung von TensorFlow und gehen den theoretischen Ablauf durch.
  3. Im dritten Artikel wollen wir dann näher auf die Praxis eingehen und ein Perzeptron – ein einfaches künstliches Neuron – entwickeln. Dabei werden wir die Grundlagen anwenden, die wir im zweiten Artikel erschlossen haben.

Wenn ihr die Praxisbeispiele in den Artikeln 3 & 4 aktiv mit bestreiten wollt, dann ist es vorteilhaft, wenn ihr bereits mit Python gearbeitet habt und die Grundlagen dieser Programmiersprache beherrscht. Jedoch werden alle Handlungen und alle Zeilen sehr genau kommentiert, so dass es leicht verständlich bleibt.

Neben den Programmierfähigkeiten ist es hilfreich, wenn ihr euch mit der Funktionsweise von neuronalen Netzen auskennt, da wir im späteren Verlauf diese modellieren wollen. Jedoch gehen wir vor der Programmierung  kurz auf die Theorie ein und werden das Wichtigste nochmal erwähnen.

Zu guter Letzt benötigen wir für unseren Theorie-Teil ein Mindestmaß an Mathematik um die Grundlagen der neuronalen Netze zu verstehen. Aber auch hier sind die Anforderungen nicht hoch und wir sind vollkommen gut  damit bedient, wenn wir unser Wissen aus dem Abitur noch nicht ganz vergessen haben.

2. Ziele dieser Artikelserie

Diese Artikelserie ist speziell an Personen gerichtet, welche einen ersten Schritt in die große und interessante Welt von Deep Learning wagen möchten, die am Anfang nicht mit zu vielen Details überschüttet werden wollen und lieber an kleine und verdaulichen Häppchen testen wollen, ob dies das Richtige für sie ist. Unser Ziel wird sein, dass wir ein Grundverständnis für TensorFlow entwickeln und die Grundlagen zur Nutzung beherrschen, um mit diesen erste Modelle zu erstellen.

3. Was ist TensorFlow?

Viele von euch haben bestimmt von TensorFlow in Verbindung mit Deep Learning bzw. neuronalen Netzen gehört. Allgemein betrachtet ist TensorFlow ein Software-Framework zur numerischen Berechnung von Datenflussgraphen mit dem Fokus maschinelle Lernalgorithmen zu beschreiben. Kurz gesagt: Es ist ein Tool um Deep Learning Modelle zu realisieren.

Zusatz: Python ist eine Programmiersprache in der wir viele Paradigmen (objektorientiert, funktional, etc.) verwenden können. Viele Tutorials im Bereich Data Science nutzen das imperative Paradigma; wir befehlen Python also Was gemacht und Wie es ausgeführt werden soll. TensorFlow ist dahingehend anders, da es eine datenstrom-orientierte Programmierung nutzt. In dieser Form der Programmierung wird ein Datenfluss-Berechnungsgraph (kurz: Datenflussgraph) erzeugt, welcher durch die Zusammensetzung von Kanten und Knoten charakterisiert wird. Die Kanten enthalten Daten und können diese an Knoten weiterleiten. In den Knoten werden Operationen wie z. B. Addition, Multiplikation oder auch verschiedenste Variationen von Funktionen ausgeführt. Bekannte Programme mit datenstrom-orientierten Paradigmen sind Simulink, LabView oder Knime.

Für das Verständnis von TensorFlow verrät uns der Name bereits erste Informationen über die Funktionsweise. In neuronalen Netzen bzw. in Deep-Learning-Netzen können Eingangssignale, Gewichte oder Bias verschiedene Erscheinungsformen haben; von Skalaren, zweidimensionalen Tabellen bis hin zu mehrdimensionalen Matrizen kann alles dabei sein. Diese Erscheinungsformen werden in Deep-Learning-Anwendungen allgemein als Tensoren bezeichnet, welche durch ein Datenflussgraph ‘fließen’. [1]

Abb.1 Namensbedeutung von TensorFlow: Links ein Tensor in Form einer zweidimensionalen Matrix; Rechts ein Beispiel für einen Datenflussgraph

 

4. Warum TensorFlow?

Wer in die Welt der KI einsteigen und Deep Learning lernen will, hat heutzutage die Qual der Wahl. Neben TensorFlow gibt es eine Vielzahl von Alternativen wie Keras, Theano, Pytorch, Torch, Caffe, Caffe2, Mxnet und vielen anderen. Warum also TensorFlow?

Das wohl wichtigste Argument besteht darin, dass TensorFlow eine der besten Dokumentationen hat. Google – Herausgeber von TensorFlow – hat TensorFlow stets mit neuen Updates beliefert. Sicherlich aus genau diesen Gründen ist es das meistgenutzte Framework. Zumindest erscheint es so, wenn wir die Stars&Forks auf Github betrachten. [3] Das hat zur Folge, dass neben der offiziellen Dokumentation auch viele Tutorials und Bücher existieren, was die Doku nur noch besser macht.

Natürlich haben alle Frameworks ihre Vor- und Nachteile. Gerade Pytorch von Facebook erfreut sich derzeit großer Beliebtheit, da die Berechnungsgraphen dynamischer Natur sind und damit einige Vorteile gegenüber TensorFlow aufweisen.[2] Auch Keras wäre für den Einstieg eine gute Alternative, da diese Bibliothek großen Wert auf eine einsteiger- und nutzerfreundliche Handhabung legt. Keras kann man sich als eine Art Bedienoberfläche über unsere Frameworks vorstellen, welche vorgefertigte neuronale Netze bereitstellt und uns einen Großteil der Arbeit abnimmt.

Möchte man jedoch ein detailreiches und individuelles Modell bauen und die Theorie dahinter nachvollziehen können, dann ist TensorFlow der beste Einstieg in Deep Learning! Es wird einige Schwierigkeiten bei der Gestaltung unserer Modelle geben, aber durch die gute Dokumentation, der großen Community und der Vielzahl an Beispielen, werden wir gewiss eine Lösung für aufkommende Problemstellungen finden.

 

Abb.2 Beliebtheit von DL-Frameworks basierend auf Github Stars & Forks (10.06.2018)

 

5. Zusammenfassung und Ausblick

Fassen wir das Ganze nochmal zusammen: TensorFlow ist ein Framework, welches auf der datenstrom-orientierten Programmierung basiert und speziell für die Implementierung von Machine/Deep Learning-Anwendungen ausgelegt ist. Dabei fließen unsere Daten durch eine mehr oder weniger komplexe Anordnung von Berechnungen, welche uns am Ende ein Ergebnis liefert.

Die wichtigsten Argumente zur Wahl von TensorFlow als Einstieg in die Welt des Deep Learnings bestehen darin, dass TensorFlow ausgezeichnet dokumentiert ist, eine große Community besitzt und relativ einfach zu lesen ist. Außerdem hat es eine Schnittstelle zu Python, welches durch die meisten Anwender im Bereich der Datenanalyse bereits genutzt wird.

Wenn ihr es bis hier hin geschafft habt und immer noch motiviert seid den Einstieg mit TensorFlow zu wagen, dann seid gespannt auf den nächsten Artikel. In diesem werden wir dann auf die Funktionsweise von TensorFlow eingehen und einfache Berechnungsgraphen aufbauen, um ein Grundverständnis von TensorFlow zu bekommen. Bleibt also gespannt!

Quellen

[1] Hope, Tom (2018): Einführung in TensorFlow: DEEP-LEARNING-SYSTEME PROGRAMMIEREN, TRAINIEREN, SKALIEREN UND DEPLOYEN, 1. Auflage

[2] https://www.marutitech.com/top-8-deep-learning-frameworks/

[3] https://github.com/mbadry1/Top-Deep-Learning

[4] https://www.bigdata-insider.de/was-ist-keras-a-726546/

Interview – Von der Utopie zur Realität der KI: Möglichkeiten und Grenzen

Interview mit Prof. Dr. Sven Buchholz über die Evolution von der Utopie zur Realität der KI – Möglichkeiten und Grenzen

Prof. Sven Buchholz hat eine Professur für die Fachgebiete Data Management und Data Mining am Fachbereich Informatik und Medien an der TH Brandenburg inne. Er ist wissenschaftlicher Leiter des an der Agentur für wissenschaftliche Weiterbildung und Wissenstransfer – AWW e. V. angesiedelten Projektes „Datenkompetenz 4.0 für eine digitale Arbeitswelt“ und Dozent des Vertiefungskurses „Machine Learning mit Python“, der seit 2018 von der AWW e. V. in Kooperation mit der TH Brandenburg angeboten wird.

Data Science Blog: Herr Prof. Buchholz, künstliche Intelligenz ist selbst für viele datenaffine Fachkräfte als Begriff noch zu abstrakt und wird mit Filmen wir A.I. von Steven Spielberg oder Terminator assoziiert. Gibt es möglicherweise unterscheidbare Stufen bzw. Reifegrade einer KI?

Für den Reifegrad einer KI könnte man, groß gedacht, ihre kognitiven Leistungen bewerten. Was Kognition angeht, dürfte Hollywood zurzeit aber noch meilenweit führen.  Man kann natürlich KIs im selben Einsatzgebiet vergleichen. Wenn von zwei Robotern einer lernt irgendwann problemlos durch die Tür zu fahren und der andere nicht, dann gibt es da schon einen Sieger. Wesentlich ist hier das Lernen, und da geht es dann auch weiter. Kommt er auch durch andere Türen, auch wenn ein Sensor
ausfällt?

Data Science Blog: Künstliche Intelligenz, Machine Learning und Deep Learning sind sicherlich die Trendbegriffe dieser Jahre. Wie stehen sie zueinander?

Deep Learning ist ein Teilgebiet von Machine Learning und das ist wiederum ein Teil von KI. Deep Learning meint eigentlich nur tiefe neuronale Netze (NN). Das sind Netze, die einfach viele Schichten von Neuronen haben und folglich als tief bezeichnet werden. Viele Architekturen, insbesondere auch die oft synonym mit Deep Learning assoziierten sogenannten Convolutional NNs gibt es seit Ewigkeiten. Solche Netze heute einsetzen zu können verdanken wir der Möglichkeit auf Grafikkarten rechnen zu können. Ohne Daten würde das uns aber auch nichts nützen. Netze lernen aus Daten (Beispielen) und es braucht für erfolgreiches Deep Learning sehr viele davon. Was wir oft gerade sehen ist also, was man mit genug vorhandenen Daten „erschlagen“ kann. Machine Learning sind alle Algorithmen, die ein Modell als Ouput liefern. Die Performanz von Modellen ist messbar, womit ich quasi auch noch eine Antwort zur ersten Frage nachreichen will.

Data Science Blog: Sie befassen sich beruflich seit Jahren mit künstlicher Intelligenz. Derzeitige Showcases handeln meistens über die Bild- oder Spracherkennung. Zweifelsohne wichtige Anwendungen, doch für Wirtschaftsunternehmen meistens zu abstrakt und zu weit weg vom Kerngeschäft. Was kann KI für Unternehmen noch leisten?

Scherzhaft oder vielleicht boshaft könnte man sagen, alles was Digitalisierung ihnen versprochen hat.
Wenn sie einen Chat-Bot einsetzen, sollte der durch KI besser werden. Offensichtlich ist das jetzt kein Anwendungsfall, der jedes Unternehmen betrifft. Mit anderen Worten, es hängt vom Kerngeschäft ab. Das klingt jetzt etwas ausweichend, meint aber auch ganz konkret die Ist-Situation.
Welche Prozesse sind jetzt schon datengetrieben, welche Infrastruktur ist vorhanden. Wo ist schon wie optimiert worden? Im Einkauf, im Kundenmanagement und so weiter.

Data Science Blog: Es scheint sich also zu lohnen, in das Thema fachlich einzusteigen. Was braucht man dazu? Welches Wissen sollte als Grundlage vorhanden sein? Und: Braucht man dazu einen Mindest-IQ?

Gewisse mathematische und informatorische Grundlagen braucht man sicher relativ schnell. Zum Beispiel: Wie kann man Daten statistisch beschreiben, was darf man daraus folgern? Wann ist etwas signifikant? Einfache Algorithmen für Standardprobleme sollte man formal hinschreiben können und implementieren können. Welche Komplexität hat der Algorithmus, wo genau versteckt sie sich? Im Prinzip geht es aber erst einmal darum, dass man mit keinem Aspekt von Data Science Bauchschmerzen hat. Einen Mindest-IQ braucht es also nur insofern, um diese Frage für sich selbst beantworten zu können.

Data Science Blog: Gibt es aus Ihrer Sicht eine spezielle Programmiersprache, die sich für das Programmieren einer KI besonders eignet?

Das dürfte für viele Informatiker fast eine Glaubensfrage sein, auch weil es natürlich davon abhängt,
was für eine KI das sein soll. Für Machine Learning und Deep Learning lautet meine Antwort aber ganz klar Python. Ein Blick auf die bestimmenden Frameworks und Programmierschnittstellen ist da
ziemlich eindeutig.

Data Science Blog: Welche Trends im Bereich Machine Learning bzw. Deep Learning werden Ihrer Meinung nach im kommenden Jahr 2019 von Bedeutung werden?

Bei den Deep Learning Anwendungen interessiert mich, wie es mit Sprache weitergeht. Im Bereich Machine Learning denke ich, dass Reinforcement Learning weiter an Bedeutung gewinnt. KI-Chips halte ich für einen der kommenden Trends.

Data Science Blog: Es heißt, dass Data Scientist gerade an ihrer eigenen Arbeitslosigkeit arbeiten, da zukünftige Verfahren des maschinellen Lernens Data Mining selbstständig durchführen können. Werden Tools Data Scientists bald ersetzen?

Die Prognosen für das jährliche Datenwachstum liegen ja momentan so bei 30%. Wichtiger als diese Zahl alleine ist aber, dass dieses Wachstum von Daten kommt, die von Unternehmen generiert werden. Dieser Anteil wird über die nächsten Jahre ständig und rasant weiter wachsen. Nach den einfachen Problemen kommen also erst einmal mehr einfache Probleme und/oder mehr anspruchsvollere Probleme statt Arbeitslosigkeit. Richtig ist aber natürlich, dass Data Scientists zukünftig methodisch mehr oder speziellere Kompetenzen abdecken müssen. Deswegen haben die AWW e. V. und die TH Brandenburg ihr Weiterbildungsangebot um das Modul ‚Machine Learning mit Python‘ ergänzt.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik, Ingenieurwesen oder Wirtschaftswissenschaften, abgeschlossen haben, was würden Sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists mit gutem Verständnis für Machine Learning werden können?

Neugierig sein wäre ein Tipp von mir. Im Bereich Deep Learning gibt es ja ständig neue Ideen, neue Netze. Die Implementierungen sind meist verfügbar, also kann und sollte man die Sachen ausprobieren. Je mehr Netze sie selbst zum Laufen gebracht und angewendet haben, umso besser werden sie.  Und auch nur so  verlieren sie nicht den Anschluss.

Funktionsweise künstlicher neuronaler Netze

Künstliche neuronale Netze sind ein Spezialbereich des maschinellen Lernens, der sogar einen eigenen Trendbegriff hat: Deep Learning.
Doch wie funktioniert ein künstliches neuronales Netz überhaupt? Und wie wird es in Python realisiert? Dies ist Artikel 2 von 6 der Artikelserie –Einstieg in Deep Learning.

Gleich vorweg, wir beschränken uns hier auf die künstlichen neuronalen Netze des überwachten maschinellen Lernens. Dafür ist es wichtig, dass das Prinzip des Trainings und Testens von überwachten Verfahren verstanden ist. Künstliche neuronale Netze können aber auch zur unüberwachten Dimensionsreduktion und zum Clustering eingesetzt werden. Das bekannteste Verfahren ist das AE-Net (Auto Encoder Network), das hier aus der Betrachtung herausgenommen wird.

Beginnen wir mit einfach künstlichen neuronalen Netzen, die alle auf dem Perzeptron als Kernidee beruhen. Das Vorbild für künstliche neuronale Netze sind natürliche neuronale Netze, wie Sie im menschlichen Gehirn zu finden sind.

Perzeptron

Das Perzeptron (engl. Perceptron) ist ein „Klassiker“ unter den künstlichen neuronalen Netzen. Wenn von einem neuronalen Netz gesprochen wird, ist meistens ein Perzeptron oder eine Variation davon gemeint. Perzeptrons sind mehrschichtige Netze ohne Rückkopplung, mit festen Eingabe- und Ausgabeschichten. Es gibt keine absolut einheitliche Definition eines Perzeptrons, in der Regel ist es jedoch ein reines FeedForward-Netz mit einer Input-Schicht (auch Abtast-Schicht oder Retina genannt) mit statisch oder dynamisch gewichteten Verbindungen zur Ausgabe-Schicht, die (als Single-Layer-Perceptron) aus einem einzigen Neuron besteht. Das eine Neuron setzt sich aus zwei mathematischen Funktionen zusammen: Einer Berechnung der Nettoeingabe und einer Aktivierungsfunktion, die darüber entscheidet, ob die berechnete Nettoeingabe im Brutto nun “feuert” oder nicht. Es ist in seiner Ausgabe folglich binär: Man kann es sich auch als kleines Lämpchen vorstellen, so dass abhängig von den Eingabewerten und den Gewichtungen eine Nettoeingabe (Summe) bildet und eine Sprungfunktion darüber entscheidet, ob am Ende das Lämpchen leuchtet oder nicht. Dieses Konzept der Ausgabeerzeugung wird Forward-Propagation genannt.

Single-Layer-Perceptron

Auch wenn “Netz” für ein einzelnes Perzeptron mit seinem einen Neuron etwas übertrieben wirken mag, ist es doch die Grundlage für viele größere und mehrschichtige Netze.

Betrachten wir nun die Mathematik der Forward-Propagation.

Wir haben eine Menge an Eingabewerten x_0, x_1 \dots x_n. Wobei für x_0 als Bias-Input stets gilt: x_0 = 1,0. Der Bias-Input ist nur ein Platzhalter für das wichtige Bias-Gewicht.

    \[ x = \begin{bmatrix} x_0\\ x_1\\ x_2\\ x_3\\ \vdots\\ x_n \end{bmatrix} \]


Für jede Eingabevariable wird eine Gewichtsvariable benötigt: w_0, w_1 \dots w_n

    \[ w = \begin{bmatrix} w_0\\ w_1\\ w_2\\ w_3\\ \vdots\\ w_n \end{bmatrix} \]

Jedes Produkt aus Eingabewert und Gewichtung soll in Summe die Nettoeingabe z bilden. Hier zeigt sich z als lineare mathematische Funktion, die zwei-dimensional leicht als z = w_0 + w_1 \cdot x_1 mit w_0 als Y-Achsenschnitt wenn x_1 = 0.

    \[ z = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_n \cdot x_n \]

Die lineare Funktion wird nur durch die Sprungfunktion als sogenannte Aktivierungsfunktion zu einer binären Klasseneinteilung (siehe hierzu: Machine Learning – Regression vs Klassifikation), denn wenn z einen festzulegenden Schwellwert \theta überschreitet, liefert die Sprungfunktion \phi mit der Eingabe z einen anderen Wert als wenn dieser Schwellwert nicht überschritten wird.

(1)   \begin{equation*} \phi(z) = \begin{cases} 1 & \text{wenn } z \le \theta \\ -1 & \text{wenn } z < \theta \\ \end{cases} \end{equation*}

Die Definition dieser Aktivierungsfunktion ist der Kern der Klassifikation und viele erweiterte künstliche neuronale Netze unterscheiden sich im Wesentlichen vom Perzeptron dadurch, dass die Aktivierungsfunktion komplexer ist, als eine reine Sprungfunktion, beispielsweise als Sigmoid-Funktion (basierend auf der logistischen Funktion) oder die Tangens hyperbolicus (tanh) -Funktion. Mehr darüber dann im nächsten Artikel dieser Artikelserie, bleiben wir also bei der einfachen Sprungfunktion.

Künstliche neuronale Netze sind im Grunde nichts anderes als viel-dimensionale, mathematische Funktionen, die durch Schaltung als Neuronen nebeneinander (Neuronen einer Schicht) und hintereinander (mehrere Schichten) eine enorme Komplexität erfassen können. Die Gewichtungen sind dabei die Stellschraube, die die Form der mathematischen Funktion gestaltet, aus Geraden und Kurven, um eine Punktwolke zu beschreiben (Regression) oder um Klassengrenzen zu identifizieren (Klassifikation).

Eine andere Sichtweise auf künstliche neuronale ist die des Filters: Ein künstliches neuronales Netz nimmt alle Eingabe-Variablen entgegen (z. B. alle Pixel eines Bildes) und über ein Training werden die Gewichtungen (die Form des Filters) so gestaltet, dass der Filter immer zu richtigen Klasse (im Kontext der Bildklassifikation: die Objektklasse) führt.


Kommen wir nochmal kurz zurück zu der Berechnung der Nettoeingabe z. Da diese Schreibweise…

    \[ z = w_0 \cdot x_0 + w_1 \cdot x_1 + \dots + w_n \cdot x_n \]

… recht anstrengend ist, schreiben Fortgeschrittene der linearen Algebra lieber z = w^T \cdot x.

    \[ z = w^T \cdot x \]

Das hochgestellte T steht dabei für transponieren. Transponieren bedeutet, dass Spalten zu Zeilen werden – oder umgekehrt.

Beispielsweise befüllen wir zwei Vektoren x und w mit beispielhaften Inhalten:

Eingabewerte:

    \[ x = \begin{bmatrix} 5\\ 12\\ 30\\ 2 \end{bmatrix} \]

Gewichtungen:

    \[ w = \begin{bmatrix} 1\\ 2\\ 5\\ 12 \end{bmatrix} \]

Kann nun die Nettoeingabe z berechnet werden, denn der Gewichtungsvektor wird vom Spaltenvektor zum Zeilenvektor. So kann – mathematisch korrekt dargestellt – jedes Element des einen Vektors mit dem zugehörigen Element des anderen Vektors multipliziert werden, die dabei entstehenden Ergebniswerte werden summiert.

    \[ z = w^T \cdot x = \big[1\text{ }2\text{ }5\text{ }12\big] \cdot \begin{bmatrix} 5\\ 12\\ 30\\ 2 \end{bmatrix} = 1 \cdot 5 + 2 \cdot 12 + 5 \cdot 30 + 12 \cdot 2 = 203 \]


Zurück zur eigentlichen Aufgabe des künstlichen neuronalen Netzes: Klassifikation! (Regression, Clustering und Dimensionsreduktion blenden wir ja in diesem Artikel als Aufgabe aus 🙂

Das Perzeptron soll zwei Klassen trennen. Dafür sollen alle Eingaben richtig gewichtet werden, so dass die entstehende Nettoeingabe z die Sprungfunktion dann aktiviert, wenn der Datensatz nicht für die eine, sondern für die andere Klasse ausweist.

Da wir es mit einer linearen Funktion z zutun haben, ist die Konvergenz (= Passgenauigkeit des Models mit der Realität) eines Single-Layer-Perzeptrons nur für lineare Trennbarkeit möglich!

Training des Perzeptron-Netzes

Die Aufgabe ist nun, die richtigen Gewichte zu finden – und nicht nur irgendwelche richtigen, sondern genau die optimalen. Die Frage, die sich für jedes künstliche neuronale Netz stellt, ist die nach den richtigen Gewichtungen. Das Training eines Perzeptron ist vergleichsweise einfach, gerade weil es binär ist. Denn binär bedeutet auch, dass wenn eine falsche Antwort gegeben wurde, muss das jeweils andere mögliche Ergebnis korrekt sein.

Das Training eines Perzeptrons funktioniert wie folgt:

  1. Setze alle Gewichtungen auf den Wert 0,00
  2. Mit jedem Datensatz des Trainings
    1. Berechne den Ausgabewert \^{y}
    2. Vergleiche den Ausgabewert \^{y} mit dem tatsächlichen Ergebnis y
    3. Aktualisiere die Gewichtungen entgegen des Fehlers: w_i = w_i + \Delta w_i

Wobei die Gewichtsanpassung \Delta w_i entgegen des Fehlers (bzw. hin zur jeweils anderen möglichen Antwort) geschieht:

\Delta w_i = (\^{y}_j - y_j ) \cdot x_i

Anmerkung für die Experten: Die Schrittweite \eta blenden wir hier einfach mal aus. Bitte einfach von \eta = 1.0 ausgehen.

\Delta w_i ist die Differenz aus der Prädiktion und dem tatsächlichen Ergebnis (Klasse). Alle Gewichtungen werden mit jedem Fehler gleichzeitig aktualisiert. Sind alle Gewichtungen aktualisiert, kommt der nächste Durchlauf (erneuter Vergleich zwischen \^{y} und y), nicht zu vergessen ist dabei natürlich die Abhängigkeit von den Eingabewerten x:

\Delta w_0 = (\^{y}_j - y_j ) \cdot x_0

\Delta w_2 = (\^{y}_j - y_j ) \cdot x_1

\Delta w_2 = (\^{y}_j - y_j) \cdot x_2

\Delta w_n = (\^{y}_j - y_j) \cdot x_n

Training eines Perzeptrons

Das Training im überwachten Lernen basiert immer auf der Idee, den Ausgabe-Fehler (die Differenz zwischen Prädiktion und tatsächlich korrektem Ergebnis) zu betrachten und die Klassifikationslogik an den richtigen Stellschrauben (bei neuronalen Netzen sind das die Gewichtungen) entgegen des Fehlers anzupassen.

Richtige Klassifikations-Situationen können True-Positives und True-Negatives darstellen, die zu keiner Gewichtsanpassung führen sollen:

True-Positive -> Klassifikation: 1 | korrekte Klasse: 1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (1 - 1) \cdot x_i = 0

True-Negative-> Klassifikation: -1 | korrekte Klasse: -1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (-1 - -1) \cdot x_i = 0

Falsche Klassifikationen erzeugen einen Fehler, der zu einer Gewichtsanpassung entgegen des Fehlers führen soll:

False-Positive -> Klassifikation: 1 | korrekte Klasse: -1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (1 - -1) \cdot x_i = 2 \cdot x_i

False-Negative -> Klassifikation: -1 | korrekte Klasse: 1

\Delta w_i = (\^{y}_j - y_j) \cdot x_i = (-1 - 1) \cdot x_i = -2 \cdot x_i

Imaginäres Trainingsbeispiel eines Single-Layer-Perzeptrons (SLP)

Nehmen wir an, dass x_1 = 0,5 ist und das SLP irrtümlicherweise die Klasse \^{y_1} = -1 ausgewiesen hat, obwohl die korrekte Klasse y_1 = +1 wäre. (Und die Schrittweite lassen wir bei \eta = 1,0)

Dann passiert folgendes:

\Delta w_1 = (\^{y}_1 - y_1) \cdot x_1 = (-1 - 1) \cdot 0,5 = -2,0 \cdot 0,5 = -1,0

Die Gewichtung w_1 verringert sich entsprechend w_1 = w_1 + \Delta w_1 = w_1 - 1,0 und somit wird die Wahrscheinlichkeit größer, dass wenn bei der nächsten Iteration (j=1) wieder die Klasse +1 korrekt sei,  den Schwellwert \phi(z) zu unterschreiten und auf eben diese korrekte Klasse zu stoßen.

Die Aktualisierung der Gewichtung \Delta w_i ist proportional zu x_i. So würde beispielsweise ein neues x_1=2,0 (bei Iteration j=2) zu einer irrtümlichen Klassifikation \^(y_2) = -1 (y_2 = +1) führen, würde die Entscheidungsgrenze zur korrekten Prädiktion der Klasse beim nächsten Durchlauf (j = 3) an w_1 noch weiter in die gleiche Richtung verschoben werden:

\Delta w_1 = (\^{y}_2 - y_2) \cdot x_1 = (-1 - 1) \cdot 2,0 = -2,0 \cdot 2,0 = -4,0

Mehr zum Training von künstlichen neuronalen Netzen ist im nächsten Artikel dieser Artikelserie zu erfahren.

Single-Layer-Perzeptrons (SLP) – Beispiel mit der boolischen Trennung

Verlassen wir nun das Training des Perzeptrons und gehen einfach mal davon aus, dass die idealen Gewichte schon gefunden wurden und schauen uns nun an, was ein Perzeptron alles (nicht) kann. Denn nicht vergessen, es soll eigentlich Klassen unterscheiden bzw. die dafür nötigen Entscheidungsgrenzen finden.

Boolische Operatoren unterscheiden Fälle nach boolischen Werten. Sie sind ein beliebtes “Hello World” für die Einarbeitung in die lineare Entscheidungslogik eines Perzeptrons. Es gibt drei grundlegende boolische Vergleichsoperatoren: AND, OR und XOR

  x1     x2   AND OR XOR
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Ein Perzeptron zur Lösung dieser Aufgabe bräuchte also zwei Dimensionen (+ Bias): x_1 und x_2
Und es müsste Gewichtungen haben, die dafür sorgen, dass die Vorhersage entsprechend der Logik AND, OR oder XOR mit \^{y} = \phi(z) = \phi (w_0 \cdot 1 + w_1 \cdot x_1 + w_2 \cdot x_2) funktioniert.

Dabei ist es wichtig, dass wir auch phi \phi als Sprungfunktion definieren. Sie könnte beispielsweise so aussehen, dass sie auf den Wert \phi(z) = 1 springt, wenn z > 0 ist, ansonsten aber \phi(z) = 0 bleibt.

Das Netz und die Gewichtungen (w-Setup) könnten für die AND- und die OR-Logik so aussehen:

Die Gewichtungen funktionieren beim SLP problemlos, denn wir haben es mit linear trennbaren Problemen zutun:

Kleiner Test gefällig? So nehmen wir uns erstmal die AND-Logik vor:

  • Wenn x1 = 0 und x2 = 0 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 = - 1,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-1,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 = - 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 1 ist, gilt: z = -1,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = + 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(0,5) = 1

Scheint zu funktionieren!

Und dann die OR-Logik mit

  • Wenn x1 = 0 und x2 = 0 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 = - 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 = + 0,5,
    wie erhalten als Prädiktion \phi(z) = \phi(0,5) = 1
  • Wenn x1 = 1 und x2 = 1 ist, gilt: z = -0,5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 = + 1,5,
    wie erhalten als Prädiktion \phi(z) = \phi(1,5) = 1

Super! Jedoch stellt sich nun die Frage, wie das XOR-Problem zu lösen ist, denn das bedingt sowohl die Grenzen von AND als auch jene des OR-Operators.

Multi-Layer-Perzeptron (MLP) bzw. (Deep) Feed Forward (FF) Net

Denn ein XOR kann mathematisch auch so korrekt beschrieben werden: x_1 \text{ xor } x_2 = (x_1 \text{ and } \neg x_2) \text{ or } (\neg x_1 \text{ and } x_2)

Testen wir es aus!

  • Wenn x1 = 0 und x2 = 0 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 0 - 1,0 \cdot 0 = -0,5 und somit \phi(z_1) = \phi(-0,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_2) = \phi(-0,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_3) = \phi(-0,5) = 0
  • Wenn x1 = 1 und x2 = 0 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 1 - 1,0 \cdot 0 = 0,5 und somit \phi(z_1) = \phi(0,5) = 1
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 1 + 1,0 \cdot 0 = -1,5 und somit \phi(z_2) = \phi(-1,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 1 + 1,0 \cdot 0 = 0,5 und somit \phi(z_3) = \phi(0,5) = 1
  • Wenn x1 = 0 und x2 = 1 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 0 - 1,0 \cdot 1 = -1,5 und somit \phi(z_1) = \phi(-1,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 0 + 1,0 \cdot 1 = 0,5 und somit \phi(z_2) = \phi(0,5) = 1
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 1 = 0,5 und somit \phi(z_3) = \phi(0,5) = 1
  • Wenn x1 = 1 und x2 = 1 ist, gilt:
    z_1 = w_{10} \cdot 1 + w_{11} \cdot x1 + w_{12} \cdot  x2 = -0.5 \cdot 1 + 1,0 \cdot 1 - 1,0 \cdot 1 = -1,5 und somit \phi(z_1) = \phi(-0,5) = 0
    z_2 = w_{20} \cdot 1 + w_{21} \cdot x1 + w_{22} \cdot  x2 = -0.5 \cdot 1 - 1,0 \cdot 1 + 1,0 \cdot 1 = 0,5 und somit \phi(z_2) = \phi(-0,5) = 0
    z_3 = w_{30} \cdot 1 + w_{31} \cdot \phi(z_1) + w_{32} \cdot \phi(z_2) = -0,5 \cdot 1 + 1,0 \cdot 0 + 1,0 \cdot 0 = -0,5 und somit \phi(z_3) = \phi(-0,5) = 0

Es funktioniert!

Mehrfachklassifikation mit dem Perzeptron

Ein Perzeptron-Netz klassifiziert binär, die Ausgabe beschränkt sich auf 1 oder -1 bzw. 0 oder 1.

Jedoch wird in der Praxis oftmals eine One-vs-All (OvA) bzw. One-vs-Rest (OvR) Klassifikation implementiert. In diesem Fall steht die 1 für die Erkennung einer konkreten Klasse, während alle anderen übrigen Klassen als negativ betrachtet werden.

Um jede Klasse erkennen zu können, werden n Klassifizierer (= n Perzeptron-Netze) benötigt. Jedes Perzeptron-Netz ist auf die Erkennung einer bestimmten Klasse trainiert.

Adaline – Oder: die Limitation des Perzeptrons

Das Perzeptron wird nur über eine Sprungfunktion aktiviert. Das schränkt die Feinabstimmung des Trainings enorm ein. Besser sind Aktivierungen über stetige Funktionen, die dann nämlich differenzierbar (ableitbar) sind. Das ergibt eine konvexe Fehlerfunktion mit einem eindeutigen Minimum. Der Adaline-Algorithmus (ADAptive Linear NEuron) erweitert die Idee des Perzeptrons um genau diese Idee. Der wesentliche Fortschritt der Adaline-Regel gegenüber der des Perzeptrons ist demnach, dass die Aktualisierung der Gewichtungen nicht wie beim Perzeptron auf einer einfachen Sprungfunktion, sondern auf einer linearen, stetigen Aktivierungsfunktion beruht.

Single-Layer-Adaline

Wie ein künstliches neuronales Netz mit der Kategorie Adaline trainiert werden kann, wird im nächsten Artikel dieser Artikelserie erläutert.

Weiterführende Netz-Konzepte (CNN und RNN)

Wer bereits mit Frameworks wie TensorFlow in das Deep Learning eingestiegen ist, hat möglicherweise schon erweiterte Konzepte der künstlichen neuronalen Netze kennen gelernt. Die CNNs (Convolutional Neuronal Network) sind im Moment die Wahl für die Verarbeitung von hochdimensionalen Aufgaben, beispielsweise die Bilderkennung (Computer Vision) und Texterkennung (NLP). Das CNN erweitert die Möglichkeiten mit neuronalen Netzen deutlich, indem ein Netz zur Dimensionsreduktion vorgeschaltet wird, im Kern steckt jedoch weiterhin die Idee der MLPs. Beim Einsatz in der Bilderkennung funktionieren CNNs vereinfacht gesprochen so, dass der vorgeschaltete Netzbereich die Millionen Bildpixel sektorweise ausliest (Convolution, Faltung durch Auslesen über Sektoren, die sich gegenseitig überlappen), verdichtet (Pooling, beispielsweise über nicht-lineare Funktionen wie max()) und dann – nach diesem Prozedere – ähnlich eim MLP klassifiziert.

 

Eine andere erweiterte Form sind RNNs (Recurrent Neuronal Network), die ebenfalls auf der Idee des MLPs basieren, dieses Konzept jedoch dank Rückverbindungen (Neuronen senden an vorherige Schichten) und Selbstverbindungen (Neuronen senden an sich selbst) wiederum auf den Kopf stellen.

 

Dennoch ist es für das tiefere Verständnis von CNNs und RNNs essenziell, dass vorher das Konzept des MLPs verstanden ist. Es ist die einfachste Form der auch heute noch am meisten eingesetzten und sehr mächtigen Netz-Topologien.

Im Jahr 2016 hatte Fjodor van Veen von asimovinstitute.org hatte – dankenswerterweise – mal eine Zusammenstellung von Netz-Topologien erstellt, auf die ich heute noch immer mal wieder einen Blick werfe:

Künstliche neuronale Netze – Topologie-Übersicht von Fjodor van Veen

Buchempfehlungen

Die folgenden Bücher nutze ich für mein Selbststudium von Machine Learning und Deep Learning und sind teilweise Gedankenvorlagen auch für diesen Artikel gewesen:

 

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional) Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek(mitp Professional)

 

Modelling Data – Case Study: Importance of domain knowledge

What´s the relation between earnings and happiness? I saw this chart and was strongly irritated – why is there a linear regression, it´s clearly a logarithmic relationship.
Linear relationship between GDP and happiness.

So I got angry and wanted to know, which model is the better fit. I started to work immediatly, because it´s a huge difference for man kind. Think about it: you give a poor person money and he gets as happy as a rich person with the same amount added – that´s against common sense and propaganda to get rich. Like an cultural desease.

So I gathered the data and did a first comparation, and this logarithmic model was the better fit:
Logarithmic relationship between GDP and happiness.

I was right and seriously willing to clear the mess up – so posted the “correct” model on facebook, to explain things to my friends.

Once I came down…

I asked myself: “What´s the model that fits the data best – that would be more correct?”

So I started to write an algorithm to check polynominal regression levels for fit using a random train and test data split. Finally, I got to this result and was amazed:
Best polynominal relationship between GDP and happiness.

This seriously hit me: “What the f***! There seems to be maximum happiness reachable with a certain amount of income / GDP.” Can you understand, what this result would mean for our world and economy? Think about all economies growing continiously, but well happiest was there or will come there. What would you do? Send income to less developed countries, because you don´t need it? Stop invention and progress, because it´s of no use? Seriously, I felt like a socialist: Stop progress at this point and share.

So I thought a while and concluded: “F***ing statistics, we need a profound econometric model.”

I started modelling: Well, the first amount of money in a market based on money leverages a huge amount of happiness, because you can participate and feed yourself. We can approximate that by infinit marginal utility. Then the more you have, the less utility should be provided by the additional same amount added. Finally, more income is more options, so more should be always better. I concluded, that this is catched by a Cobb Douglas production function. Here´s the graph:
Cobb Douglas relationship between GDP and happiness.

That´s it, that´s the final model. Here I feel home, this looks like a normal world – for an economist.

The Relevance of Domain Knowledge

As this short case study shows, we get completly wrong information and conclusions, if we don´t do it right. If you were the most important decision making algorithm in global economic politics, imagine what desasterous outcomes it would have produced to automatically find an optimum of income.

This is a serious border of AI. If you want to analyse Big Data with algorithms, you may produce seriously wrong information and conclusions. Statistical analysis is allways about using the right model. And modelling is about the assumptions of the model. As long as you can not create the right assumtions for the statistical model automatically, Big Data analysis is near to crazy. So out of this point of view, Big Data analysis is either about very simplistic tendencies (like linear trends) or it´s bound to Data Scientists with domain knowledge checking each model – that´s slow.

Discussion

I´m quite new to the field of Data Science, but this case study shows very though limitations, clearly. It´s not about flexible fitting of data, it´s about right models. And right models don´t scale into the Big Data domain. What do you think is the solution for this issue?

Countries of Happiness – the Full Article

If you are interested in my final article on my personal blog, explaining the final results: Please feel welcome to read the article here. There is a translation widget in the menu, to read in your favorite language. The original article is german.

Interview – Die Bedeutung von Machine Learning für das Data Driven Business

Um das Optimum aus ihren Daten zu holen, müssen Unternehmen Data Analytics vorantreiben, um Entscheidungsprozesse für Innovation und Differenzierung stärker zu automatisieren. Die Data Science scheint hier der richtige Ansatz zu sein, ist aber ein neues und schnelllebiges Feld, das viele Sackgassen kennt. Cloudera Fast Forward Labs unterstützt Unternehmen dabei sich umzustrukturieren, Prozesse zu automatisieren und somit neue Innovationen zu schaffen.

Alice Albrecht ist Research Engineer bei Cloudera Fast Forward Labs. Dort widmet sie sich der Weiterentwicklung von Machine Learning und Künstlicher Intelligenz. Die Ergebnisse ihrer Forschungen nutzt sie, um ihren Kunden konkrete Ratschläge und funktionierende Prototypen anzubieten. Bevor sie zu Fast Forward Labs kam, arbeitete sie in Finanz- und Technologieunternehmen als Data Science Expertin und Produkt Managerin. Alice Albrecht konzentriert sich nicht nur darauf, Maschinen “coole Dinge” beizubringen, sondern setzt sich auch als Mentorin für andere Wissenschaftler ein. Während ihrer Promotion der kognitiven Neurowissenschaften in Yale untersuchte Alice, wie Menschen sensorische Informationen aus ihrer Umwelt verarbeiten und zusammenfassen.

english-flagRead this article in English:
“Interview – The Importance of Machine Learning for the Data Driven Business”


Data Science Blog: Frau Albrecht, Sie sind eine bekannte Keynote-Referentin für Data Science und Künstliche Intelligenz. Während Data Science bereits im Alltag vieler Unternehmen angekommen ist, scheint Deep Learning der neueste Trend zu sein. Ist Künstliche Intelligenz für Unternehmen schon normal oder ein überbewerteter Hype?

Ich würde sagen, nichts von beidem stimmt. Data Science ist inzwischen zwar weit verbreitet, aber die Unternehmen haben immer noch Schwierigkeiten, diese neue Disziplin in ihr bestehendes Geschäft zu integrieren. Ich denke nicht, dass Deep Learning mittlerweile Teil des Business as usual ist – und das sollte es auch nicht sein. Wie jedes andere Tool, braucht auch die Integration von Deep Learning Modellen in die Strukturen eines Unternehmens eine klar definierte Vorgehensweise. Alles andere führt ins Chaos.

Data Science Blog: Nur um sicherzugehen, worüber wir reden: Was sind die Unterschiede und Überschneidungen zwischen Data Analytics, Data Science, Machine Learning, Deep Learning und Künstlicher Intelligenz?

Hier bei Cloudera Fast Forward Labs verstehen wir unter Data Analytics das Sammeln und Addieren von Daten – meist für schnelle Diagramme und Berichte. Data Science hingegen löst Geschäftsprobleme, indem sie sie analysiert, Prozesse mit den gesammelten Daten abgleicht und anschließend entsprechende Vorgänge prognostiziert. Beim Machine Learning geht es darum, Probleme mit neuartigen Feedbackschleifen zu lösen, die sich mit der Anzahl der zur Verfügung stehenden Daten noch detaillierter bearbeiten lassen. Deep Learning ist eine besondere Form des Machine Learnings und ist selbst kein eigenständiges Konzept oder Tool. Künstliche Intelligenz zapft etwas Komplizierteres an, als das, was wir heute sehen. Hier geht es um weit mehr als nur darum, Maschinen darauf zu trainieren, immer wieder dasselbe zu tun oder begrenzte Probleme zu lösen.

Data Science Blog: Und wie können wir hier den Kontext zu Big Data herstellen?

Theoretisch gesehen gibt es Data Science ja bereits seit Jahrzehnten. Die Bausteine für modernes Machine Learning, Deep Learning und Künstliche Intelligenz basieren auf mathematischen Theoremen, die bis in die 40er und 50er Jahre zurückreichen. Die Herausforderung bestand damals darin, dass Rechenleistung und Datenspeicherkapazität einfach zu teuer für die zu implementierenden Ansätze waren. Heute ist das anders. Nicht nur die Kosten für die Datenspeicherung sind erheblich gesunken, auch Open-Source-Technologien wie etwa Apache Hadoop haben es möglich gemacht, jedes Datenvolumen zu geringen Kosten zu speichern. Rechenleistung, Cloud-Lösungen und auch hoch spezialisierte Chip-Architekturen, sind jetzt auch auf Anfrage für einen bestimmten Zeitraum verfügbar. Die geringeren Kosten für Datenspeicherung und Rechenleistung sowie eine wachsende Liste von Tools und Ressourcen, die über die Open-Source-Community verfügbar sind, ermöglichen es Unternehmen jeder Größe, von sämtlichen Daten zu profitieren.

Data Science Blog: Was sind die Herausforderungen beim Einstieg in Data Science?

Ich sehe zwei große Herausforderungen: Eine davon ist die Sicherstellung der organisatorischen Ausrichtung auf Ergebnisse, die die Data Scientists liefern werden (und das Timing für diese Projekte).  Die zweite Hürde besteht darin, sicherzustellen, dass sie über die richtigen Daten verfügen, bevor sie mit dem Einstellen von Data Science Experten beginnen. Das kann “tricky” sein, wenn man im Unternehmen nicht bereits über Know-how in diesem Segment verfügt. Daher ist es manchmal besser, im ersten Schritt einen Data Engineer oder Data Strategist einzustellen, bevor man mit dem Aufbau eines Data Science Team beginnt.

Data Science Blog: Es gibt viele Diskussionen darüber, wie man ein datengesteuertes Unternehmen aufbauen kann. Geht es bei Data Science nur darum, am Ende das Kundenverhalten besser zu verstehen?

Nein “Data Driven” bedeutet nicht nur, die Kunden besser zu verstehen – obwohl das eine Möglichkeit ist, wie Data Science einem Unternehmen helfen kann. Abgesehen vom Aufbau einer Organisation, die sich auf Daten und Analysen stützt, um Entscheidungen über das Kundenverhalten oder andere Aspekte zu treffen, bedeutet es, dass Daten das Unternehmen und seine Produkte voranbringen.

Data Science Blog: Die Zahl der Technologien, Tools und Frameworks nimmt zu, was zu mehr Komplexität führt. Müssen Unternehmen immer auf dem Laufenden bleiben oder könnte es ebenso hilfreich sein, zu warten und Pioniere zu imitieren?

Obwohl es generell für Unternehmen nicht ratsam ist, pauschal jede neue Entwicklung zu übernehmen, ist es wichtig, dass sie mit den neuen Rahmenbedingungen Schritt halten. Wenn ein Unternehmen wartet, um zu sehen, was andere tun, und deshalb nicht in neue Entwicklungen investiert, haben sie den Anschluss meist schon verpasst.

Data Science Blog: Global Player verfügen meist über ein großes Budget für Forschung und den Aufbau von Data Labs. Mittelständische Unternehmen stehen immer unter dem Druck, den Break-Even schnell zu erreichen. Wie können wir die Wertschöpfung von Data Science beschleunigen?

Ein Team zu haben, das sich auf ein bestimmtes Set von Projekten konzentriert, die gut durchdacht und auf das Geschäft ausgerichtet sind, macht den Unterschied aus. Data Science und Machine Learning müssen nicht auf Forschung und Innovation verzichten, um Werte zu schaffen. Der größte Unterschied besteht darin, dass sich kleinere Teams stärker bewusst sein müssen, wie sich ihre Projektwahl in neue Rahmenbedingungen und ihre besonderen akuten und kurzfristigen Geschäftsanforderungen einfügt.

Data Science Blog: Wie hilft Cloudera Fast Forward Labs anderen Unternehmen, den Einstieg in Machine Learning zu beschleunigen?

Wir beraten Unternehmen, basierend auf ihren speziellen Bedürfnissen, über die neuesten Trends im Bereich Machine Learning und Data Science. Und wir zeigen ihnen, wie sie ihre Datenteams aufbauen und strukturieren können, um genau die Fähigkeiten zu entwickeln, die sie benötigen, um ihre Ziele zu erreichen.

Data Science Blog: Zum Schluss noch eine Frage an unsere jüngeren Leser, die eine Karriere als Datenexperte anstreben: Was macht einen guten Data Scientist aus? Arbeiten sie lieber mit introvertierten Coding-Nerds oder den Data-loving Business-Experten?

Ein guter Data Scientist sollte sehr neugierig sein und eine Liebe für die Art und Weise haben, wie Daten zu neuen Entdeckungen und Innovationen führen und die nächste Generation von Produkten antreiben können.  Menschen, die im Data Science Umfeld erfolgreich sind, kommen nicht nur aus der IT. Sie können aus allen möglichen Bereichen kommen und über die unterschiedlichsten Backgrounds verfügen.

Machine Learning vs Deep Learning – Wo liegt der Unterschied?

Machine Learning gehört zu den Industrie-Trends dieser Jahre, da besteht kein Zweifel. Oder war es Deep Learning? Oder Artificial Intelligence? Worin liegt da eigentlich der Unterschied? Dies ist Artikel 1 von 6 der Artikelserie –Einstieg in Deep Learning.

Machine Learning

Maschinelles Lernen (ML) ist eine Sammlung von mathematischen Methoden der Mustererkennung. Diese Methoden erkennen Muster beispielsweise durch bestmögliche, auf eine bestmögliche Entropie gerichtete, Zerlegung von Datenbeständen in hierarchische Strukturen (Entscheidungsbäume). Oder über Vektoren werden Ähnlichkeiten zwischen Datensätzen ermittelt und daraus trainiert (z. B. k-nearest-Neighbour, nachfolgend einfach kurz: k-nN) oder untrainiert (z.B. k-Means) Muster erschlossen.

Algorithmen des maschinellen Lernens sind tatsächlich dazu in der Lage, viele alltägliche oder auch sehr spezielle Probleme zu lösen. In der Praxis eines Entwicklers für Machine Learning stellen sich jedoch häufig Probleme, wenn es entweder zu wenige Daten gibt oder wenn es zu viele Dimensionen der Daten gibt. Entropie-getriebene Lern-Algorithmen wie Entscheidungsbäume werden bei vielen Dimensionen zu komplex, und auf Vektorräumen basierende Algorithmen wie der k-nächste-Nachbarn-Algorithmus sind durch den Fluch der Dimensionalität in ihrer Leistung eingeschränkt.


Der Fluch der Dimensionalität

Datenpunkte sind in einem zwei-dimensionalen Raum gut vorstellbar und auch ist es vorstellbar, das wir einen solchen Raum (z. B. ein DIN-A5-Papierblatt) mit vielen Datenpunkten vollschreiben. Belassen wir es bei der Anzahl an Datenpunkten, nehmen jedoch weitere Dimensionen hinzu (zumindest die 3. Dimension können wir uns noch gut vorstellen), werden die Abstände zwischen den Punkten größer. n-dimensionale Räume können gewaltig groß sein, so dass Algorithmen wie der k-nN nicht mehr gut funktionieren (der n-dimensionale Raum ist einfach zu leer).


Auch wenn es einige Konzepte zum besseren Umgang mit vielen Dimensionen gibt (z. B. einige Ideen des Ensemble Learnings)

Feature Engineering

Um die Anzahl an Dimensionen zu reduzieren, bedienen sich Machine Learning Entwickler statistischer Methoden, um viele Dimensionen auf die (wahrscheinlich) nützlichsten zu reduzieren: sogenannte Features. Dieser Auswahlprozess nennt sich Feature Engineering und bedingt den sicheren Umgang mit Statistik sowie idealerweise auch etwas Fachkenntnisse des zu untersuchenden Fachgebiets.
Bei der Entwicklung von Machine Learning für den produktiven Einsatz arbeiten Data Scientists den Großteil ihrer Arbeitszeit nicht an der Feinjustierung ihrer Algorithmen des maschinellen Lernens, sondern mit der Auswahl passender Features.

Deep Learning

Deep Learning (DL) ist eine Disziplin des maschinellen Lernes unter Einsatz von künstlichen neuronalen Netzen. Während die Ideen für Entscheidungsbäume, k-nN oder k-Means aus einer gewissen mathematischen Logik heraus entwickelt wurden, gibt es für künstliche neuronale Netze ein Vorbild aus der Natur: Biologische neuronale Netze.

Prinzip-Darstellung eines künstlichen neuronalen Netzes mit zwei Hidden-Layern zwischen einer Eingabe- und Ausgabe-Schicht.

Wie künstliche neuronale Netze im Detail funktionieren, erläutern wir in den nächsten zwei Artikeln dieser Artikelserie, jedoch vorab schon mal so viel: Ein Eingabe-Vektor (eine Reihe von Dimensionen) stellt eine erste Schicht dar, die über weitere Schichten mit sogenannten Neuronen erweitert oder reduziert und über Gewichtungen abstrahiert wird, bis eine Ausgabeschicht erreicht wird, die einen Ausgabe-Vektor erzeugt (im Grunde ein Ergebnis-Schlüssel, der beispielsweise eine bestimmte Klasse ausweist: z. B. Katze oder Hund). Durch ein Training werden die Gewichte zwischen den Neuronen so angepasst, dass bestimmte Eingabe-Muster (z. B. Fotos von Haustieren) immer zu einem bestimmten Ausgabe-Muster führen (z. B. “Das Foto zeigt eine Katze”).

Der Vorteil von künstlichen neuronalen Netzen ist die sehr tiefgehende Abstraktion von Zusammenhängen zwischen Eingabe-Daten und zwischen den abstrahierten Neuronen-Werten mit den Ausgabe-Daten. Dies geschieht über mehrere Schichten (Layer) der Netze, die sehr spezielle Probleme lösen können. Aus diesen Tatsachen leitet sich der übergeordnete Name ab: Deep Learning

Deep Learning kommt dann zum Einsatz, wenn andere maschinelle Lernverfahren an Grenzen stoßen und auch dann, wenn auf ein separates Feature Engineering verzichtet werden muss, denn neuronale Netze können über mehrere Schichten viele Eingabe-Dimensionen von selbst auf die Features reduzieren, die für die korrekte Bestimmung der Ausgabe notwendig sind.

Convolutional Neuronal Network

Convolutional Neuronal Networks (CNN) sind neuronale Netze, die vor allem für die Klassifikation von Bilddaten verwendet werden. Sie sind im Kern klassische neuronale Netze, die jedoch eine Faltungs- und eine Pooling-Schicht vorgeschaltet haben. Die Faltungsschicht ließt den Daten-Input (z. B. ein Foto) mehrfach hintereinander, doch jeweils immer nur einen Ausschnitt daraus (bei Fotos dann einen Sektor des Fotos), die Pooling-Schicht reduzierte die Ausschnittsdaten (bei Fotos: Pixel) auf reduzierte Informationen. Daraufhin folgt das eigentliche neuronale Netz.

CNNs sind im Grunde eine spezialisierte Form von künstlichen neuronalen Netzen, die das Feature-Engineering noch geschickter handhaben.

Deep Autoencoder

Gegenwärtig sind die meisten künstlichen neuronalen Netze ein Algorithmen-Modell für das überwachte maschinelle Lernen (Klassifikation oder Regression), jedoch kommen sie auch zum unüberwachten Lernen (Clustering oder Dimensionsreduktion) zum Einsatz, die sogenannten Deep Autoencoder.

Deep Autoencoder sind neuronale Netze, die im ersten Schritt eine große Menge an Eingabe-Dimensionen auf vergleichsweise wenige Dimensionen reduzieren. Die Reduktion (Encoder) erfolgt nicht abrupt, sondern schrittweise über mehrere Schichten, die reduzierten Dimensionen werden zum Feature-Vektor. Daraufhin kommt der zweite Teil des neuronalen Netzes zum Einsatz: Die reduzierten Dimensionen werden über weitere Schichten wieder erweitert, die ursprünglichen Dimensionen als abstrakteres Modell wieder rekonstruiert (Decoder). Der Sinn von Deep Autoencodern sind abstrakte Ähnlichkeitsmodelle zu erstellen. Ein häufiges Einsatzgebiet sind beispielsweise das maschinelle Identifizieren von ähnlichen Bildern, Texten oder akkustischen Signalmustern.

Artificial Intelligence

Artificial Intelligence (AI) oder künstliche Intelligenz (KI) ist ein wissenschaftlicher Bereich, der das maschinelle Lernen beinhaltet, jedoch noch weitere Bereiche kennt, die für den Aufbau einer KI von Nöten sind. Eine künstliche Intelligenz muss nicht nur Lernen, sie muss auch Wissen effizient abspeichern, einordnen bzw. sortieren und abrufen können. Sie muss ferner über eine Logik verfügen, wie sie das Wissen und das Gelernte einsetzen muss. Denken wir an biologische Intelligenzen, ist es etwa nicht so, dass jegliche Fähigkeiten erlernt wurden, einige sind mit der Geburt bereits ausgebildet oder liegen als sogenannter Instinkt vor.

Ein einzelner Machine Learning Algorithmus würde wohl kaum einen Turing-Test bestehen oder einen Roboter komplexe Aufgaben bewältigen lassen. Daher muss eine künstliche Intelligenz weit mehr können, als bestimmte Dinge zu erlernen. Zum wissenschaftlichen Gebiet der künstlichen Intelligenz gehören zumindest:

  • Machine Learning (inkl. Deep Learning und Ensemble Learning)
  • Mathematische Logik
    • Aussagenlogik
    • Prädikatenlogik
    • Default-Logik
    • Modal-Logik
  • Wissensbasierte Systeme
    • relationale Algebra
    • Graphentheorie
  • Such- und Optimierungsverfahren:
    • Gradientenverfahren
    • Breitensuche & Tiefensuche

AI(ML(DL))

Buch-Empfehlungen

Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung (Computational Intelligence) Praxiseinstieg Deep Learning: Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen

Einstieg in Deep Learning – Artikelserie

Deep Learning gilt als ein Teilgebiet des maschinellen Lernens (Machine Learning), welches wiederum ein Teilgebiet der künstlichen Intelligenz (Artificial Intelligence) ist. Machine Learning umfasst alle (teilweise äußerst unterschiedliche) Methoden der Klassifikation oder Regression, die die Maschine über ein vom Menschen begleitetes Training selbst erlernt. Darüber hinaus umfasst Machine Learning auch unüberwachte Methoden zum Data Mining in besonders großen und vielfältigen Datenmengen.

Deep Learning ist eine Unterform des maschinellen Lernens und macht im Grunde nichts anderes: Es geht um antrainierte Klassifikation oder Regression. Seltener werden Deep Learning Algorithmen auch als unüberwachter Lernenmechanismus verwendet, zum Lernen von Rauschen zur Erkennung von Mustern (Data Mining). Deep Learning bezeichnet den Einsatz von künstlichen neuronalen Netzen, die gegenüber anderen Verfahren des maschinellen Lernens häufig überlegen sind und diesen gegenüber auch andere Vor- und Nachteile besitzen.

Im Rahmen dieser Artikelserie erscheinen im Laufe der kommenden Monate folgende Artikel:

  1. Machine Learning vs Deep Learning – Wo liegt der Unterschied?
  2. Funktionsweise künstlicher neuronaler Netze
  3. Training eines Neurons mit dem Gradientenverfahren
  4. Fehler-Rückführung mit der Backpropagation
  5. Künstliches neuronales Netz in Python (erscheint demnächst)
  6. Künstliches neuronales Netz mit dem TensorFlow-Framework (erscheint demnächst)

Buchempfehlungen

Seit 2016 arbeite ich mich in Deep Learning ein und biete auch Seminare und Workshops zu Machine Learning und Deep Learning an, dafür habe ich eine ausführliche Einarbeitung und ein immer wieder neu auflebendes Literaturstudium hinter mir. Unter Anderen habe ich folgende Bücher für mein Selbststudium verwendet und nutze ich auch Auszugsweise für meine Lehre:


Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Techniken für intelligente Systeme (Animals)

Neuronale Netze selbst programmieren: Ein verständlicher Einstieg mit Python

Praxiseinstieg Deep Learning: Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional)

 

Maschinelles Lernen: Parametrisierte und nicht-parametrisierte Verfahren

Das ist Artikel 3 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning?

Maschinelle Lernverfahren können voneinander unterschiedlich abgegrenzt werden, die den meisten Einsteigern bekannte Abgrenzung ist die zwischen überwachten und unüberwachten Verfahren. Eine weitere Abgrenzung zwischen den Lernverfahren, die weit weniger bekannt und verständlich ist, und um die es in diesem Artikel der Reihe gehen soll, ist die Unterscheidung in parametrisierte und nicht parametrisierte Lernverfahren. Gleich vorweg: Parametrisiert und nicht-parametrisierte bezieht sich auf das Modell (Trainingsergebnis), nicht auf die Algorithmen selbst (also nicht Parameter wie k-Werte, Iterations-, Gewichtungs- oder Regularisierungs-Parameter).

Parametrisierte Lernverfahren (parametric learning)

Parametrisierte Lernverfahren sind solche, die über ein Training mit sogenannten Trainingsdaten eine Funktion mit festen Parametern entwickeln, beispielsweise y = f(x) = x³ * a + x² * b + x *c + d. Diese Funktion hat dank einer festgesetzten Anzahl an Parametern eine feste Struktur, und genau dieser Fakt der Parameter-Struktur-Bestimmung a-priori macht das Lernverfahren zu einem parametrischen Lernverfahren. Nach dem Training stehen die Sturkur und die Parameter-Werte fest, beispielsweise y = x³ * 32 + x² * -4 + x * 2 + 102. Diese Funktion beschreibt den Zusammenhang zwischen dem Input x und dem Output y. Am einfachsten kann man sich das Prinzip des parametrischen Lernens demnach mit der Regression vorstellen: Eine Gerade oder eine Kurve wird über ein Trainingslauf durch eine Punktwolke gezogen und daraus die Funktion abgeleitet. Bei der Prädiktion wird diese Funktion dann dazu verwendet, mit den neuen Input-Werten den Output zu berechnen.

Mit dem Festsetzen der Struktur der Funktion bereits vor dem Training sind einige Vor- und Nachteile verbunden:

Parametrische Lernverfahren sind manchmal etwas einfacher zu verstehen, da sich das Modell durchweg als “feste” Formel betrachten lässt. Dieser Vorteil ist jedoch gleichermaßen eine Einschränkung, denn parametrische Verfahren sind eher dazu geeignet, einfachere Zusammenhänge (mit nicht all zu vielen Dimensionen) zu berechnen. Dafür läuft das Training und vor allem die Prädiktion bei parametrischen Verfahren sehr viel schneller ab, als es bei nicht-parametrischen Verfahren der Fall ist, immerhin müssen die Eingabewerte bei der Prädiktion nur in die Funktion mit bekannter Struktur eingefügt und ausgerechnet werden. Man kann sich also merken: Beim parametrischen Lernen stehen die Parameter vorher fest, beim Training werden nur die “richtigen” Werte für die Parameter gefunden.

Schlussendlich kann generell gesagt werden, dass parametrische Funktionen weniger Datenpunkte als nicht-parametrische Lernverfahren benötigen und bei weniger Daten bessere Ergebnisse liefern. Bei sehr großen Datenmengen werden parametrische Funktionen eher schlechter gegenüber nicht-parametrischen Verfahren und neigen etwas zur Unteranpassung.

Zu den parametrischen Lernverfahren gehören:

  • Lineare und nicht-lineare Regression
  • Lineare Diskriminazanalyse
  • Logistische Regression
  • Naive Bayes Klassifikation
  • einfache künstliche neuronale Netze (z. B. MLP)
  • lineare Support Vector Machines (SVM)

Nicht-parametrisierte Lernverfahren (nonparametric learning)

Spricht man vom nicht-parametrisierten Lernen, ist die Verwirrung eigentlich vorprogrammiert, denn es bedeutet keinesfalls, dass es keine Parameter gibt, ganz im Gegenteil! Nicht-parametrische Verfahren arbeiten in aller Regel mit sehr viel mehr Parametern als die parametrischen Verfahren. Und nicht-parametrische Verfahren sind häufig dann im Einsatz, wenn die Anzahl an Daten und Dimensionen sehr groß ist und wenn nicht klar ist, welche Dimensionen voneinander unabhängig sind, aber in Abhängigkeit mit dem Klassifikations-/Regressionsergebnis stehen.

Auch nicht-parametrische Lernverfahren entwickeln eine Funktion, die den Zusammenhang zwischen dem Input und dem Output beschreibt. Jedoch wird die Struktur der Funktion vor dem Training nicht konkret über eine bestimmte Anzahl an Parametern festgelegt. Die Anzahl an Parametern wird erst zur Laufzeit des Trainings bestimmt und hier könnte jede neue Zeile in der Tabelle der Trainingsdaten einen neuen Parameter bedeuten (also beispielsweise dazu führen, dass ein neuer Ast eines Entscheidungsbaumes entsteht – oder auch nicht!).

Die Modellstruktur wird nicht über eine Funktion mit festen Parametern festgelegt, sondern bei jeder Prädiktion aus den Daten ermittelt. Tendenziell neigen nicht-parametrisierte Verfahren etwas mehr zur Überanpassung als parametrisierte Verfahren.

Zu den nicht-parametrisierten Lernverfahren gehören:

  • k-nächste Nachbarn Klassifikation/Regression
  • Entscheidungsbaum Klassifikation/Regression
  • Nicht-lineare Support Vector Machines (RBF Kernel SVM)

Kleiner Abgleich des Verständnisses

Der Unterschied zwischen parametrisierten und nicht-parametrisierten Verfahren wird so häufig falsch verstanden, dass es sich lohnt, etwas Zeit in eine kleine Wiederholung zu investieren, jedoch aus der FAQ-Perspektive:

Warum ist die Regressionsanalyse ein parametrisiertes Lernverfahren?

Bei der klassischen Regressionsrechnung müssen wir noch vor dem Training festlegen, über welche Funktion wir trainieren wollen. Eine lineare Funktion wie y = x * a + b? Oder doch lieber eine nicht-lineare Funktion wie y = x² * a + x * b + c? Die Struktur der Funktion, mit der wir die Punktwolke beschreiben möchten und mit der wir dann im Nachgang Prädiktionen auf Basis von neuer x-Werte berechnen möchten, muss vor dem Training bestimmt werden.

Warum ist die k-nächste-Nachbarn-Bestimmung ein nicht-parametrisiertes Lernverfahren?

Hierbei handelt es sich um ein Lernen durch Ähnlichkeitsanalyse. Es werden gelabelte Datenpunkte gesammelt und erst bei der Prädiktion wird die multidimensionale Ähnlichkeit des neuen Datenpunktes mit den bekannten Datenpunkten bestimmt (Matrizen-Bildung über Distanzen zwischen den Datenpunkten im multidimensionalen Vektorraum). Das Modell lässt sich vorher nicht mal adäquat bestimmen.

Das Modell liegt sozusagen in den Daten. Der k-nächste-Nachbarn-Algorithmus (k-nN) zählt deshalb übrigens nicht nur zum nicht-parametrisierten Lernen, sondern ist darüber hinaus auch noch ein instanzbasiertes Lernen (Lazy Learning).

Warum sind Entscheidungsbäume nicht-parametrisierte Lernverfahren?

Entscheidungsbäume entwerfen Funktionen, die eine auf das Ergebnis bezogene Datenverteilung beschreiben. Jedoch wird vor der Entstehung dieses Modells (also vor dem Training) nicht die Anzahl der Parameter vorgegeben. Zwar ist es üblich, eine maximale Tiefe des Baumes vorzugeben (auch um Überanpassung zu vermeiden),  das Modell (die Struktur des Baumes) hängt jedoch von den Daten ab.

Warum ist Naive Bayes Klassifikation ein parametrisiertes Lernverfahren?

Naive Bayes Klassifikation gilt grundsätzlich als ein parametrisches Lernverfahren. Der Klassifikator errechnet eine Wahrscheinlichkeit, einer bestimmten Klasse zugehörig zu sein, über ein Produkt aus Wahrscheinlichkeiten des Auftretens voneinander (naive) unabhängiger Eingaben (x1, x2,… xn), in der Regel als multinominales Vokabular. Jede Eingabe (eindeutiges Element aus dem Vokabular) ist im Grunde eine Dimension und stellt einen Parameter dar, der im Vorfeld bekannt sein muss.

Es gibt allerdings auch Abwandlungen des Naive Bayes Klassifikators, bei denen mit Dichteschätzungen (1D Kernel Dichteschätzung) gerechnet wird, dann haben wir es wiederum mit Parametern zutun, die erst während der Trainingsphase entstehen.

Warum können Support Vector Machines sowohl parametrisierte als auch nicht-parametrisierte Lernverfahren darstellen?

Bei der linearen SVM werden die Werte der Parameter einer linearen Funktion (= feste Anzahl an Parametern) berechnet, die zwei Klassen linear trennt. Bei der nicht-linearen Klassentrennung funktioniert das leider nicht so einfach und es müssen kompliziertere Verfahren verwendet werden. Die bekannteste ist die Radial Basis Function Kernel-basierte SVM. Bei dieser RBF Kernel SVM wird eine Matrix über berechnete Distanzen zwischen den Datenpunkten erstellt und als Parameter verwendet. Da diese Parameter-Anzahl von den Daten abhängt, haben wir es mit einer nicht-parametrisierten Methode zutun (ähnlich wie beim k-nN).

Maschinelles Lernen: Klassifikation vs Regression

Das ist Artikel 2 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning? Die Unterscheidung zwischen Klassifikation und Regression ist ein wichtiger Schritt für das Verständnis von Predictive Analytics. Nun möchte ich eine Erklärung liefern, die den Unterschied (hoffentlich) deutlich macht.

Regression – Die Vorhersage von stetigen Werten

Wir suchen bei der Regression demnach eine Funktion y = \beta \cdot x + \alpha, die unsere Punktwolke – mit der wir uns zutrauen, Vorhersagen über die abhängige Variable vornehmen zu können – möglichst gut beschreibt. Dabei ist y der Zielwert (abhängige Variable) und x der Eingabewert. Wir arbeiten also in einer zwei-dimensionalen Welt. Variablen, die die Funktion mathematisch definieren, werden oft als griechische Buchstaben darsgestellt. Die Variable \alpha (Alpha) ist der y-Achsenschnitt bei x = 0. Dieser wird als Bias, selten auch als Default-Wert, bezeichnet. Der Bias ist also der Wert, wenn die x-Eingabe gleich Null ist. Eine weitere Variable \beta (Beta) beschreibt die Steigung.

Ferner ist zu beachten, dass sich eine Punktwolke durch eine Gerade nie perfekt beschreiben lässt, und daher für jedes x_{i} ein Fehler \varepsilon_{i} existiert. Diesen Fehler wollen wir in diesem Artikel ignorieren.

In einem zwei-dimensionalen System (eine Eingabe und eine Ausgabe) sprechen wir von einer einfachen Regression. Generalisieren wir die Regressionsmethode auf ein multivariates System (mehr als eine Eingabe-Variable), werden die Variablen in der Regel nicht mehr als griechische Buchstaben (denn auch das griechische Alphabet ist endlich) dargestellt, sondern wir nehmen eines abstrahierende Darstellung über Gewichtungen (weights). Dies ist eine sehr treffende Symbolisierungen, denn sowohl der Bias (w_{0} statt \alpha) als auch die Steigungen (w_{1\ldots n}) sind nichts anderes als Gewichtungen zwischen den Eingaben.

    \[y = w_{0} \cdot x_{0} + w_{1} \cdot x_{1} + \ldots + w_{n} \cdot x_{n}\]

y ist eine Summe aus den jeweiligen Produkten aus x_{i} und w_{i}. Verkürzt ausgedrückt:

    \[y = \sum_{i=0}^n w_{i} \cdot x_{i}\]

Noch kürzer ausgedrückt:

    \[y = w^T \cdot x\]

Anmerkung: Das hochgestellte T steht für Transponieren, eine Notation aus der linearen Algebra, die im Ergebnis nichts anderes bewirkt als y = \sum_{i=0}^n w_{i} \cdot x_{i}.

Diese mathematische lineare Funktion kann wie folgt abgebildet werden:

Der Output ist gleich y bzw. die Ausgabe der Nettoeingabe (Net Sum) w^T \cdot x. Auf der linken Seite finden wir alle Eingabewerte, wobei der erste Wert statisch mit 1.0 belegt ist, nur für den Zweck, den Bias (w_{0}) in der Nettoeingabe aufrecht zu erhalten. Im Falle einer einfachen linearen Regression hätten wir also eine Funktion mit zwei Gewichten: y = 1 \cdot w_{0} + x \cdot w_{1}

Das Modell beschreibt, wie aus einer Reihe von Eingabewerten (n = Anzahl an x-Dimensionen) und einer Reihe von Gewichtungen (n + 1) eine Funktion entsteht, die einen y-Wert berechnet. Diese Berechnung wird auch als Forward-Propagation bezeichnet.
Doch welche Werte brauchen wir für die Gewichtungen, damit bei gegebenen x-Werten ein (mehr oder weniger) korrekter y-Wert berechnet wird? Anders gefragt, wie schaffen wir es, dass die Forward-Propagation die richtigen Werte ausspuckt?

Mit einem Training via Backpropagation!


Einfache Erklärung der Backpropagation

Die Backpropagation ist ein Optimierungsverfahren, unter Einsatz der Gradientenmethode, den Fehler einer Forward-Propagation zu berechnen und die Gewichtungen in Gegenrichtung des Fehlers anzupassen. Optimiert wird in der Form, dass der Fehler minimiert wird. Es ist ein iteratives Verfahren, bei dem mit jedem Iterationsschritt wieder eine Forward-Propagation auf Basis von Trainingsdaten durchgeführt wird und die Prädiktionsergebnisse mit den vorgegebenen Ergebnissen (der gekennzeichneten Trainingsdaten) verglichen und damit die Fehler berechnet werden. Die resultierende Fehlerfunktion ist konvex, ableitbar und hat ein zentrales globales Minimum. Dieses Minimum finden wir durch diese iterative Vorgehensweise.


Die Backpropagation zu erklären, erfordert einen separaten Artikel. Merken wir uns einfach: Die Backpropagation nutzt eine Fehlerfunktion, um die Werte der Gewichtungen schrittweise entgegen des Fehlers (bei jeder Forward-Propagation) bis zu einem Punkt anzupassen, bis keine wesentliche Verbesserung (Reduzierung des Fehlers) mehr eintritt. Nach dem Vollzug der Backpropagation erhalten wir die “richtigen” Gewichtungen und haben eine Funktion zur Vorhersage von y-Werten bei Eingabe neuer x-Werte.

Klassifikation – Die Vorhersage von Gruppenzugehörigkeiten

Bei der Klassifikation möchten wir jedoch keine Gerade oder Kurve vorhersagen, die sich durch eine Punktwolke legt, sondern wie möchten Punktwolken voneinander als Klassen unterscheiden, um später hinzukommende Punkte ihren richtigen Klassen zuweisen zu können (Klassifikation). Wir können jedoch auf dem vorherigen Modell der Prädiktion von stetigen Werten aufbauen und auch die Backpropagation zum Training einsetzen, möchten das Training dann jedoch auf die Trennung der Punktwolken ausrichten.

Hinweis: Regressions- und Klassifikationsherausforderungen werden in den Dimensionen unterschiedlich dargestellt. Zur Veranschaulichung: Während wir bei der einfachen Regression eine x-Eingabe als unabhängige Variable und eine y-Ausgabe als abhängige Variable haben, haben wir bei einer zwei-dimensionalen Klassifikation zwei x-Dimensionen als Eingabe. Die Klassen sind die y-Ausgabe (hier als Farben visualisiert).

Ergänzen wir das Modell nun um eine Aktivierungsfunktion, dass die stetigen Werte der Nettosumme über eine Funktion in Klassen unterteilt, erhalten wir einen Klassifikator: Den Perceptron-Klassifikator. Das Perzeptron gilt als der einfachste Klassifikator und ist bereits die kleinste Form eines künstlichen neuronalen Netzes. Es funktioniert nur bei linearer Trennbarkeit der Klassen.

Was soll die Aktivierungsfunktion bewirken? Wir berechnen wieder eine Nettoeingabe w^T \cdot x, die uns stetige Werte ausgiebt. Wir haben also immer noch unsere Gewichtungen, die wir trainieren können. Nun trainieren wir nur nicht auf eine “korrekte” stetige Ausgabe der Nettoeingabe hin, sondern auf eine korrekte Ausgabe der Aktivierungsfunktion \phi (Phi), die uns die stetigen Werte der Nettoeingabe in einen binären Wert (z. B. 0 oder 1) umwandelt. Das Perzeptron ist die kleinste Form des künstlichen neuronalen Netzes und funktioniert wie der lineare Regressor, jedoch ergänzt um eine Aktivierungsfunktion die bewirken soll, dass ein Neuron (hier: der einzelne Output) “feuert” oder nicht “feuert”.  Es ist ein binärer Klassifikator, der beispielsweise die Wertebereiche -1 oder +1 annehmen kann.

Das Perceptron verwendet die einfachste Form der Aktivierungsfunktion: Eine Sprungfunktion, die einer einfachen if… else… Anweisung gleich kommt.

    \[ y = \phi(w^T \cdot x) = \left\{ \begin{array}{12} 1  &  w^T \cdot x > 0\\ -1 & \text{otherwise} \end{array} \]

Fazit – Unterschied zwischen Klassifikation und Regression

Mathematisch müssen sich Regression und Klassifikation gar nicht all zu sehr voneinander unterscheiden. Viele Verfahren der Klassifikation lassen sich mit nur wenig Anpassung auch zur Regression anwenden, oder umgekehrt. Künstliche neuronale Netze, k-nächste-Nachbarn und Entscheidungsbäume sind gute Beispiele, die in der Praxis sowohl für Klassifkation als auch für Regression eingesetzt werden, natürlich mit unterschiedlichen Stärken und Schwächen.

Unterschiedlich ist jedoch der Zweck der Anwendung: Bei der Regression möchten wir stetige Werte vorhersagen (z. B. Temperatur der Maschine), bei der Klassifikation hingegen Klassen unterscheiden (z. B. Maschine überhitzt oder überhitzt nicht).

Unterschiede zwischen linearer und nicht-linearer Klassifikation und linearer und nicht-linearer Regression. Für Einsteiger in diese Thematik ist beachten, dass jede maschinell erlernte Klassifikation und Regression einen gewissen Fehler hat, der unter Betrachtung der Trainings- und Testdaten zu minimieren ist, jedoch nie ganz verschwindet.

Und Clustering?

Clustering ist eine Disziplin des unüberwachten Lernens, um Gruppen von Klassen bzw. Grenzen dieser Klassen innerhalb von unbekannten Daten zu finden. Es ist im Prinzip eine untrainierte Klassifikation zum Zwecke des Data Minings. Clustering gehört auch zum maschinellen Lernen, ist aber kein Predictive Analytics. Da keine – mit dem gewünschten Ergebnis vorliegende – Trainingsdaten vorliegen, kann auch kein Training über eine Backpropagation erfolgen. Clustering ist folglich eine schwache Klassifikation, die mit den trainingsbasierten Klassifikationsverfahren nicht funktioniert.