Tag Archive for: Data Science

Interview – Berufsbegleitender Zertifikatskurs “Data Science”

Interview mit Dr. Peter Lauf, dem wissenschaftlichen Leiter des berufsbegleitenden Zertifikatskurses „Data Science“  der Technischen Hochschule Brandenburg, über die Erfahrungen aus bisher drei erfolgreichen Zertifikatskursen.

Dr. Peter Lauf studierte im Anschluss an eine kaufmännische Ausbildung Volkswirtschaft. Sein Diplom und die Promotion machte er an der Uni Köln. Heute ist er vor allem als Datenanalytiker, Marketing Manager, Management Consultant, Leiter Database und Manager Big Data tätig. Er verfügt über mehr als 20 Jahre Erfahrung mit SPSS, ist zertifizierter SAS‑Programmierer und nutzt die Programmiersprache R seit 2004. Neben seinen Tätigkeiten als Consultant für Daten, steht er in Lehraufträgne an verschiedenen Hochschulen. 

Data Science Blog: Vor welchem Hintergrund haben Sie das Curriculum für die Weiterbildung zum Data Scientist entwickelt?

Maßgeblich waren hier zunächst eigene, über Jahrzehnte hinweg gesammelte Erfahrungen. Ich arbeitete unter anderem als Sozialforscher, Datenbankmanager, Management Consultant und Manager Big Data in den unterschiedlichsten Branchen mit den unterschiedlichsten Technologien. Weil ich bis heute parallel an verschiedenen Hochschulen tätig bin, besitze ich auch einen guten Überblick über aktuelle Webseiten, Blogs und Publikationen.

Data Science Blog: Wie setzen sie diese Erfahrungen und dieses Wissen konkret um?
Durch konsequenten Praxisbezug. Ein Beispiel: In der Praxis besitzt Excel für die Datenvorbereitung eine überragende Rolle. Da werden dann Inputdateien in verformelten Arbeitsblättern vielfach hin und her kopiert. Derartige Lösungen bedingen einen hohen manuellen Aufwand, sind praktisch nicht dokumentierbar und führen zu einer hohen Abhängigkeit von einzelnen Mitarbeitern. Weil ich selbst an der Ablösung solcher Systeme durch ETL-Lösungen mitgearbeitet habe, kann ich den Übergang von der einen zur anderen Lösung und die damit verbundenen Vorteile praxisnah und überzeugend darstellen.

Data Science Blog: Wie kommunizieren Sie mit den Teilnehmern?
Auf durchaus vielfältige Weise. In den Präsenzen spielt das direkte Gespräch eine große Rolle und zwar sowohl in den Unterrichtseinheiten, wie auch im Off, den Kaffeepausen zum Beispiel. Ein offenes Ohr bildet eine Grundvoraussetzung für einen guten Kurs. In den Web-Konferenzen werden ebenfalls Fragen gestellt und beantwortet. Mit Moodle verfügen wir auch über eine leistungsfähige und gern genutzte Lern- und Kommunikationsplattform. Schließlich unterstützen wir aktiv die Bildung einer Community unter den Teilnehmern. Es ist erstaunlich, wieviel Teilnehmer (und Dozenten!) aus diesem Austausch lernen können.

Data Science Blog: Lassen Sie uns hier einhaken, was lernen Sie von den Teilnehmern?

Bisher streut der Kurs ganz erheblich bezüglich Branchen, Alter, Vorerfahrungen, Job-Titles und anderer Kriterien. Diese Diversität konfrontiert uns immer wieder mit neuen Anwendungsfällen, die wir gerne aufgreifen und für die wir Lösungen zur Diskussion stellen. Es ist wie in der Medizin: ein breites Fallspektrum steigert die Qualität.

Data Science Blog: Welche Pläne haben Sie für die Zukunft?

Die dynamische Weiterentwicklung unserer Inhalte. Wir betreiben einen hohen Aufwand um á jour zu bleiben. Die Aktivitäten international führender Data Scientists werden aufmerksam verfolgt und wir werten z. B. Verlagsprogramme und Konferenzen aus. Soweit neue Entwicklungen bereits in Software umgesetzt wurden und für uns interessant sind, testen wir diese Lösungen und integrieren sie in unsere Lernprogramme. Abgesehen von der reinen Datenseite sehen wir einen zukünftigen Schwerpunkt in der Berücksichtigung der Kognitionswissenschaft mit dem Ziel, die Urteilskraft unserer Teilnehmer weiter zu stärken.

Dr. Peter Lauf ist wissenschaftlicher Leiter des berufsbegleitenden Zertifikatskurses „Data Science“, der von der Agentur für wissenschaftliche Weiterbildung und Wissenstransfer (AWW e. V.) an der Technischen Hochschule Brandenburg angeboten wird. Die Module sind als eigene Einheiten konzipiert, so dass ein Einsteigen in den Kurs mit jedem Modul möglich ist. Weitere Hinweise zu diesem Fortbildungsangebot finden sich direkt auf www.aww-brandenburg.de.

Data Science mit dem iPad Pro (und der Cloud)

Seit einiger Zeit versuche ich mein iPad Pro stärker in meinen Arbeitsaltag zu integrieren. Ähnlich wie Joseph (iPad Pro 10.5 as my Main Computer – Part 1, Part 2 und Part 3) sprechen auch für mich seit der Einführung des iPad Pro 9,7″, das nochmal verbesserte Display, die größeren Speicheroptionen, das faltbaren Smart Keyboard (funktioniert über einen seitlichen Konnektor und nicht über eine störanfällige BlueTooth-Verbindung) und der Apple Pencil dafür, dieses Gerät statt eines Notebooks zu nutzen.

Abbildung 1: Mein Homescreen

Neben der besseren Mobilität ist hier vor allen Dingen iOS 11 und das kommende iOS 12 zu nennen, welches mit einem verbesserte Dateisystem (transparente Einbindung von iCloud, DropBox, Google Drive etc.) und die Möglichkeit zwei Apps nebeneinander im Splitscreen auszuführen.

 

Apropos Apps: Diese sind ein weiteres Argument für mich, dieses Setup zu testen ist die unverändert gute bis sehr gute Qualität der verfügbaren iOS-Apps zu nutzen. Vorbei sind zum Glück die Zeiten, in der man keine eigenen Schriftarten (nach-) installieren kann (ich nutze dafür AnyFont), keine Kommendozeilenwerkzeug existieren (ich nutze StaSh), kein SSH-Tunneling (hier nutze ich SSH Tunnel von Yuri Bushev) funktioniert und sich GitHub/GitLab nicht nutzen lässt (hier nutze ich WorkingCopy). Ganze Arbeitsabläufe lassen sich darüber hinaus mit Hilfe von Workflow (und in iOS 12 mit Siri Shortcuts) automatisieren. Zum schreiben nutze ich verschiede Anwendungen, je nach Anwendungsfall. Für einfache (Markdown-) Texte nutze ich iA Writer und Editorial. Ulysses nutze ich nicht, da ich in dem Bereich Abomodelle nicht umbedingt bevorzuge, wenn es sich nicht vermeiden lässt.

Software Entwicklung

Die Entwicklung von Software nativ auf dem iPad Pro funktioniert am besten mit Pythonista. Für alles andere benötigt man entsprechende Server auf denen sich der benötigte Tool-Stack befindet, welchen man benötigt. Hier nutze ich am liebsten Linux-Systeme (CentOS oder Ubuntu) da diese sehr nah an Systemen sind, welche ich für Produktivsysteme nutze.
Mit der Nutzung von Cloud-Infrastrukturen wie sie einem zum Beispiel Amazon Web Service bietet, lassen sich sehr schnell und vor allen Dingen on-demand, Systeme starten. Schnell merkt man, dass sich dieser Vorgang stark automatisieren lässt, möchte man nicht ständig mit Hilfe der AWS Console arbeiten. Mit Pythonista und der StaSh lässt sich zu diesem Zweck sehr einfach die boto2-Bibliothek installieren, welche eine direkte Anbindung des AWS SDKs über Python ermöglicht. Damit wiederum lassen sich alle AWS-Dienste als Infrastructure-as-Code nutzen.
Mit boto3 lassen sich nicht nur EC2-Instanzen starten oder der Inhalt von S3-Buckets bearbeiten. Es können auch die verschiedenen Amazon-Dienste zum Beispiel aus dem Bereich Maschine Learning genutzt werden. Damit lassen sich dann leicht Objekte in Bildern erkennen oder der Inhalt von Texten analysieren.

Mosh und Blink

Möchte man effizient auf EC2-Instanzen arbeiten so lohnt ein Blick auf die UDP-basierte Mosh. Im Gegensatz zu normalen SSH-Verbindungen über TCP/IP, puffert Mosh Verbindungsabbrüche. So lassen sich Verbindungen auch nach mehreren Tagen noch ohne Probleme weiter nutzen. Genau wie SSH benötigt Mosh auch eine entsprechende Server-Komponente auf dem Host und ein Terminal, welches Mosh kann. Die Installation ist jedoch auch nicht schwieriger als bei anderer Software. Auf der Seite des iPads nutzte ich sowohl für SSH als auch Mosh die Termial-App Blink.

Mehrere Terminals

Wenn ich früher meinen Mac genutzt habe, dann hatte ich in der Regel mehr als eine (SSH-) Verbindung zum Zielsystem offen. Grund hierfür war, dass ich gern mehrere Dienste auf einem Server-Systems gleichzeitig im Auge behalten wollte. Ein oder zwei Fenster für die Ansicht von Logdateien mit ‘tail’, ein Fenster für meinen Lieblingseditor ‘vim’ und ein Fenster für die Arbeit auf der Kommandozeile. Seit dem ich das auf dem iPad mache, habe ich den Terminalmultiplexer tmux schätzen gelernt. Dieser ermöglicht, wie der Name sagt, die Verwaltung getrennter Sitzungen innerhalb eines Terminals (mehr dazu unter https://robots.thoughtbot.com/a-tmux-crash-course).

Offline Dokumentation

Abbildung 2: Pythonista und Boto3 – Mit dem iPad die AWS kontrollieren

Seitdem es den Amazon Kindle in Deutschland gibt, nutze ich diesen Dienst. Ich hatte mir 2010 den Kindle2 noch aus den USA schicken lassen und dann irgendwann mein Konto auf den deutschen Kindle-Store migriert. Demnach nutze ich seit gut 9 Jahren die Kindle-Apps für meine Fachbücher. Auf dem iPad habe ich so bequem Zugriff auf über hundert IT- und andere Fachbücher. Papers und Cheat-Sheets speichere ich als PDFs in meinem DropBox- oder GoogleDrive-Account. Damit ich auch offline Zugriff auf die wichtigsten Manuelas habe (Python, git, ElasticSearch, Node.js etc.), nutze ich das freie Dash.

Data Science

Für die Entwicklung von MVPs für den Bereich Data Science ist  Spark, und hier vor allen Dingen PySpark in Kombination mit Jupyter Notebook, mein Werkzeug der Wahl. Auf den ersten Blick eine Unmöglichkeit auf dem iPad. Auf den zweiten aber lösbar. In der Regel arbeite ich eh mit Daten, welche zu groß sind um auf einem normalen Personalcomputer in endlicher Zeit effizient verarbeitet werden zu können. Hier arbeite ich mehr und mehr in der Cloud und hier aktuell verstärkt in der von Amazon.

Mein Workflow funktioniert demnach so:

  1. Erstellung des nötigen Python Skripts für die Ausführung einer bestimmten AWS-Umgebung (EMR, SageMaker etc.) mit boto3 in Pythonista auf dem iPad
  2. Ausführen der Umgebung inkl. Kostenkontrolle (Billing-API)
  3. Aufbau eines SSH-Tunnels mit Hilfe eines SSH Tunnel / alternativ mit Mosh
  4. Nutzung von Blink bzw. SSH Pro für die SSH-Verbindung
  5. Nutzung von Juno um eine entfernte Jupyter Notebook / Jupyter Hub Installation nutzen zu können

PySpark im Jupyter Notebook

Abbildung 3: Mit Juno Jupyter Notebook aus auf dem iPad nutzen

Amazons Elastic Map Reduce Dienst bringt bereits eine Jupyter Notebook Installation inkl. Spark/PySpark mit und ermöglicht einen sicheren Zugang über einen verschlüsselten Tunnel. Einziges Problem bei der Nutzung von EMR: Alle Daten müssen in irgend einem System persistiert werden. Dies gilt nicht nur für die eigentlichen Daten sondern auch für die Notebooks. Günstiger Storage lässt sich über S3 einkaufen und mit Hilfe von s3fs-fuse (https://github.com/s3fs-fuse/s3fs-fuse) in das lokale Dateisystem eines EMR Clusters einhängen. Wie man das innerhalb eines geeigneten Bootstrap-Scripts macht habe ich auf GitHub (https://github.com/rawar/emr-ds-tools) dokumentiert. So lassen sich die eigenen EMR-Experimente auch nach dem herunterfahren des Clusters aufbewahren und weiter entwicklen.

Fokussierung im Großraumbüro

Jeder der ab und zu mal in Großraumbüros, in der Bahn oder Flugzeug arbeitet muß, kennt das Problem: Ab und zu möchte man sein Umfeld so gut es geht ausblenden um sich auf die eigene Arbeit voll und ganz zu konzentrieren. Dabei helfen kleine und große Kopfhörer ob mit oder ohne Noice Cancelation. Mit sind die Kabellosen dabei am liebsten und ich nutze lieber In-Ears als Over-Ears wegen der Wärmeentwicklung. Ich mag einfach keine warme Ohren beim Denken. Nach dem das geklärt ist wäre die nächste Frage: Musik oder Geräusche. Ab und zu kann ich Musik beim Arbeiten ertragen wenn sie

1. ohne Gesang und
2. dezent rhythmisch ist.

Zum Arbeiten höre ich dann gern Tosca, Milch Bar, oder Thievery Corporation. Schreiben kann ich unter Geräuscheinwirkung aber besser. Hier nutze ich Noisly mit ein paar eignen Presets für Wald-, Wind- und Wassergeräusche.

Fazit

Das iPad Pro als Terminal des 21. Jahrhunderts bietet dank hervorragender Apps und der Möglichkeit zumindest Python nativ auszuführen, eine gute Ausgangsbasis für das mobile Arbeiten im Bereich Data Science. Hier muss man sich nur daran gewöhnen, dass man seinen Code nicht lokal ausführen kann, sondern dazu immer eine entsprechende Umgebung auf einem Server benötigt. Hier muß es nicht zwingend ein Server in der Cloud sein. Ein alter Rechner mit Linux und den nötigen Tools im Keller tut es auch. Für welches Modell man sich auch entscheidet, man sollte sehr früh Anfangen das Aufsetzten der entsprechenden Server-Umgebungen zu automatisieren (Infrastructure-as-Code). Auch hier bietet sich Pythonista (in Kombination mit Workflow) an. Was bei der täglichen Arbeit auf dem iPad manchmal stört ist, dass nicht alle Aktionen mit der Tastatur ausgeführt werden können und es hier immer noch zu einem haptischen Bruch kommt, wenn man einige Dingen nur über das Touch-Display macht und einige ausschließlich über die Tastatur. Manchmal würde ich mir auch ein größeres Display wünschen oder die Möglichkeit den Winkel des iPads auf der Tastatur ändern zu können. Diese Nachteile würde ich allerdings nicht gegen die Mobilität (Gewicht + Akkulaufzeit) eintauschen wollen.

Interview – Die Bedeutung von Machine Learning für das Data Driven Business

Um das Optimum aus ihren Daten zu holen, müssen Unternehmen Data Analytics vorantreiben, um Entscheidungsprozesse für Innovation und Differenzierung stärker zu automatisieren. Die Data Science scheint hier der richtige Ansatz zu sein, ist aber ein neues und schnelllebiges Feld, das viele Sackgassen kennt. Cloudera Fast Forward Labs unterstützt Unternehmen dabei sich umzustrukturieren, Prozesse zu automatisieren und somit neue Innovationen zu schaffen.

Alice Albrecht ist Research Engineer bei Cloudera Fast Forward Labs. Dort widmet sie sich der Weiterentwicklung von Machine Learning und Künstlicher Intelligenz. Die Ergebnisse ihrer Forschungen nutzt sie, um ihren Kunden konkrete Ratschläge und funktionierende Prototypen anzubieten. Bevor sie zu Fast Forward Labs kam, arbeitete sie in Finanz- und Technologieunternehmen als Data Science Expertin und Produkt Managerin. Alice Albrecht konzentriert sich nicht nur darauf, Maschinen “coole Dinge” beizubringen, sondern setzt sich auch als Mentorin für andere Wissenschaftler ein. Während ihrer Promotion der kognitiven Neurowissenschaften in Yale untersuchte Alice, wie Menschen sensorische Informationen aus ihrer Umwelt verarbeiten und zusammenfassen.

english-flagRead this article in English:
“Interview – The Importance of Machine Learning for the Data Driven Business”


Data Science Blog: Frau Albrecht, Sie sind eine bekannte Keynote-Referentin für Data Science und Künstliche Intelligenz. Während Data Science bereits im Alltag vieler Unternehmen angekommen ist, scheint Deep Learning der neueste Trend zu sein. Ist Künstliche Intelligenz für Unternehmen schon normal oder ein überbewerteter Hype?

Ich würde sagen, nichts von beidem stimmt. Data Science ist inzwischen zwar weit verbreitet, aber die Unternehmen haben immer noch Schwierigkeiten, diese neue Disziplin in ihr bestehendes Geschäft zu integrieren. Ich denke nicht, dass Deep Learning mittlerweile Teil des Business as usual ist – und das sollte es auch nicht sein. Wie jedes andere Tool, braucht auch die Integration von Deep Learning Modellen in die Strukturen eines Unternehmens eine klar definierte Vorgehensweise. Alles andere führt ins Chaos.

Data Science Blog: Nur um sicherzugehen, worüber wir reden: Was sind die Unterschiede und Überschneidungen zwischen Data Analytics, Data Science, Machine Learning, Deep Learning und Künstlicher Intelligenz?

Hier bei Cloudera Fast Forward Labs verstehen wir unter Data Analytics das Sammeln und Addieren von Daten – meist für schnelle Diagramme und Berichte. Data Science hingegen löst Geschäftsprobleme, indem sie sie analysiert, Prozesse mit den gesammelten Daten abgleicht und anschließend entsprechende Vorgänge prognostiziert. Beim Machine Learning geht es darum, Probleme mit neuartigen Feedbackschleifen zu lösen, die sich mit der Anzahl der zur Verfügung stehenden Daten noch detaillierter bearbeiten lassen. Deep Learning ist eine besondere Form des Machine Learnings und ist selbst kein eigenständiges Konzept oder Tool. Künstliche Intelligenz zapft etwas Komplizierteres an, als das, was wir heute sehen. Hier geht es um weit mehr als nur darum, Maschinen darauf zu trainieren, immer wieder dasselbe zu tun oder begrenzte Probleme zu lösen.

Data Science Blog: Und wie können wir hier den Kontext zu Big Data herstellen?

Theoretisch gesehen gibt es Data Science ja bereits seit Jahrzehnten. Die Bausteine für modernes Machine Learning, Deep Learning und Künstliche Intelligenz basieren auf mathematischen Theoremen, die bis in die 40er und 50er Jahre zurückreichen. Die Herausforderung bestand damals darin, dass Rechenleistung und Datenspeicherkapazität einfach zu teuer für die zu implementierenden Ansätze waren. Heute ist das anders. Nicht nur die Kosten für die Datenspeicherung sind erheblich gesunken, auch Open-Source-Technologien wie etwa Apache Hadoop haben es möglich gemacht, jedes Datenvolumen zu geringen Kosten zu speichern. Rechenleistung, Cloud-Lösungen und auch hoch spezialisierte Chip-Architekturen, sind jetzt auch auf Anfrage für einen bestimmten Zeitraum verfügbar. Die geringeren Kosten für Datenspeicherung und Rechenleistung sowie eine wachsende Liste von Tools und Ressourcen, die über die Open-Source-Community verfügbar sind, ermöglichen es Unternehmen jeder Größe, von sämtlichen Daten zu profitieren.

Data Science Blog: Was sind die Herausforderungen beim Einstieg in Data Science?

Ich sehe zwei große Herausforderungen: Eine davon ist die Sicherstellung der organisatorischen Ausrichtung auf Ergebnisse, die die Data Scientists liefern werden (und das Timing für diese Projekte).  Die zweite Hürde besteht darin, sicherzustellen, dass sie über die richtigen Daten verfügen, bevor sie mit dem Einstellen von Data Science Experten beginnen. Das kann “tricky” sein, wenn man im Unternehmen nicht bereits über Know-how in diesem Segment verfügt. Daher ist es manchmal besser, im ersten Schritt einen Data Engineer oder Data Strategist einzustellen, bevor man mit dem Aufbau eines Data Science Team beginnt.

Data Science Blog: Es gibt viele Diskussionen darüber, wie man ein datengesteuertes Unternehmen aufbauen kann. Geht es bei Data Science nur darum, am Ende das Kundenverhalten besser zu verstehen?

Nein “Data Driven” bedeutet nicht nur, die Kunden besser zu verstehen – obwohl das eine Möglichkeit ist, wie Data Science einem Unternehmen helfen kann. Abgesehen vom Aufbau einer Organisation, die sich auf Daten und Analysen stützt, um Entscheidungen über das Kundenverhalten oder andere Aspekte zu treffen, bedeutet es, dass Daten das Unternehmen und seine Produkte voranbringen.

Data Science Blog: Die Zahl der Technologien, Tools und Frameworks nimmt zu, was zu mehr Komplexität führt. Müssen Unternehmen immer auf dem Laufenden bleiben oder könnte es ebenso hilfreich sein, zu warten und Pioniere zu imitieren?

Obwohl es generell für Unternehmen nicht ratsam ist, pauschal jede neue Entwicklung zu übernehmen, ist es wichtig, dass sie mit den neuen Rahmenbedingungen Schritt halten. Wenn ein Unternehmen wartet, um zu sehen, was andere tun, und deshalb nicht in neue Entwicklungen investiert, haben sie den Anschluss meist schon verpasst.

Data Science Blog: Global Player verfügen meist über ein großes Budget für Forschung und den Aufbau von Data Labs. Mittelständische Unternehmen stehen immer unter dem Druck, den Break-Even schnell zu erreichen. Wie können wir die Wertschöpfung von Data Science beschleunigen?

Ein Team zu haben, das sich auf ein bestimmtes Set von Projekten konzentriert, die gut durchdacht und auf das Geschäft ausgerichtet sind, macht den Unterschied aus. Data Science und Machine Learning müssen nicht auf Forschung und Innovation verzichten, um Werte zu schaffen. Der größte Unterschied besteht darin, dass sich kleinere Teams stärker bewusst sein müssen, wie sich ihre Projektwahl in neue Rahmenbedingungen und ihre besonderen akuten und kurzfristigen Geschäftsanforderungen einfügt.

Data Science Blog: Wie hilft Cloudera Fast Forward Labs anderen Unternehmen, den Einstieg in Machine Learning zu beschleunigen?

Wir beraten Unternehmen, basierend auf ihren speziellen Bedürfnissen, über die neuesten Trends im Bereich Machine Learning und Data Science. Und wir zeigen ihnen, wie sie ihre Datenteams aufbauen und strukturieren können, um genau die Fähigkeiten zu entwickeln, die sie benötigen, um ihre Ziele zu erreichen.

Data Science Blog: Zum Schluss noch eine Frage an unsere jüngeren Leser, die eine Karriere als Datenexperte anstreben: Was macht einen guten Data Scientist aus? Arbeiten sie lieber mit introvertierten Coding-Nerds oder den Data-loving Business-Experten?

Ein guter Data Scientist sollte sehr neugierig sein und eine Liebe für die Art und Weise haben, wie Daten zu neuen Entdeckungen und Innovationen führen und die nächste Generation von Produkten antreiben können.  Menschen, die im Data Science Umfeld erfolgreich sind, kommen nicht nur aus der IT. Sie können aus allen möglichen Bereichen kommen und über die unterschiedlichsten Backgrounds verfügen.

R oder Python – Die Sprache der Wahl in einem Data Science Weiterbildungskurs

Die KDnuggets, ein einflussreicher Newletter zu Data Mining und inzwischen auch zu Data Science, überraschte kürzlich mit der Meldung „Python eats away at R: Top Software for Analytics, Data Science, Machine Learning in 2018. Trends and Analysis“.[1] Grundlage war eine Befragung, an der mehr als 2300 KDNuggets Leser teilnahmen. Nach Bereinigung um die sogenannten „Lone Voters“, gingen insgesamt 2052 Stimmen in die Auswertung ein.

Demnach stieg der Anteil der Python-Nutzer von 2017 bis 2018 um 11% auf 65%, während mit 48% weniger als die Hälfte der Befragungsteilnehmer noch R nannten. Gegenüber 2017 ging der Anteil von R um 14% zurück. Dies ist umso bemerkenswerter, als dass bei keinem der übrigen Top Tools eine Verminderung des Anteils gemessen wurde.

Wir verzichten an dieser Stelle darauf, die Befragungsergebnisse selbst in Frage zu stellen oder andere Daten herbeizuziehen. Stattdessen nehmen wir erst einmal die Zahlen wie sie sind und konzedieren einen gewissen Python Hype. Das Python Konjunktur hat, zeigt sich z.B. in der wachsenden Zahl von Buchtiteln zu Python und Data Science oder in einem Machine Learning Tutorial der Zeitschrift iX, das ebenfalls auf Python fußt. Damit stellt sich die Frage, ob ein Weiterbildungskurs zu Data Science noch guten Gewissens auf R als Erstsprache setzen kann.

Der Beantwortung dieser Frage seien zwei Bemerkungen vorangestellt:

  1. Ob die eine Sprache „besser“ als die andere ist, lässt sich nicht abschließend beantworten. Mit Blick auf die Teilarbeitsgebiete des Data Scientists, also Datenzugriff, Datenmanipulation und Transformation, statistische Analysen und visuelle Aufbereitung zeigt sich jedenfalls keine prinzipielle Überlegenheit der einen über die andere Sprache.
  2. Beide Sprachen sind quicklebendig und werden bei insgesamt steigenden Nutzerzahlen dynamisch weiterentwickelt.

Das Beispiel der kürzlich gegründeten Ursa Labs[2] zeigt überdies, dass es zukünftig weniger darum gehen wird „Werkzeuge für eine einzelne Sprache zu bauen…“ als darum „…portable Bibliotheken zu entwickeln, die in vielen Programmiersprachen verwendet werden können“[3].

Die zunehmende Anwendung von Python in den Bereichen Data Science und Machine Learning hängt auch damit zusammen, dass Python ursprünglich als Allzweck-Programmiersprache konzipiert wurde. Viele Entwickler und Ingenieure arbeiteten also bereits mit Python ohne dabei mit analytischen Anwendungen in Kontakt zu kommen. Wenn diese Gruppen gegenwärtig mehr und mehr in den Bereichen Datenanalyse, Statistik und Machine Learning aktiv werden, dann greifen sie naturgemäß zu einem bekannten Werkzeug, in diesem Fall zu einer bereits vorhandenen Python Implementation.

Auf der anderen Seite sind Marketingfachleute, Psychologen, Controller und andere Analytiker eher mit SPSS und Excel vertraut. In diesen Fällen kann die Wahl der Data Science Sprache freier erfolgen. Für R spricht dann zunächst einmal seine Kompaktheit. Obwohl inzwischen mehr als 10.000 Erweiterungspakete existieren, gibt es mit www.r-project.org immer noch eine zentrale Anlaufstelle, von der über einen einzigen Link der Download eines monolithischen Basispakets erreichbar ist.

Demgegenüber existieren für Python mit Python 2.7 und Python 3.x zwei nach wie vor aktive Entwicklungszweige. Fällt die Wahl z.B. auf Python 3.x, dann stehen mit Python3 und Ipython3 wiederum verschiedene Interpreter zur Auswahl. Schließlich gibt es noch Python Distributionen wie Anaconda. Anaconda selbst ist in zwei „Geschmacksrichtungen“ (flavors) verfügbar als Miniconda und eben als Anaconda.

R war von Anfang an als statistische Programmiersprache konzipiert. Nach allen subjektiven Erfahrungen eignet es sich allein schon deshalb besser zur Erläuterung statistischer Methoden. Noch vor wenigen Jahren galt R als „schwierig“ und Statistikern vorbehalten. In dem Maße, in dem wissenschaftlich fundierte Software Tools in den Geschäftsalltag vordringen wird klar, dass viele der zunächst als „schwierig“ empfundenen Konzepte letztlich auf Rationalität und Arbeitsersparnis abzielen. Fehler, Bugs und Widersprüche finden sich in R so selbstverständlich wie in allen anderen Programmiersprachen. Bei der raschen Beseitigung dieser Schwächen kann R aber auf eine große und wache Gemeinschaft zurückgreifen.

Die Popularisierung von R erhielt durch die Gründung des R Consortiums zu Beginn des Jahres 2015 einen deutlichen Schub. Zu den Initiatoren dieser Interessengruppe gehörte auch Microsoft. Tatsächlich unterstützt Microsoft R auf vielfältige Weise unter anderem durch eine eigene Distribution unter der Bezeichnung „Microsoft R Open“, die Möglichkeit R Code in SQL Anweisungen des SQL Servers absetzen zu können oder die (angekündigte) Weitergabe von in Power BI erzeugten R Visualisierungen an Excel.

Der Vergleich von R und Python in einem fiktiven Big Data Anwendungsszenario liefert kein Kriterium für die Auswahl der Unterrichtssprache in einem Weiterbildungskurs. Aussagen wie x ist „schneller“, „performanter“ oder „besser“ als y sind nahezu inhaltsleer. In der Praxis werden geschäftskritische Big Data Anwendungen in einem Umfeld mit vielen unterschiedlichen Softwaresystemen abgewickelt und daher von vielen Parametern beeinflusst. Wo es um Höchstleistungen geht, tragen R und Python häufig gemeinsam zum Ergebnis bei.

Der Zertifikatskurs „Data Science“ der AWW e. V. und der Technischen Hochschule Brandenburg war schon bisher nicht auf R beschränkt. Im ersten Modul geben wir z.B. auch eine Einführung in SQL und arbeiten mit ETL-Tools. Im gerade zu Ende gegangenen Kurs wurde Feature Engineering auf der Grundlage eines Python Lehrbuchs[4] behandelt und die Anweisungen in R übersetzt. In den kommenden Durchgängen werden wir dieses parallele Vorgehen verstärken und wann immer sinnvoll auch auf Lösungen in Python hinweisen.

Im Vertiefungsmodul „Machine Learning mit Python“ schließlich ist Python die Sprache der Wahl. Damit tragen wir der Tatsache Rechnung, dass es zwar Sinn macht in die grundlegenden Konzepte mit einer Sprache einzuführen, in der Praxis aber Mehrsprachigkeit anzutreffen ist.

[1] https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html

[2] https://ursalabs.org/

[3] Statement auf der Ursa Labs Startseite, eigene Übersetzung.

[4] Sarkar, D et al. Practical Machine Learning with Python, S. 177ff.

Interview – Die Herausforderungen der Sensor-Datenanalyse für die Automobilindustrie

Interview mit Andreas Festl von VIRTUAL VEHICLE

Andreas Festl ist Data Scientist bei VIRTUAL VEHICLE, ein führendes F&E Zentrum für die Automobil- und Bahnindustrie mit Sitz in Graz, Österreich. Das Zentrum konzentriert sich auf die konsequente Virtualisierung der Fahrzeugentwicklung. Wesentliches Element dabei ist die Verknüpfung von numerischer Simulation und Hardware-Testen, welche ein umfassendes HW-SW Systemdesign sicherstellt. Herr Festl forscht dort an Kontext-basierten Informationssystemen für den Einsatz im Fahrzeug und in der Entwicklung. Er ist ausgebildeter Mathematiker, der sich schon früh dem Thema Data Science verschrieben hat. Zusätzlich ist Herr Festl in der Lehre für Data and Information Science an der Fachhochschule Joanneum tätig.

Data Science Blog: Herr Festl, Sie sind technischer Data Scientist und arbeiten mit Daten, die zum großen Teil von Maschinen generiert werden. Was unterscheidet Ihren Arbeitsalltag vermutlich von den Data Scientists, die sich mit geschäftlichen Daten befassen?

Das wesentliche Merkmal an den Daten, mit denen wir arbeiten, ist die nicht vernachlässigbare zeitliche Komponente. Stellen Sie sich zum Beispiel eine Messung der Fahrzeuggeschwindigkeit vor: Dieses Messsignal kann natürlich nur dann sinnvoll interpretiert und verarbeitet werden, wenn die Zeit mitberücksichtigt wird. Die bloße Kenntnis der einzelnen Geschwindigkeitswerte hilft Ihnen ohne die korrekte Abfolge nicht weiter. Das führt dazu, dass viele Algorithmen aus dem Bereich des maschinellen Lernens nicht direkt auf diesen Daten arbeiten können.

Es existieren hier natürlich dennoch viele Möglichkeiten und Ansätze dafür, Wissen aus den Daten zu gewinnen; diese werden jedoch scheinbar noch nicht so oft verwendet, weshalb die verfügbare Software meist nicht für industrielle, sondern für akademische Nutzer ausgelegt ist. Ein wesentlicher Teil meiner Arbeit besteht deshalb darin, die passenden Libraries zu finden und diese für unsere Use-Cases anzupassen oder die Methode neu zu implementieren. Es gibt durchaus immer wieder Zeiten in denen meine Job-Beschreibung „mathematischer Programmierer“ lauten sollte und nicht “Data Scientist“. Ich denke, das ist im klassischen Bereich, der sich geschäftlichen Daten beschäftigt, vielleicht nicht mehr so häufig, da dort die verfügbare Software schon sehr ausgreift ist.

Außerdem beschreiben unsere Daten oft komplexe technische Prozesse in Fahrzeugkomponenten. Hier ist eine rege Kommunikation mit den jeweiligen Domänenexperten unerlässlich, damit ich auch als fachfremder Data Scientist den Prozess, der die Daten erzeugt, zumindest in Grundzügen verstehen kann. Dieser kommunikative Teil, in dem man sehr viel über verschiedenste Fachbereiche erfährt, ist für mich einer der schönsten Aspekte meiner Arbeit.

Data Science Blog: Wenn Data Science einem Laien erklärt wird, kommen häufig Beispiele von Kaufempfehlungen oder Gesundheitsprognosen von Fitness-Apps zur Sprache. Welches Beispiel würden Sie im Kontext von Automotive verwenden?

Die Möglichkeiten für den Einsatz von Data Science im Automotive Bereich sind extrem vielfältig – sie kann eigentlich über den gesamten Lebenszyklus eines Fahrzeugs gewinnbringend eingesetzt werden. Ein Einsatzbeispiel, das der Fahrer direkt positiv erleben kann, wäre die Predictive Maintenance von Fahrzeugteilen. Ähnlich zu den von Ihnen angesprochenen Fitness-Apps geht es hier darum eine „Gesundheitsprognose“ für die einzelnen Fahrzeugteile anhand von Messwerten zu erstellen. Im Idealfall müssen Sie Ihr Auto dann nicht mehr in fixen Service-Intervallen in die Werkstatt stellen, sondern das Auto meldet sich automatisch kurz bevor ein Teil ausgetauscht werden muss. Diese Meldung erschiene dann deshalb, weil die Messwerte darauf schließen lassen, dass es bald zu einem Defekt kommen wird und nicht einfach nach einem fixen, vorher definierten Zeitraum. Heute werden ja Teile oft einfach deswegen ausgetauscht, weil es der Wartungsplan so vorsieht – unabhängig von ihrer tatsächlichen Abnutzung.

Data Science Blog: Was sind denn gegenwärtig besonders interessante Anwendungsfälle und an welchen arbeiten Sie für die Zukunft?

Aus Sicht der Anwendung finde ich es besonders spannend durch Sensor-Signale auf Eigenschaften des Fahrers zu schließen. Die Methodik dazu entwickeln wir gerade in aktuellen Projekten. Es ist zum Beispiel durchaus denkbar, sicherheitsrelevante Ereignisse und Fahrmanöver zu identifizieren. Diese Informationen können dann vielseitig verwendet werden. Einige Beispiele dazu: Verkehrsplaner könnten damit automatisiert besonders gefährliche Kreuzungen angezeigt bekommen, Versicherer könnten ihren Kunden auf das individuelle Risikoverhalten abgestimmte Produkte anbieten oder Kunden könnten sich Ihren Taxifahrer über eine App nach seinem Fahrstil aussuchen. Denkbar wäre auch eine Diebstahlsicherung: Das Fahrzeug erkennt über den Fahrstil, dass es von einer unbefugten Person benutzt wird und löst daraufhin einen Alarm aus. Hier eröffnen sich viele Möglichkeiten.

Aus Sicht der Datenanalyse finde ich es besonders interessant, Algorithmen, die für ganz andere Aufgabenstellung entwickelt wurden, auf Probleme aus dem Automotive-Bereich anzuwenden. In einem unserer Projekte analysieren wir beispielsweise Software-Logfiles von Prüfständen und verwenden dazu Association Rules (eine Technik aus der Warenkorbanalyse) und Methoden, die normalerweise für das Untersuchen von Interaktionen in sozialen Netzwerken verwendet werden. Dass diese Übertragbarkeit gegeben ist finde ich extrem spannend.

Data Science Blog: Über welche Datenquellen verfügen Sie? Gibt es auch fahrzeugexterne Datenquellen, die sinnvoll sein könnten?

Da sprechen Sie natürlichen einen kritischen Punkt in jedem Data Science Projekt an: Ohne Daten geht nichts. Zusätzlich müssen die verwendeten Daten eine gewisse Qualität aufweisen und natürlich mit dem zu lösenden Problem in möglichst direktem Zusammenhang stehen.

Welche Datenquellen wir genau verwenden, hängt natürlich sehr stark vom konkretem Projekt ab. In industrienahen Projekten werden die Daten in der Regel vom Industriepartner bereitgestellt. Das kann dann alles Mögliche sein: Messungen von Prüfständen, Fertigungs-Protokolle, Wartungsdaten und vieles mehr.

Diese „Industrie-Daten“ unterliegen dann aber üblicherweise einer strengen Geheimhaltung und dürfen nicht in anderen Projekten verwendet werden. Deshalb haben wir im Unternehmen einen eigenen Datenlogger entwickelt, mit dem wir selber Daten aufnehmen können, die dann uns gehören. Diese Daten verwenden wir hauptsächlich in forschungsnahen Projekten, in denen die Ergebnisse publiziert werden sollen.

Fahrzeugexterne Datenquellen sind definitiv sinnvoll und werden immer mehr mit den klassischen Sensor-Daten fusioniert; oft ergibt sich dann durch eine Kombination von proprietären und offen verfügbaren Daten ein großer Mehrwert. In der vorhin angesprochenen Erkennung von sicherheitsrelevanten Ergebnissen spielt zum Beispiel das Wetter eine wesentliche Rolle: Eine zu schnell gefahrene Kurve ist bei Nässe oder Glätte deutlich gefährlicher als auf trockener Fahrbahn. Generell werden Daten über Umwelt und Infrastruktur immer wichtiger. Praktisch jeder fahrerzentrierte Dienst benötigt sie. Denken Sie zum Beispiel an Google Maps, das bereits heute die Bewegungsdaten von vielen Verkehrsteilnehmern gemeinsam analysiert um Vorhersagen über die Verkehrsdichte und damit über die optimale Route zu treffen.

Data Science Blog: Wie aufwändig gestaltet sich das Data Engineering, also die Datenbereitstellung und -zusammenführung?

Das ist definitiv ein schwieriges Unterfangen. Gerade Sensordaten erreichen schnell eine beachtliche Größe, die den Einsatz eines Big Data Technologie-Stacks erforderlich macht. Hier macht uns aber wieder die bereits angesprochene zeitliche Komponente unserer Daten zu schaffen. Die meisten Big Data Technologien skalieren ja, indem sie die Datenpunkte mehr oder weniger zufällig auf mehrere Rechner verteilen. Das ist bei unseren Daten aber nicht zulässig, die Reihenfolge der Daten ist hochrelevant! Hier müssen wir also entweder auf einer anderen Ebene parallelisieren oder Technologie mit spezieller Funktionalität für Zeitreihen verwenden.

Data Science Blog: Welche Technologien setzen Sie für die Datenbereitstellung und -analyse ein? Was halten Sie vom Einsatz von Open Source Software?

Wir implementieren unsere Analysen meist in R oder Python, manchmal kommen auch Matlab oder C# (letzteres meist für User Interfaces) zum Einsatz. Für Big Data Analysen verwenden wir meist Apache Spark über die R und Python APIs. Für die Datenablage und Bereitstellung verwenden wir hauptsächlich PostgreSQL mit Timescale Erweiterung, InfluxDB sowie Apache Hadoop. Grundsätzlich sind wir jedoch nicht auf bestimmte Technologien fixiert, sondern versuchen immer das jeweils beste Tool für den jeweiligen Einsatzzweck zu verwenden.

Ich finde es spricht nichts gegen den Einsatz von Open Source Software – wie Sie ja auch an unserem Technologie-Stack erkennen können. Ich habe aber auch nichts gegen Closed Source Software – es gibt in beiden Bereichen genug gute und schlechte Software. Worauf ich aber achte, ist keine neue Technologie zu verwenden, hinter der ein zu kleines Entwicklerteam oder gar nur ein einzelner Entwickler steht. Hier ist mir die Gefahr zu groß, dass die Entwicklung bald eingestellt wird und die Ergebnisse meiner Analysen nicht mehr nachvollziehbar sind.

Data Science Blog: Zum Abschluss noch eine Frage von jungen Nachwuchskräften, die davon träumen, eine Karriere als Data Scientist im Ingenieurwesen zu machen: Welche Voraussetzungen bzw. Eigenschaften sollte ein Data Scientist in Ihrem Bereich mitbringen?

Neben einer fundierten fachlichen Ausbildung sind Neugier und der Wille, Zusammenhänge zu verstehen, Eigenschaften, die für jeden Data Scientist sehr wichtig sind. Zusätzlich hilft es durchaus eine kommunikative Persönlichkeit zu sein: Es gilt in Workshops die richtigen Informationen über die Daten einzuholen – das ist nicht immer ganz leicht. Zusätzlich müssen natürlich regelmäßig die Resultate der jeweiligen Analysen einem oft fachfremden Publikum präsentiert werden.

Analyse der Netzwerktopologie des Internets auf Basis des IPv4-Protokolls

Wie kommen Daten die man via Internet quer durch die Welt sendet eigentlich an ihr Ziel? Welchen Weg nehmen beispielsweise die Datenpakete, wenn ich von mir zu Hause eine Datei an meinen Nachbarn ein Haus weiter sende? Wie groß ist der “Umweg”, den die Daten nehmen? Und macht es eigentlich einen Unterschied, ob ich www.google.de, www.google.com oder www.google.nl aufrufe, oder gehen alle Suchanfragen sowieso an dasselbe Ziel?

Fragen wie diese lassen sich durch eine Kombination von Tools wie traceroute oder tracepath und geoiplookup beantworten und unter Verwendung des Python-Paketes geoplotlib sogar graphisch auf einer Weltkarte darstellen. Die so gewonnenen Ergebnisse zeigen Teile der Netzwerktopologie des Internets auf und führen zu interessanten, teils unerwarteten Erkenntnissen.

Ziel dieses Artikels soll sein, ein möglichst einfaches Tutorial zum selber mitbasteln bereit zu stellen. Die einzelnen Schritte die hierfür notwendig sind, werden möglichst einfach verständlich dargestellt und erklärt, trotzdem sind zum vollständigen Verständnis grundlegende Kenntnisse in Python sowie der Kommandozeile hilfreich. Er richtet sich aber auch an alle, die sich einfach einmal etwas in ihrer virtuellen Umgebung „umschauen“ möchten oder einfach nur an den Ergebnissen interessiert sind, ohne sich mit den Details und wie diese umgesetzt werden, auseinander setzen zu wollen.  Am Ende des Artikels werden die einzelnen Skripte des Projekts als zip-Datei bereitgestellt.

Hinweis: Diese Anleitung bezieht sich auf ein Linux-System und wurde unter Ubuntu getestet. Windows-User können beispielsweise mit dem Befehl tracert (als Ersatz für traceroute) ähnliche Ergebnisse erziehlen, jedoch muss dann das Parsing der IP-Adressen abgeändert werden.

1. Grundsätzliches Erkunden der Route, die ein Datenpaket nimmt

Hierfür wird ein Programm wie traceroute, tracepath oder nmap benötigt, welches durch Versenden von „abgelaufenen Datenpaketen“ die Hosts „auf dem Weg“ zum Ziel dazu bringt, ihre IPv4-Adresse zurück zu geben. In diesem Artikel wird beispielhaft traceroute verwendet, da dieses unter den meisten Linux-Versionen bereits zur „Grundausstattung“ gehört und somit für diesen Schritt keine weitere Software installiert werden muss. Die Verwendung von traceroute folgt der Syntax:

sudo traceroute ${ZIEL}

Als Ziel muss hier die IP-Adresse bzw. der Domainname des Zielrechners angegeben werden. Ein Beispiel soll dies vereinfachen:

$ sudo traceroute www.google.de
traceroute to www.google.de (172.217.22.99), 64 hops max
  1   192.168.0.1  167,148ms  3,200ms  11,636ms 
  2   83.169.183.11  21,389ms  19,380ms  88.134.203.107  16,746ms 
  3   88.134.203.107  27,431ms  24,063ms  * 
  4   88.134.237.6  1679,865ms  *  130,818ms 
  5   88.134.235.207  58,815ms  84,150ms  * 
  6   72.14.198.218 144,998ms  107,364ms  108.170.253.68  121,851ms 
  7   108.170.253.84  58,323ms  101,127ms  216.239.57.218  44,461ms 
  8   216.239.57.218  43,722ms  91,544ms  172.253.50.100  67,971ms 
  9   172.253.50.214  106,689ms  96,100ms  216.239.56.130  110,334ms 
 10   209.85.241.145  63,720ms  61,387ms  209.85.252.76  73,724ms 
 11   209.85.252.28  71,214ms  61,828ms  108.170.251.129  81,470ms 
 12   108.170.251.129  64,262ms  52,056ms  72.14.234.115  71,661ms 
 13   72.14.234.113  262,988ms  55,005ms  172.217.22.99  66,043ms 

Im Beispiel wird die Route zum Hostrechner mit der Domain www.google.de ermittelt. In der ersten Spalte der Ausgabe ist die Nummer des jeweiligen „Hops“ zu sehen. Wichtig ist insbesondere die zweite Spalte, welche die IPv4-Adresse des jeweiligen Rechners auf dem Weg zum Ziel darstellt. Die folgenden Spalten enthalten weitere Informationen wie Antwortzeiten der jeweiligen Server und die IP-Adressen der Folge-Server.

Um die Ausgabe in eine Form umzuwandeln, welche später einfacher von Python gelesen werden kann, muss diese noch ausgelesen werden (Parsing). zuerst soll die erste Zeile der Ausgabe herausgeschnitten werden, da diese zwar informativ, jedoch kein Teil der eigentlichen Route ist. Dies kann sehr einfach durchgeführt werden, indem die Ausgabe des traceroute-Befehls an einen Befehl wie beispielsweise sed „gepiped“ (also weitergeleitet) wird. Die dabei entstehende Pipe sieht dann wie folgt aus:

sudo traceroute ${ZIEL} | sed '1d'

Um bei unserem Beispiel mit der Route zu www.google.de zu bleiben, sieht der Befehl und die Entsprechende Ausgabe wie folgt aus:

$ sudo traceroute   | sed '1d'
  1   192.168.0.1  167,148ms  3,200ms  11,636ms 
  2   83.169.183.11  21,389ms  19,380ms  88.134.203.107  16,746ms 
  3   88.134.203.107  27,431ms  24,063ms  * 
  4   88.134.237.6  1679,865ms  *  130,818ms 
  5   88.134.235.207  58,815ms  84,150ms  * 
  6   72.14.198.218 144,998ms  107,364ms  108.170.253.68  121,851ms 
  7   108.170.253.84  58,323ms  101,127ms  216.239.57.218  44,461ms 
  8   216.239.57.218  43,722ms  91,544ms  172.253.50.100  67,971ms 
  9   172.253.50.214  106,689ms  96,100ms  216.239.56.130  110,334ms 
 10   209.85.241.145  63,720ms  61,387ms  209.85.252.76  73,724ms 
 11   209.85.252.28  71,214ms  61,828ms  108.170.251.129  81,470ms 
 12   108.170.251.129  64,262ms  52,056ms  72.14.234.115  71,661ms 
 13   72.14.234.113  262,988ms  55,005ms  172.217.22.99  66,043ms 

Anschließend soll die zweite Spalte der Ausgabe herausgeschnitten werden. Dies ist am einfachsten mit dem Befehl awk zu bewerkstelligen. Das Prinzip dahinter ist das gleiche wie im obigen Schritt: die Ausgabe des vorherigen Befehls wird dem Befehl awk als Eingabe weitergeleitet, womit der gesamte Befehl nun wie folgt aussieht:

sudo traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }'

Bezogen auf das google-Beispiel sehen Ein- und Ausgabe nun so aus:

$ sudo traceroute | sed '1d' | awk '{ print $2 }'
192.168.0.1
83.169.183.11
88.134.203.107
88.134.237.6
88.134.235.207
72.14.198.218
108.170.253.84
216.239.57.218
172.253.50.214
209.85.241.145
209.85.252.28
108.170.251.129
72.14.234.113

Im letzten Schritt sollen die einzelnen IP-Adressen durch Leerzeichen getrennt in eine einzelne Zeile geschrieben werden. Sinn dieses Schrittes ist, dass später viele Zielrechner nacheinander aus einer Datei eingelesen werden können und jede Route zu einem Zielrechner als eine einzelne Zeile in eine Zieldatei geschrieben wird.
Auch dieser Schritt funktioniert ähnlich wie die obigen Schritte, indem die Ausgabe des letzten Schrittes an einen weiteren Befehl weitergeleitet wird, der diese Funktion erfüllt. Dieser Schritt könnte wieder mit dem Befehl sed durchgeführt werden, da aber nur ein einzelnes Zeichen (nämlich das Zeilenumbruch-Zeichen bzw. Newline) durch ein Leerzeichen ersetzt werden soll, wird hier aufgrund der einfacheren Syntax der Befehl tr verwendet.
Der fertige Befehl sieht nun wie folgt aus:

sudo traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }' | tr '\n' ' '

Oder im fertigen Beispiel mit www.google.de:

$ sudo traceroute   | sed '1d' | awk '{ print $2 }' | tr '\n' ' '
192.168.0.1 83.169.183.11 88.134.203.107 88.134.237.6 88.134.235.207 72.14.198.218 108.170.253.84 216.239.57.218 172.253.50.214 209.85.241.145 209.85.252.28 108.170.251.129 72.14.234.113

Hiermit ist das Parsen abgeschlossen und die fertige Ausgabe kann nun in eine Ergebnisdatei geschrieben werden. Um automatisch viele Zielrechner aus einer Datei einzulesen und alle gefundenen Routen in eine Zieldatei zu schreiben, wird der obige Befehl in eine Schleife „verpackt“ welche die Zielrechner Zeile für Zeile aus der Datei zieladressen.txt ausliest und die gefundenen Routen ebenso Zeile für Zeile in die Datei routen.csv schreibt. Die Datei routen.csv kann später zur Ermittlung verschiedener Informationen zu den gefunden IP-Adressen einfach mit einem Python-Skript eingelesen und geparst werden.

In diesem Artikel wird das fertige Skript ohne weitere Erklärung in der beiliegenden zip-Datei bereitgestellt. Wen die genaue Funktionsweise der Schleife interessiert, sei angehalten sich generell über die Funktionsweise von Shellskripten einzulesen, da dies den Rahmen des Artikels sprengen würde.

#/bin/sh

cat zieladressen.txt | while read ZIEL; do
    printf 'Ermittle Route nach: %s\n' "${ZIEL}"
    traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }' | tr '\n' ' ' >> routes.csv
    printf '\n' >> routes.csv
done

cat routes.csv | tr -d \* | tr -s ' ' > routes_corrected.csv
mv routes_corrected.csv routes.csv

Dieses Skript benötigt die Datei zieladressen.txt welche wie folgt aussehen muss (anstatt Domainnamen können auch direkt IPv4-Adressen verwendet werden):

www.google.de
www.github.com
www.google.nl
...

2. Sammeln von (Geo-)Informationen zu bestimmten IPv4-Adressen

Die gefundenen IPv4-Adressen können anschließend mit dem Befehl geoiplookup oder über die Internetseite http://geoiplookup.net/ relativ genau (meißtens auf Städteniveau) lokalisiert werden. Dies funktioniert, da einzelne Subnets in der Regel bestimmten Regionen und Internetprovidern zugeordnet sind.

Der Befehl geoiplookup greift hierbei auf eine vorher installierte und lokal gespeicherte Datenbank zu, welche je nach installierter Version als Country- oder City-Edition vorliegt. Da geoiplookup nicht zu den Standartbordmitteln unter Linux gehört und um die weiteren Schritte auch Benutzern anderer Betriebssysteme zu ermöglichen, wird hier nur ein kurzes Beispiel der Benutzung dieses Befehls und dessen Ausgabe gegeben und im weiteren die Online-Abfrage mittels eines Python-Skriptes beschrieben.

$ geoiplookup 172.217.22.99
GeoIP Country Edition: US, United States
GeoIP City Edition, Rev 1: US, CA, California, Mountain View, 94043, 37.419201, -122.057404, 807, 650
GeoIP ASNum Edition: AS15169 Google Inc.

Die Internetseite http://geoiplookup.net bietet einen Onlineservice welcher Geo- und weitere Informationen zu gegebenen IPv4-Adressen bereitstellt. Öffnet man die Seite ohne Angabe einer IP-Adresse in einem Browser, so erhält man die entsprechenden Informationen über die eigene IP-Adresse. (Achtung: die Verwendung eines Proxies oder gar Tor führt zwangsläufig zu falschen Ergebnissen.)

Da die Seite auch über eine API (also eine automatisierte Abfrageschnittstelle) unter der Adresse “http://api.geoiplookup.net/?query=${IPADRESSE}” verfügt, kann man die entsprechenden Informationen zu den IP-Adressen mittels eines Pythonskriptes abfragen und auswerten. Als Antwort erhält man eine XML‑Datei welche beispielsweise folgendermaßen aussieht:

<ip>
  <results>
    <result>
      <ip>77.20.253.87</ip>
      <host>77.20.253.87</host>
      <isp>Vodafone Kabel Deutschland</isp>
      <city>Hamburg</city>
      <countrycode>DE</countrycode>
      <countryname>Germany</countryname>
      <latitude>53.61530</latitude>
      <longitude>10.1162</longitude>
    </result>
  </results>
</ip>

Diese kann im Browser z. B. unter der Adresse http://api.geoiplookup.net/?query=77.20.253.87 aufgerufen werden (oder unter: http://api.geoiplookup.net/ für die eigene Adresse).

Um die hierin enthaltenen Informationen mit Hilfe von Python auszulesen lässt sich ElementTree aus aus dem Modul xml.etree, das in der Python-Standartbibliothek vorhanden ist, verwenden. Dies wird im beiliegenden Skript mit der Funktion get_hostinfo() bewerkstelligt:

def get_hostinfo(ipv4):
    ''' Returns geoiplookup information of agiven host adress as a dictionary.
    The adress can be given as a string representation 0f a DNS or IPv4 adress.

    get_hostinfo(str) -> dict

    Examples: get_hostinfo("www.github.com")
              get_hostinfo("151.101.12.133")
    '''

    apiurl = 'http://api.geoiplookup.net/?query='
    hostinfo = defaultdict(str, {})
    try:
        xml = urllib.request.urlopen(apiurl + dns2ipv4(ipv4)).read().decode()
        xml = xml.replace('&', '')
        tree = ETree.fromstring(xml)
        for element in tree.getiterator():
            hostinfo[element.tag] = element.text
    except:
        return hostinfo
    finally:
        return hostinfo

Diese parst die XML-Datei automatisch zu einem Python-DefaultDict das dann die entsprechenden Informationen enthält (das DefaultDict wird verwendet da normale Python Dictionaries zu Fehlern führen, wenn nicht gesetzte Werte abgefragt werden). Die Ausgabe der Funktion sieht dann wie folgt aus:

In [3]: get_hostinfo('www.google.com')
Out[3]:
defaultdict(str,
            {'city': 'Mountain View',
             'countrycode': 'US',
             'countryname': 'United States',
             'host': '172.217.22.99',
             'ip': '172.217.22.99',
             'isp': 'Google',
             'latitude': '37.4192',
             'longitude': '-122.0574',
             'result': None,
             'results': None})

3. Plotten der gefundenen Routen mit geoplotlib auf einer Weltkarte

Wichtig für das anschließende Plotten ist hierbei die Geolocation also ‘latitude’ und ‘longitude’. Mit den Werten kann man anschließend die mit traceroute gefundenen Pfade als Basemap plotten. Dies funktioniert mit der Funktion drawroutes2map():

def drawroutes2map(routesfile='routes.csv'):
    drawroutes = list()
    for route in open(routesfile).readlines():
        ips = [ip2location(ip) for ip in route.strip().split(',')]
        print(ips)
        locs = [loc for loc in ips if not loc == None]
        longs = [loc[0] for loc in locs]
        lats = [loc[1] for loc in locs]
        m = minimalmap()
        drawroutes.append(tuple(m(lats, longs)))
        for drawroute in drawroutes:
            m.plot(drawroute[0], drawroute[1], '-', markersize=0, linewidth=1, color=rand_color())
            pickleto(drawroutes, 'tracedlocs.plk')
    plt.savefig('world.svg', format='svg')
    plt.savefig('world.png', format='png')
    plt.show()

Der Plot einer Verbindungsanfrage an www.google.de aus Berlin sieht beispielsweise folgendermaßen aus:

Hier wird deutlich, dass Datenpakete durchaus nicht immer den kürzesten Weg nehmen, sondern teilweise rund um die Welt gesendet werden (Deutschland – USA – Sydney(!) – USA), bevor sie an ihrem Ziel ankommen und dass das Ziel einer Verbindung zu einer Domain mit der Endung „de“ nicht unbedingt in Deutschland liegen muss.

Mit Default-Einstellungen werden von der Funktion drawroutes2map() alle Routen in zufälligen Farben geplottet, welche in der Datei routen.csv gefunden werden.

Lässt man viele Routen plotten wird hierbei die Netzwerkstruktur deutlich, über die die Daten im Internet verteilt werden. Auf dem obigen Plot kann man recht gut erkennen, dass die meisten Internetseiten in Europa oder den USA gehostet werden, einige noch in China und Japan, dagegen beispielsweise Afrika praktisch unbedeutend ist.

Auf dem nächsten Plot wiederum ist zu erkennen, dass es tatsächlich eine Art “Hotspots” gibt über die fast alle Daten laufen, wie z. B. Frankfurt am Main, Zürich und Madrid.

4. Schematische Darstellung der Routen als directed Graph mit graphviz

Mit graphviz lassen sich schematische Graphen darstellen. Mit dem Paket pygraphviz existiert hiefür auch eine Python-Anbindung. Die schematische Darstellung als Graph ist in vielen Fällen deutlich übersichtlicher als die Darstellung auf einer Weltkarte und die Topologie des Netzwerkes wird besser sichtbar.

Die entsprechende Python-Funktion, die alle Routen aus der Datei routes.csv als geplotteten Graph ausgibt ist drawroutes2graph():

def drawroutes2graph(routesfile='routes.csv'):
    '''Draws all routes found in the routesfile with graphviz to a Graph

        drawroutes2graph(file)

    '''
    routes = open(routesfile).readlines()
    for i in range(len(routes)):
        routes[i] = routes[i].replace('*', '').split()
        G = pgv.AGraph(strict=False, directed=True)

    for l in routes:
        for i in range(len(l)-1):
            if not (l[i], l[i+1]) in set(G.edges()):
                G.add_edge(l[i], l[i+1])

    for n in G.nodes():
        if get_hostinfo(n)['countrycode'] == 'DE':
            n.attr['color'] = 'green'
        elif get_hostinfo(n)['countrycode'] == 'US':
            n.attr['color'] = 'red'
        elif get_hostinfo(n)['countrycode'] == 'ES':
            n.attr['color'] = 'yellow'
        elif get_hostinfo(n)['countrycode'] == 'CH':
            n.attr['color'] = 'blue'
        elif get_hostinfo(n)['countrycode'] == 'CN':
            n.attr['color'] = 'magenta'

        G.write('routes.dot')
        
        G.layout('dot')
        G.draw('dot.png')

        G.layout()
        G.draw('neato.png')

Die Funktion schreibt den erstellten Graph in der Dot-Language in die Datei routes.dot und erstellt zwei verschiedene visuelle Darstellungen als png-Dateien.

Da mit der Funktion get_hostinfo() auch weitere Informationen zu den jeweiligen IP-Adressen verfügbar sind  können diese auch visuell im Graph dargestellt werden. So sind in der folgenden Darstellung Hosts in verschiedenen Ländern in unterschiedlichen Farben dargestellt. (Deutschland in grün, USA in rot, Spanien in gelb, Schweiz in blau, China in magenta und alle übrigen Länder und Hosts ohne Länderinformation in schwarz).

Diese Art der Darstellung vereint damit die Vorteile der schematischen Darstellung mit der Geoinformation zu den jeweiligen Hosts. Aus der Grafik lässt sich beispielsweise sehr gut erkennen, dass, trotz oft vieler Zwischenstationen innerhalb eines Landes, Landesgrenzen überschreitende Verbindungen relativ selten sind.

Auch interessant ist, dass das Netzwerk durchaus Maschen aufweist – mit anderen Worten: Dass ein und dieselbe Station bei verschiedenen Verbindungsanfragen über verschiedene Zwischenstationen angesprochen wird und Daten, die von Punkt A nach Punkt B gesendet werden, nicht immer denselben Weg nehmen.

5. Schlussfolgerung

Was kann man hieraus denn nun letztendlich an Erkenntnissen ziehen? Zum einen natürlich, wie Daten via Internet über viele Zwischenstationen rund um die Welt gesendet und hierbei mit jeder Station neu sortiert werden. Vor allem aber auch, dass mit dem entsprechenden Know-How und etwas Kreativität mit bemerkenswert wenig Code bereits Unmengen an Daten gesammelt, geordnet und ausgewertet werden können. Alle möglichen Daten werden in unserer heutigen Welt gespeichert und sind zu einem nicht unbeträchtlichen Teil auch für jeden, der weiß, wer diese Daten hat oder wie man sie selber ermitteln kann, verfügbar und oft lassen sich hier interessante Einblicke in die Funktionsweise unserer Welt gewinnen.

Machine Learning vs Deep Learning – Wo liegt der Unterschied?

Machine Learning gehört zu den Industrie-Trends dieser Jahre, da besteht kein Zweifel. Oder war es Deep Learning? Oder Artificial Intelligence? Worin liegt da eigentlich der Unterschied? Dies ist Artikel 1 von 6 der Artikelserie –Einstieg in Deep Learning.

Machine Learning

Maschinelles Lernen (ML) ist eine Sammlung von mathematischen Methoden der Mustererkennung. Diese Methoden erkennen Muster beispielsweise durch bestmögliche, auf eine bestmögliche Entropie gerichtete, Zerlegung von Datenbeständen in hierarchische Strukturen (Entscheidungsbäume). Oder über Vektoren werden Ähnlichkeiten zwischen Datensätzen ermittelt und daraus trainiert (z. B. k-nearest-Neighbour, nachfolgend einfach kurz: k-nN) oder untrainiert (z.B. k-Means) Muster erschlossen.

Algorithmen des maschinellen Lernens sind tatsächlich dazu in der Lage, viele alltägliche oder auch sehr spezielle Probleme zu lösen. In der Praxis eines Entwicklers für Machine Learning stellen sich jedoch häufig Probleme, wenn es entweder zu wenige Daten gibt oder wenn es zu viele Dimensionen der Daten gibt. Entropie-getriebene Lern-Algorithmen wie Entscheidungsbäume werden bei vielen Dimensionen zu komplex, und auf Vektorräumen basierende Algorithmen wie der k-nächste-Nachbarn-Algorithmus sind durch den Fluch der Dimensionalität in ihrer Leistung eingeschränkt.


Der Fluch der Dimensionalität

Datenpunkte sind in einem zwei-dimensionalen Raum gut vorstellbar und auch ist es vorstellbar, das wir einen solchen Raum (z. B. ein DIN-A5-Papierblatt) mit vielen Datenpunkten vollschreiben. Belassen wir es bei der Anzahl an Datenpunkten, nehmen jedoch weitere Dimensionen hinzu (zumindest die 3. Dimension können wir uns noch gut vorstellen), werden die Abstände zwischen den Punkten größer. n-dimensionale Räume können gewaltig groß sein, so dass Algorithmen wie der k-nN nicht mehr gut funktionieren (der n-dimensionale Raum ist einfach zu leer).


Auch wenn es einige Konzepte zum besseren Umgang mit vielen Dimensionen gibt (z. B. einige Ideen des Ensemble Learnings)

Feature Engineering

Um die Anzahl an Dimensionen zu reduzieren, bedienen sich Machine Learning Entwickler statistischer Methoden, um viele Dimensionen auf die (wahrscheinlich) nützlichsten zu reduzieren: sogenannte Features. Dieser Auswahlprozess nennt sich Feature Engineering und bedingt den sicheren Umgang mit Statistik sowie idealerweise auch etwas Fachkenntnisse des zu untersuchenden Fachgebiets.
Bei der Entwicklung von Machine Learning für den produktiven Einsatz arbeiten Data Scientists den Großteil ihrer Arbeitszeit nicht an der Feinjustierung ihrer Algorithmen des maschinellen Lernens, sondern mit der Auswahl passender Features.

Deep Learning

Deep Learning (DL) ist eine Disziplin des maschinellen Lernes unter Einsatz von künstlichen neuronalen Netzen. Während die Ideen für Entscheidungsbäume, k-nN oder k-Means aus einer gewissen mathematischen Logik heraus entwickelt wurden, gibt es für künstliche neuronale Netze ein Vorbild aus der Natur: Biologische neuronale Netze.

Prinzip-Darstellung eines künstlichen neuronalen Netzes mit zwei Hidden-Layern zwischen einer Eingabe- und Ausgabe-Schicht.

Wie künstliche neuronale Netze im Detail funktionieren, erläutern wir in den nächsten zwei Artikeln dieser Artikelserie, jedoch vorab schon mal so viel: Ein Eingabe-Vektor (eine Reihe von Dimensionen) stellt eine erste Schicht dar, die über weitere Schichten mit sogenannten Neuronen erweitert oder reduziert und über Gewichtungen abstrahiert wird, bis eine Ausgabeschicht erreicht wird, die einen Ausgabe-Vektor erzeugt (im Grunde ein Ergebnis-Schlüssel, der beispielsweise eine bestimmte Klasse ausweist: z. B. Katze oder Hund). Durch ein Training werden die Gewichte zwischen den Neuronen so angepasst, dass bestimmte Eingabe-Muster (z. B. Fotos von Haustieren) immer zu einem bestimmten Ausgabe-Muster führen (z. B. “Das Foto zeigt eine Katze”).

Der Vorteil von künstlichen neuronalen Netzen ist die sehr tiefgehende Abstraktion von Zusammenhängen zwischen Eingabe-Daten und zwischen den abstrahierten Neuronen-Werten mit den Ausgabe-Daten. Dies geschieht über mehrere Schichten (Layer) der Netze, die sehr spezielle Probleme lösen können. Aus diesen Tatsachen leitet sich der übergeordnete Name ab: Deep Learning

Deep Learning kommt dann zum Einsatz, wenn andere maschinelle Lernverfahren an Grenzen stoßen und auch dann, wenn auf ein separates Feature Engineering verzichtet werden muss, denn neuronale Netze können über mehrere Schichten viele Eingabe-Dimensionen von selbst auf die Features reduzieren, die für die korrekte Bestimmung der Ausgabe notwendig sind.

Convolutional Neuronal Network

Convolutional Neuronal Networks (CNN) sind neuronale Netze, die vor allem für die Klassifikation von Bilddaten verwendet werden. Sie sind im Kern klassische neuronale Netze, die jedoch eine Faltungs- und eine Pooling-Schicht vorgeschaltet haben. Die Faltungsschicht ließt den Daten-Input (z. B. ein Foto) mehrfach hintereinander, doch jeweils immer nur einen Ausschnitt daraus (bei Fotos dann einen Sektor des Fotos), die Pooling-Schicht reduzierte die Ausschnittsdaten (bei Fotos: Pixel) auf reduzierte Informationen. Daraufhin folgt das eigentliche neuronale Netz.

CNNs sind im Grunde eine spezialisierte Form von künstlichen neuronalen Netzen, die das Feature-Engineering noch geschickter handhaben.

Deep Autoencoder

Gegenwärtig sind die meisten künstlichen neuronalen Netze ein Algorithmen-Modell für das überwachte maschinelle Lernen (Klassifikation oder Regression), jedoch kommen sie auch zum unüberwachten Lernen (Clustering oder Dimensionsreduktion) zum Einsatz, die sogenannten Deep Autoencoder.

Deep Autoencoder sind neuronale Netze, die im ersten Schritt eine große Menge an Eingabe-Dimensionen auf vergleichsweise wenige Dimensionen reduzieren. Die Reduktion (Encoder) erfolgt nicht abrupt, sondern schrittweise über mehrere Schichten, die reduzierten Dimensionen werden zum Feature-Vektor. Daraufhin kommt der zweite Teil des neuronalen Netzes zum Einsatz: Die reduzierten Dimensionen werden über weitere Schichten wieder erweitert, die ursprünglichen Dimensionen als abstrakteres Modell wieder rekonstruiert (Decoder). Der Sinn von Deep Autoencodern sind abstrakte Ähnlichkeitsmodelle zu erstellen. Ein häufiges Einsatzgebiet sind beispielsweise das maschinelle Identifizieren von ähnlichen Bildern, Texten oder akkustischen Signalmustern.

Artificial Intelligence

Artificial Intelligence (AI) oder künstliche Intelligenz (KI) ist ein wissenschaftlicher Bereich, der das maschinelle Lernen beinhaltet, jedoch noch weitere Bereiche kennt, die für den Aufbau einer KI von Nöten sind. Eine künstliche Intelligenz muss nicht nur Lernen, sie muss auch Wissen effizient abspeichern, einordnen bzw. sortieren und abrufen können. Sie muss ferner über eine Logik verfügen, wie sie das Wissen und das Gelernte einsetzen muss. Denken wir an biologische Intelligenzen, ist es etwa nicht so, dass jegliche Fähigkeiten erlernt wurden, einige sind mit der Geburt bereits ausgebildet oder liegen als sogenannter Instinkt vor.

Ein einzelner Machine Learning Algorithmus würde wohl kaum einen Turing-Test bestehen oder einen Roboter komplexe Aufgaben bewältigen lassen. Daher muss eine künstliche Intelligenz weit mehr können, als bestimmte Dinge zu erlernen. Zum wissenschaftlichen Gebiet der künstlichen Intelligenz gehören zumindest:

  • Machine Learning (inkl. Deep Learning und Ensemble Learning)
  • Mathematische Logik
    • Aussagenlogik
    • Prädikatenlogik
    • Default-Logik
    • Modal-Logik
  • Wissensbasierte Systeme
    • relationale Algebra
    • Graphentheorie
  • Such- und Optimierungsverfahren:
    • Gradientenverfahren
    • Breitensuche & Tiefensuche

AI(ML(DL))

Buch-Empfehlungen

Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung (Computational Intelligence) Praxiseinstieg Deep Learning: Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen

Ständig wachsende Datenflut – Muss nun jeder zum Data Scientist werden?

Weltweit rund 163 Zettabyte – so lautet die Schätzung von IDC für die Datenmenge weltweit im Jahr 2025. Angesichts dieser kaum noch vorstellbaren Zahl ist es kein Wunder, wenn Anwender in Unternehmen sich überfordert fühlen. Denn auch hier muss vieles analysiert werden – eigene Daten aus vielen Bereichen laufen zusammen mit Daten Dritter, seien es Dienstleister, Partner oder gekaufter Content. Und all das wird noch ergänzt um Social Content – und soll dann zu sinnvollen Auswertungen zusammengeführt werden. Das ist schon für ausgesprochene Data Scientists keine leichte Aufgabe, von normalen Usern ganz zu schweigen. Doch es gibt eine gute Nachricht dabei: den Umgang mit Daten kann man lernen.

Echtes Datenverständnis – Was ist das?

Unternehmen versuchen heute, möglichst viel Kapital aus den vorhandenen Daten zu ziehen und erlauben ihren Mitarbeitern kontrollierten, aber recht weit gehenden Zugriff. Das hat denn auch etliche Vorteile, denn nur wer Zugang zu Daten hat, kann Prozesse beurteilen und effizienter gestalten. Er kann mehr Informationen zu Einsichten verwandeln, Entwicklungen an den realen Bedarf anpassen und sogar auf neue Ideen kommen. Natürlich muss der Zugriff auf Informationen gesteuert und kontrolliert sein, denn schließlich muss man nicht nur Regelwerken wie Datenschutzgrundverordnung gehorchen, man will auch nicht mit den eigenen Daten dem Wettbewerb weiterhelfen.

Aber davon abgesehen, liegt in der umfassenden Auswertung auch die Gefahr, von scheinbaren Erkenntnissen aufs Glatteis geführt zu werden. Was ist wahr, was ist Fake, was ein Trugschluss? Es braucht einige Routine um den Unsinn in den Daten erkennen zu können – und es braucht zuverlässige Datenquellen. Überlässt man dies den wenigen Spezialisten im Haus, so steigt das Risiko, dass nicht alles geprüft wird oder auf der anderen Seite Wichtiges in der Datenflut untergeht. Also brauchen auch solche Anwender ein gewisses Maß an Datenkompetenz, die nicht unbedingt Power User oder professionelle Analytiker sind. Aber in welchem Umfang? So weit, dass sie fähig sind, Nützliches von Falschem zu unterscheiden und eine zielführende Systematik auf Datenanalyse anzuwenden.

Leider aber weiß das noch nicht jeder, der mit Daten umgeht: Nur 17 Prozent von über 5.000 Berufstätigen in Europa fühlen sich der Aufgabe gewachsen – das sagt die Data-Equality-Studie von Qlik. Und für Deutschland sieht es sogar noch schlechter aus, hier sind es nur 14 Prozent, die glauben, souverän mit Daten umgehen zu können. Das ist auch nicht wirklich ein Wunder, denn gerade einmal 49 Prozent sind (in Europa) der Ansicht, ausreichenden Zugriff auf Daten zu haben – und das, obwohl 85 Prozent glauben, mit höherem Datenzugriff auch einen besseren Job machen zu können.

Mit Wissens-Hubs die ersten Schritte begleiten

Aber wie lernt man denn nun, mit Daten richtig oder wenigstens besser umzugehen? Den Datenwust mit allen Devices zu beherrschen? An der Uni offensichtlich nicht, denn in der Data-Equality-Studie sehen sich nur 10 Prozent der Absolventen kompetent im Umgang mit Daten. Bis der Gedanke der Datenkompetenz Eingang in die Lehrpläne gefunden hat, bleibt Unternehmen nur die Eigenregie  – ein „Learning by Doing“ mit Unterstützung. Wie viel dabei Eigeninitiative ist oder anders herum, wieviel Weiterbildung notwendig ist, scheint von Unternehmen zu Unternehmen unterschiedlich zu sein. Einige Ansätze haben sich jedoch schon bewährt:

  • Informationsveranstaltungen mit darauf aufbauenden internen und externen Schulungen
  • Die Etablierung von internen Wissens-Hubs: Data Scientists und Power-User, die ihr Know-how gezielt weitergeben: ein einzelne Ansprechpartner in Abteilungen, die wiederum ihren Kollegen helfen können. Dieses Schneeball-Prinzip spart viel Zeit.
  • Eine Dokumentation, die gerne auch informell wie ein Wiki oder ein Tutorial aufgebaut sein darf – mit der Möglichkeit zu kommentieren und zu verlinken. Nützlich ist auch ein Ratgeber, wie man Daten hinterfragt oder wie man Datenquellen hinter einer Grafik bewertet.
  • Management-Support und Daten-Incentives, die eine zusätzliche Motivation schaffen können. Dazu gehört auch, Freiräume zu schaffen, in denen sich Mitarbeiter mit Daten befassen können – Zeit, aber auch die Möglichkeit, mit (Test-)Daten zu spielen.

Darüber hinaus aber braucht es eine Grundhaltung, die sich im Unternehmen etablieren muss: Datenkompetenz muss zur Selbstverständlichkeit werden. Wird sie zudem noch spannend gemacht, so werden sich viele Mitarbeiter auch privat mit der Bewertung und Auswertung von Daten beschäftigen. Denn nützliches Know-how hat keine Nutzungsgrenzen – und Begeisterung steckt an.

Lexoro Data Science Survey

Wir von lexoro möchten die Community mit informativen Beiträgen fördern und erstellen dazu regelmäßige Mini-Studien. Die aktuelle Umfrage finden Sie in diesen Artikel eingebettet (siehe unten) oder mit einem Klick auf diesen Direktlink.

Data Science…more than Python, TensorFlow & Neural Networks

Künstliche Intelligenz, Data Science, Machine Learning – das sind die Schlagwörter der Stunde. Man kann sich den Berichten und Artikeln über die technologischen Entwicklungen, Trends und die Veränderungen, die uns bevorstehen kaum entziehen. Viele sind sich einig: Wir stehen vor einem Paradigmenwechsel vorangetrieben durch einen technologischen Fortschritt, dessen Geschwindigkeit – auch wenn es vielen zu schnell geht – exponentiell zunimmt. Und auch wenn wir noch am Anfang dieses neuen Zeitalters stehen, so sind die Veränderungen jetzt schon zu spüren – in den Unternehmen, in unserem Alltag, in unserer Kommunikation…

Der Arbeitsmarkt im Speziellen sieht sich auch einem starken Veränderungsprozess unterworfen. Berufe, die noch vor nicht allzu langer Zeit als nicht durch Maschinen ersetzbar galten, sind dabei zu verschwinden oder zumindest sich zu verändern. Gleichzeitig entstehen neue Jobs, neue Rollen, neue Verantwortungsbereiche. Kaum ein Unternehmen kommt daran vorbei sich den Herausforderungen dieses technologischen Wandels zu stellen. Neue Strukturen, Abteilungen, Arbeitsmodelle und Jobs entstehen.

Doch um auf die anfangs genannten Hype-Begriffe zurückzukommen – was verbirgt sich eigentlich hinter Data Science, Machine Learning und Artificial Intelligence?! Was macht einen guten Data Scientist eigentlich aus?

Die Antwort scheint aus Sicht vieler Manager einfach: im Studium Python lernen, regelmäßig Big Data Tools von Hadoop nutzen, sich in TensorFlow einarbeiten und etwas über Neural Networks lesen – und fertig ist der Data Scientist. Doch so einfach ist es leider nicht. Oder eher zum Glück?! Neue Job-Rollen erfordern auch neue Denkweisen im Recruiting! Wir entfernen uns von einem strikten Rollen-basiertem Recruiting und fokussieren uns immer mehr auf die individuellen Kompetenzen und Stärken der einzelnen Personen. Wir sind davon überzeugt, dass die treibenden Köpfe hinter der bereits laufenden Datenrevolution deutlich facettenreicher und vielschichtiger sind als sich das so mancher vielleicht wünschen mag.

Diesem Facettenreichtum und dieser Vielschichtigkeit wollen wir auf den Grund gehen und dieser Survey soll einen Beitrag dazu leisten. Welche Kompetenzen sollte ein guter Data Scientist aus Ihrer Sicht mitbringen? In welchen Bereichen würden Sie persönlich sich gerne weiterentwickeln? Haben Sie die Möglichkeiten dazu? Sind Sie auf dem richtigen Weg sich zu einem Data Scientist oder Machine Learning Expert zu entwickeln? Oder suchen Sie nach einem ganz anderen Karriereweg?
Mit einem Zeit-Investment von nur 5 Minuten leisten Sie einen wertvollen Beitrag zur Entwicklung unseres A.I.-Skillprints, der es ermöglichen wird, eine automatische, datengestützte Analyse Ihrer A.I.-bezogenen Fähigkeiten durchzuführen und Empfehlungen für eine optimale Karriereentwicklung zu erhalten.

Vielen Dank im Voraus für Ihre Teilnahme!

Das lexoro-Team


Distributed Computing – MapReduce Algorithmus

Sollen große Datenmengen analysiert werden, ist die Hardware eines leistungsfähigen Computers schnell überfordert und die Analysezeiten werden zu lang. Die Lösung zur Bewältigung von Big Data Analytics sind Konzepte des verteilten Rechnens (Distributed Computing).

Vertikale Skalierung – Der Klassiker der leistungsstarken Datenverarbeitung

Die meisten Unternehmen setzen heute noch auf leistungsstarke und aufrüstbare Einzelserver. Sollten Datenmengen größer und Analysen rechenaufwändiger werden, werden Festplatten (Storage), Arbeitsspeicher (RAM) und Prozessoren (CPU) aufgerüstet oder der Server direkt durch einen leistungsstärkeren ersetzt.

Diese Form der sogenannten vertikalen Skalierung (Vergrößerung der Server-Komponenten) ist für viele Unternehmen heute noch gängige Praxis, auch weil sie leicht zu administrieren ist und sie mit nahezu jeder Software funktioniert. Jedoch sind der Erweiterbarkeit gewisse Grenzen gesetzt und auch der Wechsel zu noch leistungsfähigerer Hardware würde den Einsatz von neuester High-End-Hardware bedeuten, der Kostenanstieg wäre exponentiell. Ferner bedarf es einer durchdachten Backup-Strategie mit gespiegelten Festplatten oder einem ganzen Backup-Server.

Leistungsstarke Server sind teuer und können zwar große Datenmengen weitaus schneller auswerten als Consumer-Computer, jedoch sind auch sie eher nicht dazu in der Lage, Big Data zu verarbeiten, also beispielsweise 100 Terabyte Daten binnen Sekunden statistisch auszuwerten.

Horizontale Skalierung – Skalierbare Speicher-/Rechenleistung

Ein alternatives Konzept zur vertikalen Skalierung ist die horizontale Skalierung. Dabei werden mehrere Computer, die im Vergleich oftmals über nur mittelmäßige Leistungsmerkmale verfügen, über ein Computer-Netzwerk verbunden und parallel angesteuert.

Der große Vorteil der horizontalen Skalierung ist der kostengünstige Einstieg, denn praktisch könnte bereits mit einem einzelnen Computer (Node) begonnen werden und dann nach und nach mit weiteren Nodes die Leistungsfähigkeit des Clusters (Verbund von Nodes) linear gesteigert werden. Ungefähr linear wachsen auch die Kosten an, so dass diese weitaus besser planbar sind. Cluster können weitaus höhere Leistungen erreichen als es einzelne Server könnten, daher gibt die horizontale Skalierung als diejenige, die sich für Big Data Analytics eignet, denn sie ermöglicht verteiltes Rechnen (Distributed Computing). Mit einem ausreichend großen Cluster lassen sich auch 100 Terabyte und mehr in wenigen Augenblicken statistisch auswerten.

Ferner ermöglichen horizontale Lösungen integrierte Backup-Strategien, indem jeder Node des Clusters über ein Backup der Daten eines anderen Nodes verfügt. Verfügt ein Node sogar über mehrere Backups, lässt sich eine sehr hohe Ausfallsicherheit – Datenverfügbarkeit im Cluster – erzielen.

Jedoch gibt es auch Nachteile der horizontalen Skalierung: Die Administration eines Clusters ist weitaus herausfordernder als ein einzelner Server, egal wie leistungsstark dieser sein mag. Auch Bedarf es viel räumlichen Platz für einen (oder gar mehrere) Cluster. Die Kompatibilität der Nodes sollte auch für die nächsten Jahr gesichert sein und nicht zuletzt ist es eine große Hürde, dass die einzusetzende Software (Datenbank- und Analyse-Software) für den Einsatz auf Clustern geeignet sein muss. Verbreite Software-Lösungen für verteiltes Speichern und Rechnen kommen beispielsweise von der Apache Foundation als Open Source Software: Hadoop, Spark und Flink.

Map Reduce Processing

Damit verteiltes Rechnung funktioniert, bedarf es der richtigen Software, die wiederum Algorithmen einsetzt, die sich dafür eignen. Der bekannteste und immer noch am weitesten verbreitete Algorithmus ist MapReduce. MapReduce ist ein sehr einfacher Algorithmus und dürfte von der grundsätzlichen Vorgehensweise jedem Software-Entwickler oder Analyst vertraut sein. Das Prinzip entspricht dem folgenden SQL-Statement, dass die am häufigsten vorkommende Sprache aus dem Datensatz (Tabelle Customers) abfragt:

Es gibt eine Tabelle (es könnte eine Tabelle in einer relationalen Datenbank sein oder eine CSV-Datei), die durch eine SELECT-Query abgefragt (map), groupiert (combine) und sortiert (sort). Dieser Schritt kann vereinfacht als Map-Funktion betrachtet werden, die in einer Liste Paaren aus Schlüssel (Keys) und Werten (Values) resultiert. Ist diese Liste vorhanden, kann diese auf die gewünschten Ergebnisse entspechend einer Logik (z. B. max(), min(), mean(), sum()) auf wenige oder nur einen einzigen Wert reduziert werden (Reduce-Funktion). Zu beachten ist dabei, dass der Map-Prozess sehr viel speicher- und rechen-aufwändiger als der Reduce-Prozess ist. Führen wir diese Abfrage auf einer Maschine aus, fassen wir die beiden Abfragen als ein Statement aus:

SELECT TOP 1 [Language], COUNT(*)
FROM Customers
GROUP BY [Language]
ORDER BY COUNT(*) DESC

Betrachten wir jedoch die einzelnen Schritte, können wir sie wieder zumindest in einen Map- und einen Reduce-Schritt unterteilen. Diese Aufteilung machen wir uns für das verteilte Rechnen zunutze: Wenn jeder Computer (Node; oft auch Client Node oder Data Node) einen Teil der Daten besitzt, kann jeder Node für sich einen Map-Prozess durchführen, die Ergebnisse dann an einen Master-Node (oder in Hadoop-Sprache: Name Node) senden, der den Reduce-Prozess durchführt. Der Großteil der Aufgabe findet somit auf dem Cluster statt, nur der simple Reduce-Schritt auf einem einzelnen Computer.

Oftmals reicht ein parallel ablaufender Map-Prozess auf dem Cluster nicht aus, um Daten effizient auswerten zu können. Die Maßgabe sollte stets sein, den Reduce-Aufwand so gering wie möglich zu halten und soviel Arbeit wie möglich auf den Cluster zu verlagern. Daher sollte jeder Node im Cluster soweit aggregieren wie möglich: Dafür gibt es den Combine-Schritt.

Die zuvor erwähnte SQL-Abfrage als MapReduce würde bedeuten, dass ein Node über den Datensatz verfügt (und andere Nodes über weitere Datensätze) und jeder Node für sich seine Daten über einen Map-Prozess herausarbeitet, über einen Combine-Prozess aggregiert und die Aggregationsergebnisse an den Master-Node (Name Node) sendet. Hat der Master-Node alle Ergebnisse erhalten, berechnet dieser daraus das Endergebnis (Reduce).

Zusammenfassung: Map Reduce

MapReduce ist der bekannteste Algorithmus zur verteilten Verarbeitung von Daten und eignet sich für die Durchführung von komplexen Datenanalysen. Liegen Datensätze auf mehreren Computern (Client Nodes) vor, läuft der Algorithmus in der Regel in drei Schritten ab:

  1. Map – Selektierung der Datensätze auf den Computern im gewünschten Format und Durchführung einer Berechnung, beispielsweise der Bildung einer Summe. Dieser Schritt ist ermöglich das Prinzip Schema on Read, das aus Hadoop ein Tool zur Verarbeitung von unstrukturierten Daten macht.
  2. Combine – Durchführung einer Aggregation, die ebenfalls auf jeden Client Node durchgeführt wird, zur Zusammenfassung von Map-Ergebnissen.
  3. Reduce – Aggregation aller Ergebnisse auf dem zentralen Rechner (Name Node)

MapReduce ist dazu geeignet, unstrukturierte Daten zu verarbeiten, denn das Format der Daten wird über einen Map-Algorithmus bestimmt, der sehr flexibel programmiert werden kann. MapReduce ist kein eng definierter Algorithmus, sondern eine Hülle, die mit Inhalt befüllt werden muss. So müssen MapReduce-Algorithmen individuell über eine Programmiersprache wie Java, Scala oder Python programmiert werden.

Ein Beispiel eines in Java programmierten Word-Count-Algorithmus nach der MapReduce-Logik in Hadoop findet sich hier:

1. 	package org.myorg;
2. 	
3. 	import java.io.IOException;
4. 	import java.util.*;
5. 	
6. 	import org.apache.hadoop.fs.Path;
7. 	import org.apache.hadoop.conf.*;
8. 	import org.apache.hadoop.io.*;
9. 	import org.apache.hadoop.mapred.*;
10. 	import org.apache.hadoop.util.*;
11. 	
12. 	public class WordCount {
13. 	
14. 	   public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {  // Map-Process on Cluster
15. 	     private final static IntWritable one = new IntWritable(1);
16. 	     private Text word = new Text();
17. 	
18. 	     public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
19. 	       String line = value.toString();
20. 	       StringTokenizer tokenizer = new StringTokenizer(line);
21. 	       while (tokenizer.hasMoreTokens()) {
22. 	         word.set(tokenizer.nextToken());
23. 	         output.collect(word, one);
24. 	       }
25. 	     }
26. 	   }
27. 	
28. 	   public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {  // Reduce-Process on Name Node
29. 	     public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
30. 	       int sum = 0;
31. 	       while (values.hasNext()) {
32. 	         sum += values.next().get();
33. 	       }
34. 	       output.collect(key, new IntWritable(sum));
35. 	     }
36. 	   }
37. 	
38. 	   public static void main(String[] args) throws Exception {  // Setting up the MapReduce-Job "wordcount"
39. 	     JobConf conf = new JobConf(WordCount.class);
40. 	     conf.setJobName("wordcount");
41. 	
42. 	     conf.setOutputKeyClass(Text.class);
43. 	     conf.setOutputValueClass(IntWritable.class);
44. 	
45. 	     conf.setMapperClass(Map.class);
46. 	     conf.setCombinerClass(Reduce.class);
47. 	     conf.setReducerClass(Reduce.class);
48. 	
49. 	     conf.setInputFormat(TextInputFormat.class);
50. 	     conf.setOutputFormat(TextOutputFormat.class);
51. 	
52. 	     FileInputFormat.setInputPaths(conf, new Path(args[0]));
53. 	     FileOutputFormat.setOutputPath(conf, new Path(args[1]));
54. 	
55. 	     JobClient.runJob(conf);
57. 	   }
58. 	}

MapReduce und Advanced Analytics

MapReduce spielt seine Vorteile auf Computer-Clustern aus und eignet sich sehr zur Analyse von Daten nach dem Schema on Read. Für kompliziertere Analysealgorithmen ist MapReduce jedoch nur bedingt geeignet, denn bereits einfache Join-Anweisungen benötigen mehrere MapReduce-Ketten.

Während statistische Auswertungen und Join-Anweisungen mit MapReduce noch gut möglich sind, werden Algorithmen des maschinellen Lernens schwierig bis kaum möglich, da diese viele Iterationen, z. B. zur Anpassung von Gewichten, benötigen.