Tag Archive for: ML

Lineare Regression in Python mit Scitkit-Learn

Die lineare Regressionsanalyse ist ein häufiger Einstieg ins maschinelle Lernen um stetige Werte vorherzusagen (Prediction bzw. Prädiktion). Hinter der Regression steht oftmals die Methode der kleinsten Fehlerquadrate und die hat mehr als eine mathematische Methode zur Lösungsfindung (Gradientenverfahren und Normalengleichung). Alternativ kann auch die Maximum Likelihood-Methode zur Regression verwendet werden. Wir wollen uns in diesem Artikel nicht auf die Mathematik konzentrieren, sondern uns direkt an die Anwendung mit Python Scikit-Learn machen:

Haupt-Lernziele:

  • Einführung in Machine Learning mit Scikit-Learn
  • Lineare Regression mit Scikit-Learn

Neben-Lernziele:

  • Datenvorbereitung (Data Preparation) mit Pandas und Scikit-Learn
  • Datenvisualisierung mit der Matplotlib direkt und indirekt (über Pandas)

Was wir inhaltlich tun:

Der Versuch einer Vorhersage eines Fahrzeugpreises auf Basis einer quantitativ-messbaren Eigenschaft eines Fahrzeuges.


Die Daten als Download

Für dieses Beispiel verwende ich die Datei “Automobil_data.txt” von Kaggle.com. Die Daten lassen sich über folgenden Link downloaden, nur leider wird ein (kostenloser) Account benötigt:
https://www.kaggle.com/toramky/automobile-dataset/downloads/automobile-dataset.zip
Sollte der Download-Link unerwartet mal nicht mehr funktionieren, freue ich mich über einen Hinweis als Kommentar 🙂

Die Entwicklungsumgebung

Ich verwende hier die Python-Distribution Anaconda 3 und als Entwicklungs-Umgebung Spyder (in Anaconda enthalten). Genauso gut funktionieren jedoch auch Jupyter Notebook, Eclipse mit PyDev oder direkt die IPython QT-Console.


Zuerst einmal müssen wir die Daten in unsere Python-Session laden und werden einige Transformationen durchführen müssen. Wir starten zunächst mit dem Importieren von drei Bibliotheken NumPy und Pandas, deren Bedeutung ich nicht weiter erläutern werde, somit voraussetze.

import matplotlib.pyplot as plt  # Die Nr.1 der Bibliotheken zur Datenvisualisierung
import numpy as np               # Bibliothek "Nummerisches Python"
import pandas as pd              # Bibliothek "Panel Data"

Wir nutzen die Pandas-Bibliothek, um die “Automobile_data.txt” in ein pd.DataFrame zu laden.

dataSet = pd.read_csv("Automobile_data.txt",  # Hier liegt die Datei im selben Verzeichnis wie das Python-Skript!
                      delimiter = ',',
                      thousands = None,
                      decimal = '.')

Schauen wir uns dann die ersten fünf Zeilen in IPython via dataSet.head().

In : dataSet.head()
Out: 
   symboling normalized-losses         make fuel-type aspiration num-of-doors  \
0          3                 ?  alfa-romero       gas        std          two   
1          3                 ?  alfa-romero       gas        std          two   
2          1                 ?  alfa-romero       gas        std          two   
3          2               164         audi       gas        std         four   
4          2               164         audi       gas        std         four   

    body-style drive-wheels engine-location  wheel-base  ...    engine-size  \
0  convertible          rwd           front        88.6  ...            130   
1  convertible          rwd           front        88.6  ...            130   
2    hatchback          rwd           front        94.5  ...            152   
3        sedan          fwd           front        99.8  ...            109   
4        sedan          4wd           front        99.4  ...            136   

   fuel-system  bore  stroke compression-ratio horsepower  peak-rpm city-mpg  \
0         mpfi  3.47    2.68               9.0        111      5000       21   
1         mpfi  3.47    2.68               9.0        111      5000       21   
2         mpfi  2.68    3.47               9.0        154      5000       19   
3         mpfi  3.19     3.4              10.0        102      5500       24   
4         mpfi  3.19     3.4               8.0        115      5500       18   

  highway-mpg  price  
0          27  13495  
1          27  16500  
2          26  16500  
3          30  13950  
4          22  17450  

[5 rows x 26 columns]

Hinweis: Der Datensatz hat viele Spalten, so dass diese in der Darstellung mit einem Backslash \ umgebrochen werden.

Gleich noch eine weitere Ausgabe dataSet.info(), die uns etwas über die Beschaffenheit der importierten Daten verrät:

In : dataSet.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
symboling            205 non-null int64
normalized-losses    205 non-null object
make                 205 non-null object
fuel-type            205 non-null object
aspiration           205 non-null object
num-of-doors         205 non-null object
body-style           205 non-null object
drive-wheels         205 non-null object
engine-location      205 non-null object
wheel-base           205 non-null float64
length               205 non-null float64
width                205 non-null float64
height               205 non-null float64
curb-weight          205 non-null int64
engine-type          205 non-null object
num-of-cylinders     205 non-null object
engine-size          205 non-null int64
fuel-system          205 non-null object
bore                 205 non-null object
stroke               205 non-null object
compression-ratio    205 non-null float64
horsepower           205 non-null object
peak-rpm             205 non-null object
city-mpg             205 non-null int64
highway-mpg          205 non-null int64
price                205 non-null object
dtypes: float64(5), int64(5), object(16)
memory usage: 41.7+ KB

Einige Spalten entsprechen hinsichtlich des Datentypes nicht der Erwartung. Für die Spalten ‘horsepower’ und ‘peak-rpm’ würde ich eine Ganzzahl (Integer) erwarten, für ‘price’ hingegen eine Fließkommazahl (Float), allerdings sind die drei Spalten als Object deklariert. Mit Trick 17 im Data Science, der Anzeige der Minimum- und Maximum-Werte einer zu untersuchenden Datenreihe, kommen wir dem Übeltäter schnell auf die Schliche:

dataSet['horsepower'].min()
Out: '100'

dataSet['horsepower'].max()
Out: '?'

Datenbereinigung

Für eine Regressionsanalyse benötigen wir nummerische Werte (intervall- oder ratioskaliert), diese möchten wir auch durch richtige Datentypen-Deklaration herstellen. Nun wird eine Konvertierung in den gewünschten Datentyp jedoch an den (mit ‘?’ aufgefüllten) Datenlücken scheitern.

Schauen wir uns doch einmal die Datenreihen an, in denen in der Spalte ‘peak-rpm’ Fragezeichen stehen:

dataSet[dataSet['peak-rpm'] == '?'][['engine-type', 'num-of-cylinders']]
Out: 
    engine-type num-of-cylinders
130         ohc             four
131         ohc             four

Zwei Datenreihen sind vorhanden, bei denen ‘peak-rpm’ mit einem ‘?’ aufgefüllt wurde. Nun könnten wir diese Datenreihen einfach rauslöschen. Oder mit sinnvollen (im Sinne von wahrscheinlichen) Werten auffüllen. Vermutlichen haben beide Einträge – beide sind OHC-Motoren mit 4 Zylindern – eine ähnliche Drehzahl-Angabe wie vergleichbare Motoren. Mit folgendem Quellcode, gruppieren wir die Spalten ‘engine-type’ und ‘num-of-cylinders’ und bilden für diese Klassen den arithmetischen Mittelwert (.mean()) für die ‘peak-rpm’.

dataSet_rpm = dataSet[dataSet['peak-rpm'] != '?'][['engine-type', 'num-of-cylinders','peak-rpm']]
dataSet_rpm['peak-rpm'] = dataSet_rpm['peak-rpm'].astype(float)
dataSet_rpm_grouped = dataSet_rpm.groupby(['engine-type', 'num-of-cylinders'])
dataSet_rpm_grouped['peak-rpm'].mean()

Und schauen wir uns das Ergebnis an:

dataSet_rpm_grouped['peak-rpm'].mean()
Out: 
engine-type  num-of-cylinders
dohc         four                5700.000000 -- 
             six                 5050.000000
dohcv        eight               5750.000000
l            four                4668.181818
             three               5100.000000
ohc          five                5081.818182
             four                5155.468750
             six                 4821.428571
ohcf         four                4775.000000
             six                 5900.000000
ohcv         eight               4625.000000
             six                 5212.500000
             twelve              5000.000000
rotor        two                 6000.000000
Name: peak-rpm, dtype: float64

Ein Vier-Zylinder-OHC-Motor hat demnach durchschnittlich einen Drehzahl-Peak von 5155 Umdrehungen pro Minute. Ohne nun (fahrlässigerweise) auf die Verteilung in dieser Klasse zu achten, nehmen wir einfach diesen Schätzwert, um die zwei fehlende Datenpunkte zu ersetzen.

Wir möchten jedoch die Original-Daten erhalten und legen ein neues DataSet (dataSet_c) an, in welches wir die Korrekturen vornehmen:

dataSet_c = dataSet.copy()   # das "c"-Anhängsel steht für "corrected"

Nun können wir die fehlenden Peak-RPM-Einträge mit unserem Schätzwert ersetzen:

dataSet_c.loc[dataSet_c['peak-rpm'] == '?', 'peak-rpm'] = 5155

Was bei einer Drehzahl-Angabe noch funktionieren mag, ist für anderen Spalten bereits etwas schwieriger: Die beiden Spalten ‘price’ und ‘horsepower’ sind ebenfalls vom Typ Object, da sie ‘?’ enthalten. Verzichten wir einfach auf die betroffenen Zeilen:

dataSet_c = dataSet_c[dataSet_c['price'] != '?']                    # entsprechende Zeilen herausfiltern
dataSet_c['price'] = dataSet_c['price'].astype(float)               # Typ-Konvertierung zu Float

dataSet_c = dataSet_c[dataSet_c.horsepower != '?']                  # entsprechende Zeilen herausfiltern
dataSet_c['horsepower'] = dataSet_c['horsepower'].astype(float)     # Typ-Konvertierung in Int

Datenvisualisierung mit Pandas

Wir wollen uns nicht lange vom eigentlichen Ziel ablenken, dennoch nutzen wir die Visualisierungsfähigkeiten der Pandas-Library (welche die Matplotlib inkludiert), um uns dann die Anzahlen an Einträgen nach Hersteller der Fahrzeuge (Spalte ‘make’) anzeigen zu lassen:

dataSet_grouped_make = dataSet_c.groupby('make')
dataSet_grouped_make['make'].count().plot(kind = 'bar', figsize = (10, 10))
plt.show()    # Besser jedes Plot abschließen! Auch wenn es in Pandas entstanden ist.

Oder die durchschnittliche PS-Zahl nach Hersteller:

(dataSet_c.groupby('make'))['horsepower'].mean().plot(kind = 'barh',
                                                      title = 'Mean Horsepower',
                                                      figsize = (10, 10))
plt.show()

Vorbereitung der Regressionsanalyse

Nun kommen wir endlich zur Regressionsanalyse, die wir mit Scikit-Learn umsetzen möchten. Die Regressionsanalyse können wir nur mit intervall- oder ratioskalierten Datenspalten betreiben, daher beschränken wir uns auf diese. Die “price”-Spalte nehmen wir jedoch heraus und setzen sie als unsere Zielgröße fest.

""" ----- Vorbereitung für die Regressionsanalyse ----- """
cols_ratio = ['horsepower', 'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-size', 'compression-ratio', 'city-mpg', 'highway-mpg']
cols_target = ['price']

dataSet_ratio = dataSet_c.loc[:, cols_ratio]
dataSet_target = dataSet_c[cols_target]

Interessant ist zudem die Betrachtung vorab, wie die einzelnen nummerischen Attribute untereinander korrelieren. Dafür nehmen wir auch die ‘price’-Spalte wieder in die Betrachtung hinein und hinterlegen auch eine Farbskala mit dem Preis (höhere Preise, hellere Farben).

grr = pd.plotting.scatter_matrix(dataSet_c[cols_target + cols_ratio]
                                 ,c = dataSet_target
                                 ,figsize=(15, 15)
                                 ,marker = 'o'
                                 ,hist_kwds={'bins' : 20}
                                 ,s = 60
                                 ,alpha = 0.8)
plt.show()

Die lineare Korrelation ist hier sehr interessant, da wir auch nur eine lineare Regression beabsichtigen.

Wie man in dieser Scatter-Matrix recht gut erkennen kann, scheinen einige Größen-Paare nahezu perfekt zu korrelieren, andere nicht.

Korrelation…

  • …nahezu perfekt linear: highway-mpg vs city-mpg (mpg = Miles per Gallon)
  • … eher nicht gegeben: highway-mpg vs height
  • … nicht linear, dafür aber nicht-linear: highway-mpg vs price

Nun, wir wollen den Preis eines Fahrzeuges vorhersagen, wenn wir eine andere quantitative Größe gegeben haben. Auf den Preis bezogen, erscheint mir die Motorleistung (Horsepower) einigermaßen linear zu korrelieren. Versuchen wir hier die lineare Regression und setzen somit die Spalte ‘horsepower’ als X und ‘price’ als y fest.

X = dataSet_ratio[['horsepower']] # doppelte [], da eine Liste von Spalten zu übergeben ist
y = dataSet_c[cols_target]

Die gängige Konvention ist übrigens, X groß zu schreiben, weil hier auch mehrere x-Dimensionen enthalten sein dürfen (multivariate Regression). y hingegen, ist stets nur eine Zielgröße (eine Dimension).

Die lineare Regression ist ein überwachtes Verfahren des maschinellen Lernens, somit müssen wir unsere Prädiktionsergebnisse mit Test-Daten testen, die nicht für das Training verwendet werden dürfen. Scitkit-Learn (oder kurz: sklearn) bietet hierfür eine Funktion an, die uns das Aufteilen der Daten abnimmt:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size = 0.3,     # 70% der Daten für das Training
                                                    random_state = None) # bei Bedarf kann hier "dem Zufall auf die Sprünge geholfen" werden

Zu beachten ist dabei, dass die Daten vor dem Aufteilen in Trainings- und Testdaten gut zu durchmischen sind. Auch dies übernimmt die train_test_split-Funktion für uns, nur sollte man im Hinterkopf behalten, dass die Ergebnisse (auf Grund der Zufallsauswahl) nach jedem Durchlauf immer wieder etwas anders aussehen.

Lineare Regression mit Scikit-Learn

Nun kommen wir zur Durchführung der linearen Regression mit Scitkit-Learn, die sich in drei Zeilen trainieren lässt:

""" ----- Lineare Regressionsanalyse ------- """

from sklearn.linear_model import LinearRegression   # importieren der Klasse

lr = LinearRegression()                             # instanziieren der Klasse

lr.fit(X_train, y_train)                            # trainieren

Aber Vorsicht! Bevor wir eine Prädiktion durchführen, wollen wir festlegen, wie wir die Güte der Prädiktion bewerten wollen. Die gängigsten Messungen für eine lineare Regression sind der MSE und R².

MSE = \frac{\sum_{i=1}^n (y_i - \hat{y_i})^2}{n}

Ein großer MSE ist schlecht, ein kleiner gut.

R^2 = 1 - \frac{MSE}{Var(y)}= \frac{\frac{1}{n} \cdot \sum_{i=1}^n (y_i - \hat{y_i})^2}{\frac{1}{n} \cdot \sum_{i=1}^n (y_i - \hat{\mu_y})^2}

Ein kleines R² ist schlecht, ein großes R² gut. Ein R² = 1.0 wäre theoretisch perfekt (da der Fehler = 0.00 wäre), jedoch in der Praxis unmöglich, da dieser nur bei absolut perfekter Korrelation auftreten würde. Die Klasse LinearRegression hat eine R²-Messmethode implementiert (score(x, y)).

print('------ Lineare Regression -----')
print('Funktion via sklearn: y = %.3f * x + %.3f' % (lr.coef_[0], lr.intercept_))
print("Alpha: {}".format(lr.intercept_))
print("Beta: {}".format(lr.coef_[0]))
print("Training Set R² Score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test Set R² Score: {:.2f}".format(lr.score(X_test, y_test)))
print("\n")

Die Ausgabe (ein Beispiel!):

------ Lineare Regression -----
Funktion via sklearn: y = 170.919 * x + -4254.701     # Die Funktion ist als y = 171 * x - 4254.7
Alpha: [-4254.70114803]                               # y-Achsenschnitt bei x = 0
Beta: [ 170.91919086]                                 # Steigung der Gerade
Training Set R² Score: 0.62                           
Test Set R² Score: 0.73

Nach jedem Durchlauf ändert sich mit der Datenaufteilung (train_test_split()) das Modell etwas und auch R² schwankt um eine gewisse Bandbreite. Berauschend sind die Ergebnisse dabei nicht, und wenn wir uns die Regressionsgerade einmal ansehen, wird auch klar, warum:

plt.figure(figsize=(10,10))
plt.scatter(X_train, y_train, color = 'blue')                 # Blaue Punkte sind Trainingsdaten
plt.scatter(X_test, y_test, color = 'green')                  # Grüne Punkte sind Testdaten
plt.plot(X_train, lr.predict(X_train), color = 'red')         # Hier ensteht die Gerade (x, y) = (x, lr.predict(x)
plt.xlabel(X_train.columns[0])
plt.ylabel(cols_target[0])
plt.show()

Bei kleineren Leistungsbereichen, etwa bis 100 PS, ist die Preis-Varianz noch annehmbar gering, doch bei höheren Leistungsbereichen ist die Spannweite deutlich größer. (Nachträgliche Anmerkung vom 06.05.2018: relativ betrachtet, bleibt der Fehler über alle Wertebereiche ungefähr gleich [relativer Fehler]. Die absoluten Fehlerwerte haben jedoch bei größeren x-Werten so eine Varianz der möglichen y-Werte, dass keine befriedigenden Prädiktionen zu erwarten sind.)

Egal wie wir eine Gerade in diese Punktwolke legen, wir werden keine befriedigende Fehlergröße erhalten.

Nehmen wir einmal eine andere Spalte für X, bei der wir vor allem eine nicht-lineare Korrelation erkannt haben: “highway-mpg”

X = dataSet_ratio[['highway-mpg']]
y = dataSet_c[cols_target]

Wenn wir dann das Training wiederholen:

------ Lineare Regression -----
Funktion via sklearn: y = -868.787 * x + 40575.036
Alpha: [ 40575.03556055]
Beta: [-868.7869183]
Training Set R² Score: 0.49
Test Set R² Score: 0.40

Die R²-Werte sind nicht gerade berauschend, und das erklärt sich auch leicht, wenn wir die Trainings- und Testdaten sowie die gelernte Funktionsgerade visualisieren:

Die Gerade lässt sich nicht wirklich gut durch diese Punktwolke legen, da letztere eher eine Kurve als eine Gerade bildet. Im Grunde könnte eine Gerade noch einigermaßen gut in den Bereich von 22 bis 43 mpg passen und vermutlich annehmbare Ergebnisse liefern. Die Wertebereiche darunter und darüber jedoch verzerren zu sehr und sorgen zudem dafür, dass die Gerade auch innerhalb des mittleren Bereiches zu weit nach oben verschoben ist (ggf. könnte hier eine Ridge-/Lasso-Regression helfen).

Richtig gute Vorhersagen über nicht-lineare Verhältnisse können jedoch nur mit einer nicht-linearen Regression erreicht werden.

Nicht-lineare Regression mit Scikit-Learn

Nicht-lineare Regressionsanalysen erlauben es uns, nicht-lineare korrelierende Werte-Paare als Funktion zu erlernen. Im folgenden Scatter-Plot sehen wir zum einen die gewohnte lineare Regressionsgerade (y = a * x + b) in rot, eine polinominale Regressionskurve dritten Grades (y = a * x³ + b * x² + c * x + d) in violet sowie einen Entscheidungsweg einer Entscheidungsbaum-Regression in gelb.

Nicht-lineare Regressionsanalysen passen sich dem Verlauf der Punktwolke sehr viel besser an und können somit in der Regel auch sehr gute Vorhersageergebnisse liefern. Ich ziehe hier nun jedoch einen Gedankenstrich, liefere aber den Quellcode für die lineare Regression als auch für die beiden nicht-linearen Regressionen mit:

Python Script Regression via Scikit-Learn

Weitere Anmerkungen

  • Bibliotheken wie Scitkit-Learn erlauben es, machinelle Lernverfahren schnell und unkompliziert anwenden zu können. Allerdings sollte man auch verstehen, wei diese Verfahren im Hintergrund mathematisch arbeiten. Diese Bibliotheken befreien uns also nicht gänzlich von der grauen Theorie.
  • Statt der “reinen” lineare Regression (LinearRegression()) können auch eine Ridge-Regression (Ridge()), Lasso-Regression (Lasso()) oder eine Kombination aus beiden als sogenannte ElasticNet-Regression (ElasticNet()). Bei diesen kann über Parametern gesteuert werden, wie stark Ausreißer in den Daten berücksichtigt werden sollen.
  • Vor einer Regression sollten die Werte skaliert werden, idealerweise durch Standardisierung der Werte (sklearn.preprocessing.StandardScaler()) oder durch Normierung (sklearn.preprocessing.Normalizer()).
  • Wir haben hier nur zwei-dimensional betrachtet. In der Praxis ist das jedoch selten ausreichend, auch der Fahrzeug-Preis ist weder von der Motor-Leistung, noch von dem Kraftstoffverbrauch alleine abhängig – Es nehmen viele Größen auf den Preis Einfluss, somit benötigen wir multivariate Regressionsanalysen.