Posts

Interview – Die Herausforderungen der Sensor-Datenanalyse für die Automobilindustrie

Interview mit Andreas Festl von VIRTUAL VEHICLE

Andreas Festl ist Data Scientist bei VIRTUAL VEHICLE, ein führendes F&E Zentrum für die Automobil- und Bahnindustrie mit Sitz in Graz, Österreich. Das Zentrum konzentriert sich auf die konsequente Virtualisierung der Fahrzeugentwicklung. Wesentliches Element dabei ist die Verknüpfung von numerischer Simulation und Hardware-Testen, welche ein umfassendes HW-SW Systemdesign sicherstellt. Herr Festl forscht dort an Kontext-basierten Informationssystemen für den Einsatz im Fahrzeug und in der Entwicklung. Er ist ausgebildeter Mathematiker, der sich schon früh dem Thema Data Science verschrieben hat. Zusätzlich ist Herr Festl in der Lehre für Data and Information Science an der Fachhochschule Joanneum tätig.

Data Science Blog: Herr Festl, Sie sind technischer Data Scientist und arbeiten mit Daten, die zum großen Teil von Maschinen generiert werden. Was unterscheidet Ihren Arbeitsalltag vermutlich von den Data Scientists, die sich mit geschäftlichen Daten befassen?

Das wesentliche Merkmal an den Daten, mit denen wir arbeiten, ist die nicht vernachlässigbare zeitliche Komponente. Stellen Sie sich zum Beispiel eine Messung der Fahrzeuggeschwindigkeit vor: Dieses Messsignal kann natürlich nur dann sinnvoll interpretiert und verarbeitet werden, wenn die Zeit mitberücksichtigt wird. Die bloße Kenntnis der einzelnen Geschwindigkeitswerte hilft Ihnen ohne die korrekte Abfolge nicht weiter. Das führt dazu, dass viele Algorithmen aus dem Bereich des maschinellen Lernens nicht direkt auf diesen Daten arbeiten können.

Es existieren hier natürlich dennoch viele Möglichkeiten und Ansätze dafür, Wissen aus den Daten zu gewinnen; diese werden jedoch scheinbar noch nicht so oft verwendet, weshalb die verfügbare Software meist nicht für industrielle, sondern für akademische Nutzer ausgelegt ist. Ein wesentlicher Teil meiner Arbeit besteht deshalb darin, die passenden Libraries zu finden und diese für unsere Use-Cases anzupassen oder die Methode neu zu implementieren. Es gibt durchaus immer wieder Zeiten in denen meine Job-Beschreibung „mathematischer Programmierer“ lauten sollte und nicht “Data Scientist“. Ich denke, das ist im klassischen Bereich, der sich geschäftlichen Daten beschäftigt, vielleicht nicht mehr so häufig, da dort die verfügbare Software schon sehr ausgreift ist.

Außerdem beschreiben unsere Daten oft komplexe technische Prozesse in Fahrzeugkomponenten. Hier ist eine rege Kommunikation mit den jeweiligen Domänenexperten unerlässlich, damit ich auch als fachfremder Data Scientist den Prozess, der die Daten erzeugt, zumindest in Grundzügen verstehen kann. Dieser kommunikative Teil, in dem man sehr viel über verschiedenste Fachbereiche erfährt, ist für mich einer der schönsten Aspekte meiner Arbeit.

Data Science Blog: Wenn Data Science einem Laien erklärt wird, kommen häufig Beispiele von Kaufempfehlungen oder Gesundheitsprognosen von Fitness-Apps zur Sprache. Welches Beispiel würden Sie im Kontext von Automotive verwenden?

Die Möglichkeiten für den Einsatz von Data Science im Automotive Bereich sind extrem vielfältig – sie kann eigentlich über den gesamten Lebenszyklus eines Fahrzeugs gewinnbringend eingesetzt werden. Ein Einsatzbeispiel, das der Fahrer direkt positiv erleben kann, wäre die Predictive Maintenance von Fahrzeugteilen. Ähnlich zu den von Ihnen angesprochenen Fitness-Apps geht es hier darum eine „Gesundheitsprognose“ für die einzelnen Fahrzeugteile anhand von Messwerten zu erstellen. Im Idealfall müssen Sie Ihr Auto dann nicht mehr in fixen Service-Intervallen in die Werkstatt stellen, sondern das Auto meldet sich automatisch kurz bevor ein Teil ausgetauscht werden muss. Diese Meldung erschiene dann deshalb, weil die Messwerte darauf schließen lassen, dass es bald zu einem Defekt kommen wird und nicht einfach nach einem fixen, vorher definierten Zeitraum. Heute werden ja Teile oft einfach deswegen ausgetauscht, weil es der Wartungsplan so vorsieht – unabhängig von ihrer tatsächlichen Abnutzung.

Data Science Blog: Was sind denn gegenwärtig besonders interessante Anwendungsfälle und an welchen arbeiten Sie für die Zukunft?

Aus Sicht der Anwendung finde ich es besonders spannend durch Sensor-Signale auf Eigenschaften des Fahrers zu schließen. Die Methodik dazu entwickeln wir gerade in aktuellen Projekten. Es ist zum Beispiel durchaus denkbar, sicherheitsrelevante Ereignisse und Fahrmanöver zu identifizieren. Diese Informationen können dann vielseitig verwendet werden. Einige Beispiele dazu: Verkehrsplaner könnten damit automatisiert besonders gefährliche Kreuzungen angezeigt bekommen, Versicherer könnten ihren Kunden auf das individuelle Risikoverhalten abgestimmte Produkte anbieten oder Kunden könnten sich Ihren Taxifahrer über eine App nach seinem Fahrstil aussuchen. Denkbar wäre auch eine Diebstahlsicherung: Das Fahrzeug erkennt über den Fahrstil, dass es von einer unbefugten Person benutzt wird und löst daraufhin einen Alarm aus. Hier eröffnen sich viele Möglichkeiten.

Aus Sicht der Datenanalyse finde ich es besonders interessant, Algorithmen, die für ganz andere Aufgabenstellung entwickelt wurden, auf Probleme aus dem Automotive-Bereich anzuwenden. In einem unserer Projekte analysieren wir beispielsweise Software-Logfiles von Prüfständen und verwenden dazu Association Rules (eine Technik aus der Warenkorbanalyse) und Methoden, die normalerweise für das Untersuchen von Interaktionen in sozialen Netzwerken verwendet werden. Dass diese Übertragbarkeit gegeben ist finde ich extrem spannend.

Data Science Blog: Über welche Datenquellen verfügen Sie? Gibt es auch fahrzeugexterne Datenquellen, die sinnvoll sein könnten?

Da sprechen Sie natürlichen einen kritischen Punkt in jedem Data Science Projekt an: Ohne Daten geht nichts. Zusätzlich müssen die verwendeten Daten eine gewisse Qualität aufweisen und natürlich mit dem zu lösenden Problem in möglichst direktem Zusammenhang stehen.

Welche Datenquellen wir genau verwenden, hängt natürlich sehr stark vom konkretem Projekt ab. In industrienahen Projekten werden die Daten in der Regel vom Industriepartner bereitgestellt. Das kann dann alles Mögliche sein: Messungen von Prüfständen, Fertigungs-Protokolle, Wartungsdaten und vieles mehr.

Diese „Industrie-Daten“ unterliegen dann aber üblicherweise einer strengen Geheimhaltung und dürfen nicht in anderen Projekten verwendet werden. Deshalb haben wir im Unternehmen einen eigenen Datenlogger entwickelt, mit dem wir selber Daten aufnehmen können, die dann uns gehören. Diese Daten verwenden wir hauptsächlich in forschungsnahen Projekten, in denen die Ergebnisse publiziert werden sollen.

Fahrzeugexterne Datenquellen sind definitiv sinnvoll und werden immer mehr mit den klassischen Sensor-Daten fusioniert; oft ergibt sich dann durch eine Kombination von proprietären und offen verfügbaren Daten ein großer Mehrwert. In der vorhin angesprochenen Erkennung von sicherheitsrelevanten Ergebnissen spielt zum Beispiel das Wetter eine wesentliche Rolle: Eine zu schnell gefahrene Kurve ist bei Nässe oder Glätte deutlich gefährlicher als auf trockener Fahrbahn. Generell werden Daten über Umwelt und Infrastruktur immer wichtiger. Praktisch jeder fahrerzentrierte Dienst benötigt sie. Denken Sie zum Beispiel an Google Maps, das bereits heute die Bewegungsdaten von vielen Verkehrsteilnehmern gemeinsam analysiert um Vorhersagen über die Verkehrsdichte und damit über die optimale Route zu treffen.

Data Science Blog: Wie aufwändig gestaltet sich das Data Engineering, also die Datenbereitstellung und -zusammenführung?

Das ist definitiv ein schwieriges Unterfangen. Gerade Sensordaten erreichen schnell eine beachtliche Größe, die den Einsatz eines Big Data Technologie-Stacks erforderlich macht. Hier macht uns aber wieder die bereits angesprochene zeitliche Komponente unserer Daten zu schaffen. Die meisten Big Data Technologien skalieren ja, indem sie die Datenpunkte mehr oder weniger zufällig auf mehrere Rechner verteilen. Das ist bei unseren Daten aber nicht zulässig, die Reihenfolge der Daten ist hochrelevant! Hier müssen wir also entweder auf einer anderen Ebene parallelisieren oder Technologie mit spezieller Funktionalität für Zeitreihen verwenden.

Data Science Blog: Welche Technologien setzen Sie für die Datenbereitstellung und -analyse ein? Was halten Sie vom Einsatz von Open Source Software?

Wir implementieren unsere Analysen meist in R oder Python, manchmal kommen auch Matlab oder C# (letzteres meist für User Interfaces) zum Einsatz. Für Big Data Analysen verwenden wir meist Apache Spark über die R und Python APIs. Für die Datenablage und Bereitstellung verwenden wir hauptsächlich PostgreSQL mit Timescale Erweiterung, InfluxDB sowie Apache Hadoop. Grundsätzlich sind wir jedoch nicht auf bestimmte Technologien fixiert, sondern versuchen immer das jeweils beste Tool für den jeweiligen Einsatzzweck zu verwenden.

Ich finde es spricht nichts gegen den Einsatz von Open Source Software – wie Sie ja auch an unserem Technologie-Stack erkennen können. Ich habe aber auch nichts gegen Closed Source Software – es gibt in beiden Bereichen genug gute und schlechte Software. Worauf ich aber achte, ist keine neue Technologie zu verwenden, hinter der ein zu kleines Entwicklerteam oder gar nur ein einzelner Entwickler steht. Hier ist mir die Gefahr zu groß, dass die Entwicklung bald eingestellt wird und die Ergebnisse meiner Analysen nicht mehr nachvollziehbar sind.

Data Science Blog: Zum Abschluss noch eine Frage von jungen Nachwuchskräften, die davon träumen, eine Karriere als Data Scientist im Ingenieurwesen zu machen: Welche Voraussetzungen bzw. Eigenschaften sollte ein Data Scientist in Ihrem Bereich mitbringen?

Neben einer fundierten fachlichen Ausbildung sind Neugier und der Wille, Zusammenhänge zu verstehen, Eigenschaften, die für jeden Data Scientist sehr wichtig sind. Zusätzlich hilft es durchaus eine kommunikative Persönlichkeit zu sein: Es gilt in Workshops die richtigen Informationen über die Daten einzuholen – das ist nicht immer ganz leicht. Zusätzlich müssen natürlich regelmäßig die Resultate der jeweiligen Analysen einem oft fachfremden Publikum präsentiert werden.

Machine Learning vs Deep Learning – Wo liegt der Unterschied?

Machine Learning gehört zu den Industrie-Trends dieser Jahre, da besteht kein Zweifel. Oder war es Deep Learning? Oder Artificial Intelligence? Worin liegt da eigentlich der Unterschied? Dies ist Artikel 1 von 6 der Artikelserie –Einstieg in Deep Learning.

Machine Learning

Maschinelles Lernen (ML) ist eine Sammlung von mathematischen Methoden der Mustererkennung. Diese Methoden erkennen Muster beispielsweise durch bestmögliche, auf eine bestmögliche Entropie gerichtete, Zerlegung von Datenbeständen in hierarchische Strukturen (Entscheidungsbäume). Oder über Vektoren werden Ähnlichkeiten zwischen Datensätzen ermittelt und daraus trainiert (z. B. k-nearest-Neighbour, nachfolgend einfach kurz: k-nN) oder untrainiert (z.B. k-Means) Muster erschlossen.

Algorithmen des maschinellen Lernens sind tatsächlich dazu in der Lage, viele alltägliche oder auch sehr spezielle Probleme zu lösen. In der Praxis eines Entwicklers für Machine Learning stellen sich jedoch häufig Probleme, wenn es entweder zu wenige Daten gibt oder wenn es zu viele Dimensionen der Daten gibt. Entropie-getriebene Lern-Algorithmen wie Entscheidungsbäume werden bei vielen Dimensionen zu komplex, und auf Vektorräumen basierende Algorithmen wie der k-nächste-Nachbarn-Algorithmus sind durch den Fluch der Dimensionalität in ihrer Leistung eingeschränkt.


Der Fluch der Dimensionalität

Datenpunkte sind in einem zwei-dimensionalen Raum gut vorstellbar und auch ist es vorstellbar, das wir einen solchen Raum (z. B. ein DIN-A5-Papierblatt) mit vielen Datenpunkten vollschreiben. Belassen wir es bei der Anzahl an Datenpunkten, nehmen jedoch weitere Dimensionen hinzu (zumindest die 3. Dimension können wir uns noch gut vorstellen), werden die Abstände zwischen den Punkten größer. n-dimensionale Räume können gewaltig groß sein, so dass Algorithmen wie der k-nN nicht mehr gut funktionieren (der n-dimensionale Raum ist einfach zu leer).


Auch wenn es einige Konzepte zum besseren Umgang mit vielen Dimensionen gibt (z. B. einige Ideen des Ensemble Learnings)

Feature Engineering

Um die Anzahl an Dimensionen zu reduzieren, bedienen sich Machine Learning Entwickler statistischer Methoden, um viele Dimensionen auf die (wahrscheinlich) nützlichsten zu reduzieren: sogenannte Features. Dieser Auswahlprozess nennt sich Feature Engineering und bedingt den sicheren Umgang mit Statistik sowie idealerweise auch etwas Fachkenntnisse des zu untersuchenden Fachgebiets.
Bei der Entwicklung von Machine Learning für den produktiven Einsatz arbeiten Data Scientists den Großteil ihrer Arbeitszeit nicht an der Feinjustierung ihrer Algorithmen des maschinellen Lernens, sondern mit der Auswahl passender Features.

Deep Learning

Deep Learning (DL) ist eine Disziplin des maschinellen Lernes unter Einsatz von künstlichen neuronalen Netzen. Während die Ideen für Entscheidungsbäume, k-nN oder k-Means aus einer gewissen mathematischen Logik heraus entwickelt wurden, gibt es für künstliche neuronale Netze ein Vorbild aus der Natur: Biologische neuronale Netze.

Prinzip-Darstellung eines künstlichen neuronalen Netzes mit zwei Hidden-Layern zwischen einer Eingabe- und Ausgabe-Schicht.

Wie künstliche neuronale Netze im Detail funktionieren, erläutern wir in den nächsten zwei Artikeln dieser Artikelserie, jedoch vorab schon mal so viel: Ein Eingabe-Vektor (eine Reihe von Dimensionen) stellt eine erste Schicht dar, die über weitere Schichten mit sogenannten Neuronen erweitert oder reduziert und über Gewichtungen abstrahiert wird, bis eine Ausgabeschicht erreicht wird, die einen Ausgabe-Vektor erzeugt (im Grunde ein Ergebnis-Schlüssel, der beispielsweise eine bestimmte Klasse ausweist: z. B. Katze oder Hund). Durch ein Training werden die Gewichte zwischen den Neuronen so angepasst, dass bestimmte Eingabe-Muster (z. B. Fotos von Haustieren) immer zu einem bestimmten Ausgabe-Muster führen (z. B. “Das Foto zeigt eine Katze”).

Der Vorteil von künstlichen neuronalen Netzen ist die sehr tiefgehende Abstraktion von Zusammenhängen zwischen Eingabe-Daten und zwischen den abstrahierten Neuronen-Werten mit den Ausgabe-Daten. Dies geschieht über mehrere Schichten (Layer) der Netze, die sehr spezielle Probleme lösen können. Aus diesen Tatsachen leitet sich der übergeordnete Name ab: Deep Learning

Deep Learning kommt dann zum Einsatz, wenn andere maschinelle Lernverfahren an Grenzen stoßen und auch dann, wenn auf ein separates Feature Engineering verzichtet werden muss, denn neuronale Netze können über mehrere Schichten viele Eingabe-Dimensionen von selbst auf die Features reduzieren, die für die korrekte Bestimmung der Ausgabe notwendig sind.

Convolutional Neuronal Network

Convolutional Neuronal Networks (CNN) sind neuronale Netze, die vor allem für die Klassifikation von Bilddaten verwendet werden. Sie sind im Kern klassische neuronale Netze, die jedoch eine Faltungs- und eine Pooling-Schicht vorgeschaltet haben. Die Faltungsschicht ließt den Daten-Input (z. B. ein Foto) mehrfach hintereinander, doch jeweils immer nur einen Ausschnitt daraus (bei Fotos dann einen Sektor des Fotos), die Pooling-Schicht reduzierte die Ausschnittsdaten (bei Fotos: Pixel) auf reduzierte Informationen. Daraufhin folgt das eigentliche neuronale Netz.

CNNs sind im Grunde eine spezialisierte Form von künstlichen neuronalen Netzen, die das Feature-Engineering noch geschickter handhaben.

Deep Autoencoder

Gegenwärtig sind die meisten künstlichen neuronalen Netze ein Algorithmen-Modell für das überwachte maschinelle Lernen (Klassifikation oder Regression), jedoch kommen sie auch zum unüberwachten Lernen (Clustering oder Dimensionsreduktion) zum Einsatz, die sogenannten Deep Autoencoder.

Deep Autoencoder sind neuronale Netze, die im ersten Schritt eine große Menge an Eingabe-Dimensionen auf vergleichsweise wenige Dimensionen reduzieren. Die Reduktion (Encoder) erfolgt nicht abrupt, sondern schrittweise über mehrere Schichten, die reduzierten Dimensionen werden zum Feature-Vektor. Daraufhin kommt der zweite Teil des neuronalen Netzes zum Einsatz: Die reduzierten Dimensionen werden über weitere Schichten wieder erweitert, die ursprünglichen Dimensionen als abstrakteres Modell wieder rekonstruiert (Decoder). Der Sinn von Deep Autoencodern sind abstrakte Ähnlichkeitsmodelle zu erstellen. Ein häufiges Einsatzgebiet sind beispielsweise das maschinelle Identifizieren von ähnlichen Bildern, Texten oder akkustischen Signalmustern.

Artificial Intelligence

Artificial Intelligence (AI) oder künstliche Intelligenz (KI) ist ein wissenschaftlicher Bereich, der das maschinelle Lernen beinhaltet, jedoch noch weitere Bereiche kennt, die für den Aufbau einer KI von Nöten sind. Eine künstliche Intelligenz muss nicht nur Lernen, sie muss auch Wissen effizient abspeichern, einordnen bzw. sortieren und abrufen können. Sie muss ferner über eine Logik verfügen, wie sie das Wissen und das Gelernte einsetzen muss. Denken wir an biologische Intelligenzen, ist es etwa nicht so, dass jegliche Fähigkeiten erlernt wurden, einige sind mit der Geburt bereits ausgebildet oder liegen als sogenannter Instinkt vor.

Ein einzelner Machine Learning Algorithmus würde wohl kaum einen Turing-Test bestehen oder einen Roboter komplexe Aufgaben bewältigen lassen. Daher muss eine künstliche Intelligenz weit mehr können, als bestimmte Dinge zu erlernen. Zum wissenschaftlichen Gebiet der künstlichen Intelligenz gehören zumindest:

  • Machine Learning (inkl. Deep Learning und Ensemble Learning)
  • Mathematische Logik
    • Aussagenlogik
    • Prädikatenlogik
    • Default-Logik
    • Modal-Logik
  • Wissensbasierte Systeme
    • relationale Algebra
    • Graphentheorie
  • Such- und Optimierungsverfahren:
    • Gradientenverfahren
    • Breitensuche & Tiefensuche

AI(ML(DL))

Buch-Empfehlungen

Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung (Computational Intelligence) Praxiseinstieg Deep Learning: Mit Python, Caffe, TensorFlow und Spark eigene Deep-Learning-Anwendungen erstellen

Wieviele Trainungsbeispiele benötigen Lernverfahren? (1/2)

Kurz nach der Jahrtausendwende begann das Zeitalter der digitalen Daten. Seitdem übertrifft die Menge der digitalen Daten die der Analogen [HL11] und dem Maschinellen Lernen stehen enorme Datenmengen zur Verfügung. Unter dem Buzzword „big data“ wird dabei meist nur das reine Volumen gesehen, andere Faktoren, wie die Frequenz mit der die Daten zu verarbeiten sind und die Variabilität der Formate werden oft vernachlässigt, obwohl auch solche Daten unter „big data“ zusammengefasst werden. Betrachtet man das Volumen dann spielen zwei Faktoren eine zentrale Rolle, die das „big“ von „big data“ ausmachen: die Anzahl der Beispieldatensätze und – und dies wird häufig übersehen – die Anzahl der Eigenschaften mit denen die Beispieldaten beschrieben werden.
Wenn von „big data“ gesprochen wird, wird dabei oft angenommen, dass genügend Datensätze vorhanden sind. Für bestimmte Anwendungen jedoch, müssen die Daten in unterschiedliche Gruppen unterschieden werden, um beim Lernen nicht Äpfel und Birnen in einen Topf zu werfen. In solchen Fällen kann es leicht passieren, dass pro Gruppe zu wenig Beispieldaten vorhanden sind und die Frage an Bedeutung gewinnt: „Reichen die Datensätze eigentlich aus, um ein Vorhersagemodel mit einer gewissen Mindestgüte zu lernen?“.
Leider gibt es bisher keine einfache Antwort auf diese Frage, da diese neben der Anzahl der Eigenschaften – der Dimensionalität – der Daten, von der Struktur des Datenraums, der Verteilung der Daten in diesem Raum, dem verwendeten Lernverfahren, der Ausdrucksfähigkeit seiner Hypothesenrepräsentation und seiner endgültigen Parametrisierung abhängt. In der “Computational Learning Theory” wurden jedoch Ansätze zur Abschätzungen von Untergrenzen erarbeitet, die, unter der Annahme idealer Lernverfahren, zu mindestens eine Aussage über die benötigte Mindestmenge an Trainingsdaten gestatten.
Ziel dieses Beitrags ist es auf möglichst anschauliche Art und Weise anhand eines praktischen Beispiels zu zeigen, welchen Einfluss die Dimensionalität der Daten auf die Abschätzung der Anzahl der benötigten Beispiele für das Erlernen von Vorhersagemodellen – genauer einfachen Klassifikationsmodellen[1] – hat und welche Methoden hierfür existieren. In diesem ersten Teil liegt das Hauptaugenmerk auf endlichen Daten- und Hypothesenräumen und wir werden sehen, dass selbst für eine kleine Anzahl von Eigenschaften – sprich Dimensionen – nützliche Aussagen nur für sehr einfache Hypothesenrepräsentationen möglich sind. Im zweiten Teil werden wir einen Abschätzungsansatz betrachten, der die „Unterscheidungsstärke“ unterschiedlicher Lernverfahren berücksichtigt und mit dem auch Abschätzungen für unendliche Daten- und Hypothesenräume möglich werden.

Anwendungsbeispiel

Betrachten wir das Beispiel eines Online-Shops, der Produkte über das Internet verkauft und dessen Produkte klassifiziert werden sollen. Wie die Produkte klassifiziert werden sollen ist für unsere Betrachtungen unerheblich, was wir aber im Kopf haben sollten: der Absatz unterschiedlicher Produkte folgt einer Potenzverteilung. Eine kleine Zahl von Produkten wird sehr häufig verkauft, so dass für sie viele Datensätze existieren (solche Produkte werden gewöhnlicher Weise in konventionellen Geschäften vertrieben, die nur begrenzte Lagerkapazitäten haben). Der Großteil der Produkte wird jedoch eher seltener umgesetzt (auch als „long tail“ bezeichnet), so dass die Anzahl ihrer Datensätze gering ist; u.U. so gering, dass für sie keine verlässlichen Vorhersagemodelle erlernbar sind.

Zur Illustration gehen wir davon aus, dass in dem Online-Shop Produkte von 500 Marken verkauft werden und diese Produkte neben ihrer Marke durch ihre Größe (10 mögliche Werte), ihre Farbe (20 mögliche Werte), die ersten drei Ebenen der Google Produktkategorien (auf der dritten Ebene 500 mögliche Werte) und ihren Preis (im Bereich 0,49 – 100 €) beschrieben werden.

In diesem Kontext besitzt die Antwort auf die Frage: „Wie viele Daten werden überhaupt für ein Lernverfahren benötigt?“ offensichtlich konkreten Nutzen,

  • da wir abschätzen können, ob für ein konkretes Produkt überhaupt ein sinnvolles Vorhersagemodell erlernbar ist,
  • da wir aus der Abschätzung auf die Dauer der Datensammlung schließen können und
  • um ggf. die Daten von selten verkauften Produkten inhaltlich oder zeitlich zu aggregieren.

Was uns vorweg klar sein sollte

Die Daten, die wir zum Erlernen von Vorhersagemodellen verwenden, werden durch Eigenschaften (normalerweise als Feature, in der Statistik auch als Variablen bezeichnet) beschrieben. Die Eigenschaften werden in beobachtete und abhängige Eigenschaften (im Maschinellen Lernen auch als Label bezeichnet) unterschieden. Die Wertebereiche der Eigenschaften können in endliche und unendliche Wertebereich unterschieden werden.

Wir können nicht erwarten, dass ein Lernverfahren ein 100%ig korrektes Modell erlernt. Lernverfahren versuchen durch einen induktiven Schluss aus Daten ein Vorhersagemodell zu ermitteln. Da die zur Verfügung stehende Datenmenge immer begrenzt sein wird und die Daten damit realistischer Weise unvollständig sein werden, Messfehler und Inkonsistenzen enthalten können, kann auch ein erlerntes Modell niemals 100%ig korrekt sein.

Viele unterschiedliche Modelle können konsistent mit den verfügbaren Daten sein. Ziel des Lernverfahrens ist es daher mit den verfügbaren Daten das bestmögliche Vorhersagemodell zu ermitteln.

Wir müssen in Kauf nehmen, dass unbekannte, zukünftige oder ungewöhnliche Daten zu fehlerhaften Vorhersagen führen. Zum Lernzeitpunkt ist nur ein Ausschnitt aller Daten verfügbar. Zukünftig erhobene Daten können Veränderungen unterliegen oder es können bisher noch nicht gesehene Fälle auftreten, auf die das erlernte Modell nicht mehr richtig passt.

Aus diesen Fakten ergibt sich die einzig realistische Annahme: ein gutes Lernverfahren soll mit großer Wahrscheinlichkeit eine gute Näherung des richtigen Vorhersagemodells erlernen.

Anzahl benötigter Trainingsfälle

Zur Abschätzung der Anzahl benötigter Trainingsfälle – als Beispielkomplexität (sample complexity) bezeichnet – wurden in der Computational Learning Theory unterschiedliche Ansätze entwickelt. Diese Ansätze beschreiben für idealisierte Lernverfahren unter welchen Bedingungen probabilistisch, approximativ, korrektes Lernen (PAC learning) effizient möglich ist. Grundlegend für die Einsetzbarkeit dieser Ansätze ist die Unterscheidung, ob das Lernen in einem endlichen oder unendlichen Hypothesenraum erfolgt, und ob das Lernverfahren konsistente Hypothesen oder nur näherungsweise Hypothesen, z.B. beim Vorliegen von Messfehlern, zu den Daten erlernen kann.

Endliche Datenräume

Sofern die Daten nur durch nominelle Eigenschaften mit endlichen Wertebereichen beschrieben werden[2], lässt sich die Größe des Datenraums relativ einfach bestimmen. Die folgende Tabelle beschreibt für die wichtigsten nominellen Eigenschaftstypen Größenfaktoren, die im Folgenden zur vereinheitlichten Darstellung verwendet werden:

Type
t
Fehlende Werte (NA) ? Größe des Wertebereichs
n
Größenfaktor g(t)
Boolean Nein 2 2
Boolean Ja 2 3
Nominal (Menge) Nein n_t n_t
Nominal (Menge) Ja n_t n_t+1

Die Größe eines endlichen d-dimensionalen Datenraums D kann allgemein mit folgender Formel bestimmt werden |D| = \prod_{i=1}^d{g(t_i)}.

Das Lernproblem besteht darin: aus einer Teilmenge von Trainingsbeispielen S  aus dem Datenraum D, i.e. S \subset D, die ein Trainer dem Lernverfahren vorgibt, um Zielkonzept c zu erlernen, eine Hypothese aus dem Hypothesenraum h \in H des Lernverfahrens zu ermitteln, welche (möglichst) alle positiven Beispiel S_p  umfasst und (möglichst) alle negativen Beispiele S_n  ausschließt.

Einfache Hypothesenrepräsentation

Die einfachste Hypothesenrepräsentation, in der Lernen, welches über einfaches Erinnern hinausgeht, sinnvoll ist, sind Disjunktionen von Bool’schen Eigenschaften. Eine Beispielanwendung für die diese Repräsentation Sinn macht, ist das Erkennen von Spam-Emails anhand des Vorliegens unterschiedlicher alternativer Eigenschaften, die Spam-Emails charakterisieren. Der Hypothesenraum dieser Sprache besitzt eine Größe von |H| = 2^d [FoDS18]. Ein Beispiel für ein verbreitetes Lernverfahren, das eine Hypothesenrepräsentation dieses Typs nutzt, ist Naive Bayes.

Beliebige nominelle Eigenschaften können durch One-Hot- oder Dummy-Encoding als Bool’sche Variablen kodiert werden. Damit ergibt sich zum Erlernen von Disjunktionen kodierter, Bool’scher Eigenschaften die Größe des Hypothesenraums als |H| = 2^{\sum_{i=1}^d{g(t_i)}}.

Um unser Produktbeispiel in dieser Sprache zu repräsentieren, müssen die Eigenschaften geeignet kodiert werden, z.B. durch One-Hot- oder Dummy-Encoding, bei dem jeder Wert einer Eigenschaft durch eine neue bool’sche Variable kodiert wird. Hieraus ergeben sich im Fall von One-Hot-Encoding 500+10+20+500+9941=10.971 und im Fall von Dummy-Encoding 499+9+19+499+9940=10.966 neue Bool’sche Eigenschaften.

Eigenschaftsvektoren (Feature-Vektoren, bzw. Konjunktionen von Eigenschaften) stellen die nächstkomplexere Repräsentationssprache dar, die, solange sie nicht um ein Konstrukt zur Verallgemeinerung erweitert wird, sehr unspektakulär ist, da Beispiele mit ihr lediglich erinnert werden. Erst wenn ein „don’t care“-Symbol, wie z.B. „?“, für beliebige Eigenschaftswerte hinzugefügt wird, wird die extremste Form von Generalisierung möglich, die von einzelnen Werten gleich auf alle Werte generalisiert [ML97]. Durch das „don’t care“-Symbol wird der Größenfaktor g um einen weiteren Wert erhöht. Für diese Repräsentation beträgt die Größe des Hypothesenraums  über rein bool‘schen Eigenschaften (inkl. „don’t care“)  |H| = 3^d und für allgemeine endliche Eigenschaften|H| = \prod_{i=1}^d{(g(t_i)+1)}. Diese Repräsentation ist sehr eingeschränkt und erlaubt es nur einzelne und keine kombinierten Konzepte zu erlernen. Sie ist daher eigentlich nur von theoretischem Interesse und wird – soweit bekannt – in keinem praktisch eingesetzten Lernverfahren genutzt.

Interessanter ist eine Verallgemeinerung dieser Repräsentationssprache, die k-CNF (konjunktive Normalform), die aus einer Konjunktion von Disjunktionen der Länge k besteht, die sowohl polynomielle Beispiel- als auch Zeitkomplexität besitzt [ML97] und für die ein effizienter Algorithmus existiert. Diese Repräsentation lässt sich auch auf einen d-dimensionalen Eigenschaftsvektor übertragen, in dem für jede Eigenschaft Generalisierungen über beliebige Teilmengen erlaubt werden. Die Größe des Hypothesenraums dieser Sprache beträgt |H| = \prod_{i=1}^d{2^{g(t_i)}} = 2^{\sum_{i=1}^d{g(t_i)}}. Mit dieser Sprache können alle Eigenschaften zwar separat auf beliebige Teilmengen generalisiert werden, Korrelationen zwischen Eigenschaften werden jedoch nicht berücksichtigt.

Für Repräsentationssprachen, die keinerlei Einschränkungen machen, besitzt der Hypothesenraum für Daten mit d bool‘schen Eigenschaften eine Größe von |H| = 2^{2^d}. Auf beliebige endliche Eigenschaften übertragen, kann diese Aussage zu |H| = 2^{|D|} = 2^{\prod_{i=1}^d{g(t_i)}} verallgemeinert werden.

Wie aus diesen Abschätzungen ersichtlich wird, hat die Dimensionalität d der Daten einen direkten Einfluss auf die Größe des Hypothesenraums und damit auf die Anzahl der von einem Lernverfahren zu berücksichtigenden Konzepte.

Realistische Hypothesenrepräsentation

Bis auf einfache Disjunktionen bool’scher Eigenschaften, sind einfache Hypothesenrepräsentationen entweder zu ausdrucksschwach, so dass nützliche Konzepte kaum ausdrückbar sind, oder zu ausdrucksstark, so dass Lernen in vertretbarer nicht-exponentieller Zeit nicht möglich ist. Die gängigen Lernverfahren, wie k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forrests, AdaBoost, XGBoost, Logistic Regression, Support Vector Machines und Neuronale Netze, etc. beschränken durch spezifische Annahmen (inductive bias) den Hypothesenraum, um so nützliche Konzepte in vernünftiger Zeit zu erlernen.

Leider lassen sich nur für wenige der real eingesetzten Verfahren Abschätzungen für die Größe des Hypothesenraums finden.

Verfahren |H| Parameter
Boolean-coded Naive Bayes 2^{\sum_{i=1}^d{g(t_i)}}
Boolean-coded Decision Trees[3] 2^{\sum_{i=1}^d{g(t_i)}}
Boolean-coded Decision Trees with limited depth [4] 2(2^k-1)(1+log_2{⁡\sum_{i=1}^d{g(t_i)}} ) +1 k = Tiefenbegrenzung

Lernen eines zu allen Trainingsdaten konsistenten Konzepts (aka Overfitting)

Unter der Annahme eines idealen Lernalgorithmus, kann die Größe des Hypothesenraums dazu verwendet werden die Anzahl der Trainingsdaten m die ein „konsistenter Lernalgorithmus“[5] benötigt, um ein beliebiges Konzept mit einem maximalen Fehler \epsilon und einer Unsicherheit \delta (bzw. einer Wahrscheinlichkeit von 1 - \delta ) zu erlernen, abgeschätzt werden mit[6]

    \[m \geq \frac{1}{\epsilon}(ln{(|H|)} + ln{(\frac{1}{\delta})})\]

Nehmen wir für unser Beispielszenario an Produkt A wird stündlich im Durchschnitt 100 mal verkauft und Produkt B wird jeden Tag im Schnitt nur 10 mal verkauft.  Zur Vereinfachung nehmen wir weiter an, die Produkte werden jeden Tag – egal ob Wochentag oder Wochenende – nur zwischen 6:00 und 20:00 Uhr verkauft. Pro Monat erhalten wir für Produkt A 42.000 Datensätze und für Produkt B 300 Datensätze.

Der Datenraum D hat eine Größe von |D| = 500*10*20*500*9941 \approx 497 Mrd. Punkten. Mit einer einfachen bool’schen Kodierung ergibt sich d = 500+10+20+500+9951 = 10.971 und |H| = 2^{10.961}.

Wollten wir Datensätze dieser Produkte mit einem Fehler \epsilon von maximal 10% und einer maximalen Unsicherheit \delta = 5% – wie auch immer – klassifizieren, so würden wir für den Einsatz von Naive Bayes oder unbegrenzten DecisionTrees mindestens 76.145 Datensätze benötigen. Weder die monatlichen Daten von Produkt A noch Produkt B würden ausreichen.

Mit einem tiefenbeschränkten Entscheidungsbaum-Verfahren mit 5 Stufen, sind, ungeachtet der Qualität des Lernergebnisses, die Daten von Produkt A und B ausreichend, um die Anforderungen an \epsilon und \delta einzuhalten, da nur mindestens 91 Datensätze benötigt werden.

Ein, dieser Abschätzung zugrundeliegender, idealer Lernalgorithmus, ist jedoch für praktische Anwendungen unrealistisch, da er zwar für die Trainingsdaten ein konsistentes Konzept ermitteln würde, welches aber bei unbekannten, neuen Daten versagen kann. Der angenommene Lernalgorithmus unterliegt der „Überanpassung“ (overfitting).

Nichts desto trotz ist diese Abschätzungsformel hilfreich, da sie eine Aussage erlaubt, wie viele Trainingsbeispiele im besten Fall ausreichen, um mit einem idealen Lernverfahren ein Konzept mit einem maximalen Fehler von \epsilon und einer Unsicherheit von höchstens \delta zu erlernen, das in der genutzten Hypothesenrepräsentation ausdrückbar ist.

Agnostisches Lernen eines Konzeptes, das möglichst gut zu den Trainingsdaten passt

Überanpassung wollen wir in der Regel vermeiden, damit die erlernten Vorhersagemodelle auch auf unbekannte, fehlerbehaftete oder teilweise inkonsistente Daten anwendbar sind. Anders ausgedrückt: das zu erlernende Konzept c kann etwas außerhalb des Hypothesenraums liegen, der durch das eingesetzte Lernverfahren erfasst wird. Dies bedeutet, dass wir im Hypothesenraum des Lernverfahrens nur eine Näherung c' erlernen können, die möglichst gut sein sollte. Solch ein – als agnostisch bezeichnetes – Lernverfahren muss daher bestrebt sein den Fehler zwischen den Trainingsdaten und dem Fehler der sich durch das Erlernen der Näherung c' ergibt möglichst klein zu halten.

Auch hierfür kann, unter der Annahme eines idealen Lernalgorithmus, die Größe des Hypothesenraums dazu verwendet werden die Anzahl der Trainingsdaten m die ein „agnostisches Lernverfahren“ benötigt, um eine gute Näherung an das zu erlernende Konzept in einem endlichen Hypothesenraum mit einem maximalen Fehler \epsilon und einer Unsicherheit \delta (bzw. einer Wahrscheinlichkeit von 1 - \delta) zu erlernen, abgeschätzt werden mit[6]

    \[m \geq \frac{1}{2\epsilon^2}(ln{(|H|)} + ln{(\frac{2}{\delta})})\]

Auf das Beispiel angewendet müsste sich – unter der Annahme gleicher Rahmenbedingungen – die Mindestzahl von Trainingsbeispielen auf m = 490 belaufen. D.h. die Daten von Produkt A könnten zum Lernen der Klassifikation verwendet werden, die Datenmenge für Produkt B wäre jedoch nicht ausreichend.

Folgerung

Mit diesem ersten Beitrag haben wir anhand eines kleinen realen Beispiels gezeigt, wie sich für einen idealen Lernalgorithmus über die Betrachtung der Größe endlicher Hypothesenräume, die Mindestanzahl der benötigten Trainingsbeispiel abschätzen lässt.

Auch wenn es sich hierbei um eine idealisierte Betrachtung handelt, erlauben solche Abschätzungen Aussagen darüber, wann Lernverfahren nur mit einem größeren Fehler behaftet einsetzbar sind.

Diese Betrachtung erstreckte sich bisher nur über endliche Eigenschaften und berücksichtigt die Komplexität der Hypothesenrepräsentation – eine der wesentlichen Eigenschaften eines Lernverfahrens – noch nicht. Dies wird Thema des zweiten Teils sein, in dem wir sehen werden, wie sich Abschätzung auf der Basis der – sogenannten – Vapnik-Chervonenkis-Dimension (VC-Dimension) für viele gängige Klassen von Lernverfahren einsetzen lassen.

Fußnoten

[1] Wir betrachten hierbei nur rein binäre, binomiale resp. Bool’sche Klassifikationsprobleme, deren Aussagen sich jedoch auch auf multinomiale Klassifikation und reell-wertige Vorhersagemodelle übertragen lassen (siehe [ESL09], Seite 238).

[2] Unendlich, überabzählbare Eigenschaften lassen sich in Abhängigkeit vom Anwendungsproblem und der erforderlichen Genauigkeit oft diskretisieren und als ordinale Daten oder Intervalle ganzer Zahlen repräsentieren, wie z.B. Alter, Körpergröße, Längen, Temperatur, und Zeitintervalle usw., wenn es ausreichend ist diese mit einer Genauigkeit von Jahren, cm, mm, Zehntelgrad oder Sekunden zu erfassen.

[3] Vollausgebaute Decision Trees unterliegen der Gefahr der „Überanpassung“ (overfitting) und werden in der Regel gestutzt, um dies zu vermeiden. Die Abschätzung stellt daher die Obergrenze dar.

[4] http://www.cs.cmu.edu/~guestrin/Class/10701/slides/learningtheory-bigpicture.pdf  und https://www.autonlab.org/_media/tutorials/pac05.pdf (Letzter Zugriff: 10.3.2018)

[5] Ein „konsistenter Lernalgorithmus“ erlernt Hypothesen, die – wann immer möglich – perfekt zu den Trainingsdaten passen [ML97].

[6] Details zur Ableitung der beschriebenen Untergrenzen finden sich u.a. in [ML97], [FoML12] oder [FoDS18].

Referenzen

[HL11] „The World’s Technological Capacity to Store, Communicate, and Compute Information“, M. Hilbert, P. López, Science 332, 60, 2011, http://www.uvm.edu/pdodds/files/papers/others/2011/hilbert2011a.pdf (letzter Zugriff: 14. März 2018)

[ESL09] “The Elements of Statistical Learning”, T. Hastie, R. Tibshirani, J. Friedman, 2nd Edition, Springer, 2009.

[ML97] „Machine Learning“, T. Mitchell, McGraw-Hill, 1997.

[FoML12] „Foundations of Machine Learning“, M. Mohri, A. Rostamizadeh, A. Talwalkar, The MIT Press, 2012.

[FoDS18] „Foundations of Data Science“, A. Blum, J. Hopcroft, R. Kannan, Cornell University, https://www.cs.cornell.edu/jeh/book.pdf, Jan. 4th, 2018 (letzter Zugriff: 14. März 2018)

Machine Learning: Online vs Offline

Das ist Artikel 4 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning?

Die Begriffe online und offline sind mit vielen Bedeutungen versehen und so ist – wie bei vielen Unterscheidungsmöglichkeiten des maschinellen Lernens – die Verwirrung vorprogrammiert. Diese Unterscheidung betrifft die Trainingsphasen der parametrischen Verfahren des maschinellen Lernens.

Offline Learning

Mit Offline Learning ist nicht gemeint, dass der Algorithmus nicht ans Internet angebunden ist, sondern dass es sich bei der Trainingsprozedure um eine Stapelverarbeitung handelt. Daher wird manchmal auch vom Batch Learning gesprochen. Beim Batch Learning werden die Parameter bzw. das Modell erst angepasst, nachdem der gesamte Batch (Stapel an Datensätzen) das Training durchlaufen hat. Die gewöhnliche Gradientenmethode als ein Optimierungsverfahren ist das Gradientenabstiegsverfahren als Stapelverarbeitung. Dabei wird der Gradient, der die Richtung für die Anpassung der Gewichtungen der Funktionsparameter vorgibt, anhand der gesamten Trainingsdatenmenge berechnet.

Der Vorteil dieser Vorgehensweise ist, dass das Training als Prozess sehr schnell läuft und die Funktionsparameter direkt aus dem gesamten Datenbestand heraus bestimmt werden.

Demgegenüber steht der Nachteil, dass der ganze Stapel in den Arbeitsspeicher geladen werden muss, was eine entsprechend leistungsfähige Hardware voraussetzt. Soll das Lern-System für das Training live an einer Datenquelle (z. B. ein Data Stream aus dem Social Media) angebunden werden, müssen die Daten erstmal gespeichert werden (Bildung des Stapels), bevor sie verarbeitet und dann verworfen werden können, was den dafür nötigen Speicherplatz bedingt.

Online Learning

Beim Online-Learning wird nicht über einen Stapel (Batch) trainiert, sondern jeder einzelne Datensatz (aus einer großen Menge an Datensätzen oder live hinzugefügte Datensätze) wird dem Training einzeln hinzugefügt, trainiert und umgehend in eine Parameteranpassung (Modellanpassung) umgesetzt. Dies lässt sich beispielsweise mit der stochastischen Gradientenmethode realsieren, die iterativ arbeiten und den Gradienten zur Gewichtungsanpassung für jeden einzelnen Datensatz bestimmt, statt einen ganzen Batch zu verarbeiten und daraus einen Fehler zu berechnen. Online-Learning ist ein inkrementell arbeitendes Lernen, welches das Modell kontinuierlich – nämlich nach jedem Datensatz (Sample) – anpasst.

Die Optimierung läuft somit – wenn auf eine große Datenmenge angewendet wird – natürlich langsamer und ist eher nicht geeignet, wenn ein Training schnell verlaufen muss oder eine große Datenmenge die Hardware sowieso schon auslastet. Dafür wird das Modell beim Online-Learning in Echtzeit trainiert, wenn neue Daten zur Verfügung stehen. Neu hinzugefügte Daten fließen sofort ins Modell ein, so kann ein Lern-System als ein Live-System gleich auf Änderungen reagieren und die Trainingsdaten wieder verworfen werden (da sie bereits ins Training eingeflossen sind).

Mini-Batch-Verfahren

Während beim Online Learning alle Datensätze einzeln durchgegangen werden (dauert lange) und beim Offline Learning der gesamte Stapel an Datensätzen durchgearbeitet wird (viel Speicherplatzbedarf), ist der sogenannte Mini-Batch der Mittelweg. Wie der Name bereits andeutet, wird ein kleinerer Stapel (z. B. 50 Datensätze) gesammelt und verarbeitet.

Maschinelles Lernen: Parametrisierte und nicht-parametrisierte Verfahren

Das ist Artikel 3 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning?

Maschinelle Lernverfahren können voneinander unterschiedlich abgegrenzt werden, die den meisten Einsteigern bekannte Abgrenzung ist die zwischen überwachten und unüberwachten Verfahren. Eine weitere Abgrenzung zwischen den Lernverfahren, die weit weniger bekannt und verständlich ist, und um die es in diesem Artikel der Reihe gehen soll, ist die Unterscheidung in parametrisierte und nicht parametrisierte Lernverfahren. Gleich vorweg: Parametrisiert und nicht-parametrisierte bezieht sich auf das Modell (Trainingsergebnis), nicht auf die Algorithmen selbst (also nicht Parameter wie k-Werte, Iterations-, Gewichtungs- oder Regularisierungs-Parameter).

Parametrisierte Lernverfahren (parametric learning)

Parametrisierte Lernverfahren sind solche, die über ein Training mit sogenannten Trainingsdaten eine Funktion mit festen Parametern entwickeln, beispielsweise y = f(x) = x³ * a + x² * b + x *c + d. Diese Funktion hat dank einer festgesetzten Anzahl an Parametern eine feste Struktur, und genau dieser Fakt der Parameter-Struktur-Bestimmung a-priori macht das Lernverfahren zu einem parametrischen Lernverfahren. Nach dem Training stehen die Sturkur und die Parameter-Werte fest, beispielsweise y = x³ * 32 + x² * -4 + x * 2 + 102. Diese Funktion beschreibt den Zusammenhang zwischen dem Input x und dem Output y. Am einfachsten kann man sich das Prinzip des parametrischen Lernens demnach mit der Regression vorstellen: Eine Gerade oder eine Kurve wird über ein Trainingslauf durch eine Punktwolke gezogen und daraus die Funktion abgeleitet. Bei der Prädiktion wird diese Funktion dann dazu verwendet, mit den neuen Input-Werten den Output zu berechnen.

Mit dem Festsetzen der Struktur der Funktion bereits vor dem Training sind einige Vor- und Nachteile verbunden:

Parametrische Lernverfahren sind manchmal etwas einfacher zu verstehen, da sich das Modell durchweg als “feste” Formel betrachten lässt. Dieser Vorteil ist jedoch gleichermaßen eine Einschränkung, denn parametrische Verfahren sind eher dazu geeignet, einfachere Zusammenhänge (mit nicht all zu vielen Dimensionen) zu berechnen. Dafür läuft das Training und vor allem die Prädiktion bei parametrischen Verfahren sehr viel schneller ab, als es bei nicht-parametrischen Verfahren der Fall ist, immerhin müssen die Eingabewerte bei der Prädiktion nur in die Funktion mit bekannter Struktur eingefügt und ausgerechnet werden. Man kann sich also merken: Beim parametrischen Lernen stehen die Parameter vorher fest, beim Training werden nur die “richtigen” Werte für die Parameter gefunden.

Schlussendlich kann generell gesagt werden, dass parametrische Funktionen weniger Datenpunkte als nicht-parametrische Lernverfahren benötigen und bei weniger Daten bessere Ergebnisse liefern. Bei sehr großen Datenmengen werden parametrische Funktionen eher schlechter gegenüber nicht-parametrischen Verfahren und neigen etwas zur Unteranpassung.

Zu den parametrischen Lernverfahren gehören:

  • Lineare und nicht-lineare Regression
  • Lineare Diskriminazanalyse
  • Logistische Regression
  • Naive Bayes Klassifikation
  • einfache künstliche neuronale Netze (z. B. MLP)
  • lineare Support Vector Machines (SVM)

Nicht-parametrisierte Lernverfahren (nonparametric learning)

Spricht man vom nicht-parametrisierten Lernen, ist die Verwirrung eigentlich vorprogrammiert, denn es bedeutet keinesfalls, dass es keine Parameter gibt, ganz im Gegenteil! Nicht-parametrische Verfahren arbeiten in aller Regel mit sehr viel mehr Parametern als die parametrischen Verfahren. Und nicht-parametrische Verfahren sind häufig dann im Einsatz, wenn die Anzahl an Daten und Dimensionen sehr groß ist und wenn nicht klar ist, welche Dimensionen voneinander unabhängig sind, aber in Abhängigkeit mit dem Klassifikations-/Regressionsergebnis stehen.

Auch nicht-parametrische Lernverfahren entwickeln eine Funktion, die den Zusammenhang zwischen dem Input und dem Output beschreibt. Jedoch wird die Struktur der Funktion vor dem Training nicht konkret über eine bestimmte Anzahl an Parametern festgelegt. Die Anzahl an Parametern wird erst zur Laufzeit des Trainings bestimmt und hier könnte jede neue Zeile in der Tabelle der Trainingsdaten einen neuen Parameter bedeuten (also beispielsweise dazu führen, dass ein neuer Ast eines Entscheidungsbaumes entsteht – oder auch nicht!).

Die Modellstruktur wird nicht über eine Funktion mit festen Parametern festgelegt, sondern bei jeder Prädiktion aus den Daten ermittelt. Tendenziell neigen nicht-parametrisierte Verfahren etwas mehr zur Überanpassung als parametrisierte Verfahren.

Zu den nicht-parametrisierten Lernverfahren gehören:

  • k-nächste Nachbarn Klassifikation/Regression
  • Entscheidungsbaum Klassifikation/Regression
  • Nicht-lineare Support Vector Machines (RBF Kernel SVM)

Kleiner Abgleich des Verständnisses

Der Unterschied zwischen parametrisierten und nicht-parametrisierten Verfahren wird so häufig falsch verstanden, dass es sich lohnt, etwas Zeit in eine kleine Wiederholung zu investieren, jedoch aus der FAQ-Perspektive:

Warum ist die Regressionsanalyse ein parametrisiertes Lernverfahren?

Bei der klassischen Regressionsrechnung müssen wir noch vor dem Training festlegen, über welche Funktion wir trainieren wollen. Eine lineare Funktion wie y = x * a + b? Oder doch lieber eine nicht-lineare Funktion wie y = x² * a + x * b + c? Die Struktur der Funktion, mit der wir die Punktwolke beschreiben möchten und mit der wir dann im Nachgang Prädiktionen auf Basis von neuer x-Werte berechnen möchten, muss vor dem Training bestimmt werden.

Warum ist die k-nächste-Nachbarn-Bestimmung ein nicht-parametrisiertes Lernverfahren?

Hierbei handelt es sich um ein Lernen durch Ähnlichkeitsanalyse. Es werden gelabelte Datenpunkte gesammelt und erst bei der Prädiktion wird die multidimensionale Ähnlichkeit des neuen Datenpunktes mit den bekannten Datenpunkten bestimmt (Matrizen-Bildung über Distanzen zwischen den Datenpunkten im multidimensionalen Vektorraum). Das Modell lässt sich vorher nicht mal adäquat bestimmen.

Das Modell liegt sozusagen in den Daten. Der k-nächste-Nachbarn-Algorithmus (k-nN) zählt deshalb übrigens nicht nur zum nicht-parametrisierten Lernen, sondern ist darüber hinaus auch noch ein instanzbasiertes Lernen (Lazy Learning).

Warum sind Entscheidungsbäume nicht-parametrisierte Lernverfahren?

Entscheidungsbäume entwerfen Funktionen, die eine auf das Ergebnis bezogene Datenverteilung beschreiben. Jedoch wird vor der Entstehung dieses Modells (also vor dem Training) nicht die Anzahl der Parameter vorgegeben. Zwar ist es üblich, eine maximale Tiefe des Baumes vorzugeben (auch um Überanpassung zu vermeiden),  das Modell (die Struktur des Baumes) hängt jedoch von den Daten ab.

Warum ist Naive Bayes Klassifikation ein parametrisiertes Lernverfahren?

Naive Bayes Klassifikation gilt grundsätzlich als ein parametrisches Lernverfahren. Der Klassifikator errechnet eine Wahrscheinlichkeit, einer bestimmten Klasse zugehörig zu sein, über ein Produkt aus Wahrscheinlichkeiten des Auftretens voneinander (naive) unabhängiger Eingaben (x1, x2,… xn), in der Regel als multinominales Vokabular. Jede Eingabe (eindeutiges Element aus dem Vokabular) ist im Grunde eine Dimension und stellt einen Parameter dar, der im Vorfeld bekannt sein muss.

Es gibt allerdings auch Abwandlungen des Naive Bayes Klassifikators, bei denen mit Dichteschätzungen (1D Kernel Dichteschätzung) gerechnet wird, dann haben wir es wiederum mit Parametern zutun, die erst während der Trainingsphase entstehen.

Warum können Support Vector Machines sowohl parametrisierte als auch nicht-parametrisierte Lernverfahren darstellen?

Bei der linearen SVM werden die Werte der Parameter einer linearen Funktion (= feste Anzahl an Parametern) berechnet, die zwei Klassen linear trennt. Bei der nicht-linearen Klassentrennung funktioniert das leider nicht so einfach und es müssen kompliziertere Verfahren verwendet werden. Die bekannteste ist die Radial Basis Function Kernel-basierte SVM. Bei dieser RBF Kernel SVM wird eine Matrix über berechnete Distanzen zwischen den Datenpunkten erstellt und als Parameter verwendet. Da diese Parameter-Anzahl von den Daten abhängt, haben wir es mit einer nicht-parametrisierten Methode zutun (ähnlich wie beim k-nN).

Process Mining – Der Trend für 2018

Etwa seit dem Jahr 2010 erlebt Process Mining einerseits als Technologie und Methode einen Boom, andererseits fristet Process Mining noch ein gewisses Nischendasein. Wie wird sich dieser Trend 2018 und 2019 entwickeln?

Was ist Process Mining?

Process Mining (siehe auch: Artikel über Process Mining) ist ein Verfahren der Datenanalyse mit dem Ziel der Visualisierung und Analyse von Prozessflüssen. Es ist ein Data Mining im Sinne der Gewinnung von Informationen aus Daten heraus, nicht jedoch Data Mining im Sinne des unüberwachten maschinellen Lernens. Konkret formuliert, ist Process Mining eine Methode, um Prozess datenbasiert zur Rekonstruieren und zu analysieren. Im Mittelpunkt stehen dabei Zeitstempel (TimeStamps), die auf eine Aktivität (Event) in einem IT-System hinweisen und sich über Vorgangnummern (CaseID) verknüpfen lassen.

Process Mining als Analyseverfahren ist zweiteilig: Als erstes muss über eine Programmiersprache (i.d.R. PL/SQL oder T-SQL, seltener auch R oder Python) ein Skript entwickelt werden, dass auf die Daten eines IT-Systems (meistens Datenbank-Tabellen eines ERP-Systems, manchmal auch LogFiles z. B. von Webservern) zugreift und die darin enthaltenden (und oftmals verteilten) Datenspuren in ein Protokoll (ein sogenanntes EventLog) überführt.

Ist das EventLog erstellt, wird diese in ein Process Mining Tool geladen, dass das EventLog visuell als Flow-Chart darstellt, Filter- und Analysemöglichkeiten anbietet. Auch Alertings, Dashboards mit Diagrammen oder Implementierungen von Machine Learning Algorithmen (z. B. zur Fraud-Detection) können zum Funktionsumfang dieser Tools gehören. Die angebotenen Tools unterscheiden sich von Anbieter zu Anbieter teilweise erheblich.

Welche Branchen setzen bislang auf Process Mining?

Diese Analysemethodik hat sicherlich bereits in allen Branchen ihren Einzug gefunden, jedoch arbeiten gegenwärtig insbesondere größere Industrieunternehmen, Energieversorger, Handelsunternehmen und Finanzdienstleister mit Process Mining. Process Mining hat sich bisher nur bei einigen wenigen Mittelständlern etabliert, andere denken noch über die Einführung nach oder haben noch nie etwas von Process Mining gehört.

Auch Beratungsunternehmen (Prozess-Consulting) und Wirtschaftsprüfungen (Audit) setzen Process Mining seit Jahren ein und bieten es direkt oder indirekt als Leistung für ihre Kunden an.

Welche IT-Systeme und Prozesse werden analysiert?

Und auch hier gilt: Alle möglichen operativen Prozesse werden analysiert, beispielsweise der Gewährleistungsabwicklung (Handel/Hersteller), Kreditgenehmigung (Banken) oder der Vertragsänderungen (Kundenübergabe zwischen Energie- oder Telekommunikationsanbietern). Entsprechend werden alle IT-Systeme analysiert, u. a. ERP-, CRM-, PLM-, DMS- und ITS-Systeme.

Allen voran werden Procure-to-Pay- und Order-to-Cash-Prozesse analysiert, die für viele Unternehmen typische Einstiegspunkte in Process Mining darstellen, auch weil einige Anbieter von Process Mining Tools die nötigen Skripte (ggf. als automatisierte Connectoren) der EventLog-Generierung aus gängigen ERP-Systemen für diese Prozesse bereits mitliefern.

Welche Erfolge wurden mit Process Mining bereits erreicht?

Die Erfolge von Process Mining sind in erster Linie mit der gewonnenen Prozesstransparenz zu verbinden. Process Mining ist eine starke Analysemethode, um Potenziale der Durchlaufzeiten-Optimierung aufzudecken. So lassen sich recht gut unnötige Wartezeiten und störende Prozesschleifen erkennen. Ebenfalls eignet sich Process Mining wunderbar für die datengetriebene Prozessanalyse mit Blick auf den Compliance-Check bis hin zur Fraud-Detection.

Process Mining ist als Methode demnach sehr erfolgreich darin, die Prozessqualität zu erhöhen. Das ist natürlich an einen gewissen Personaleinsatz gebunden und funktioniert nicht ohne Schulungen, bedingt jedoch i.d.R. weniger eingebundene Mitarbeiter als bei klassischen Methoden der Ist-Prozessanalyse.

Ferner sollten einige positive Nebeneffekte Erwähnung finden. Durch den Einsatz von Process Mining, gerade wenn dieser erst nach einigen Herausforderungen zum Erfolg wurde, konnte häufig beobachtet werden, dass involvierte Mitarbeiter ein höheres Prozessbewustsein entwickelt haben, was sich auch indirekt bemerkbar machte (z. B. dadurch, dass Soll-Prozessdokumentationen realitätsnäher gestaltet wurden). Ein großer Nebeneffekt ist ganz häufig eine verbesserte Datenqualität und das Bewusstsein der Mitarbeiter über Datenquellen, deren Inhalte und Wissenspotenziale.

Wo haperte es bisher?

Ins Stottern kam Process Mining bisher insbesondere an der häufig mangelhaften Datenverfügbarkeit und Datenqualität in vielen IT-Systemen, insbesondere bei mittelständischen Unternehmen. Auch die Eigenständigkeit der Process Mining Tools (Integration in die BI, Anbindung an die IT, Lizenzkosten) und das fehlen von geschulten Mitarbeiter-Kapazitäten für die Analyse sorgen bei einigen Unternehmen für Frustration und Zweifel am langfristigen Erfolg.

Als Methode schwächelt Process Mining bei der Aufdeckung von Möglichkeiten der Reduzierung von Prozesskosten. Es mag hier einige gute Beispiele für die Prozesskostenreduzierung geben, jedoch haben insbesondere Mittelständische Unternehmen Schwierigkeiten darin, mit Process Mining direkt Kosten zu senken. Dieser Aspekt lässt insbesondere kostenfokussierte Unternehmer an Process Mining zweifeln, insbesondere wenn die Durchführung der Analyse mit hohen Lizenz- und Berater-Kosten verbunden ist.

Was wird sich an Process Mining ändern müssen?

Bisher wurde Process Mining recht losgelöst von anderen Themen des Prozessmanagements betrachtet, woran die Tool-Anbieter nicht ganz unschuldig sind. Process Mining wird sich zukünftig mehr von der Stabstelle mit Initiativ-Engagement hin zur Integration in den Fachbereichen entwickeln und Teil des täglichen Workflows werden. Auch Tool-seitig werden aktuelle Anbieter für Process Mining Software einem verstärkten Wettbewerb stellen müssen. Process Mining wird toolseitig enger Teil der Unternehmens-BI und somit ein Teil einer gesamtheitlichen Business Intelligence werden.

Um sich von etablierten BI-Anbietern abzusetzen, implementieren und bewerben einige Anbieter für Process Mining Software bereits Machine Learning oder Deep Learning Algorithmen, die selbstständig Prozessmuster auf Anomalien hin untersuchen, die ein Mensch (vermutlich) nicht erkennen würde. Process Mining mit KI wird zu Process Analytics, und somit ein Trend für die Jahre 2018 und 2019.

Für wen wird Process Mining 2018 interessant?

Während größere Industrieunternehmen, Großhändler, Banken und Versicherungen längst über Process Mining Piloten hinaus und zum produktiven Einsatz übergegangen sind (jedoch von einer optimalen Nutzung auch heute noch lange entfernt sind!), wird Process Mining zunehmend auch für mittelständische Unternehmen interessant – und das für alle geschäftskritischen Prozesse.

Während Process Mining mit ERP-Daten bereits recht verbreitet ist, wurden andere IT-Systeme bisher seltener analysiert. Mit der höheren Datenverfügbarkeit, die dank Industrie 4.0 und mit ihr verbundene Konzepte wie M2M, CPS und IoT, ganz neue Dimensionen erlangt, wird Process Mining auch Teil der Smart Factory und somit der verstärkte Einsatz in der Produktion und Logistik absehbar.

Lesetipp: Process Mining 2018 – If you can’t measure it, you can’t improve it: Process Mining bleibt auch im neuen Jahr mit hoher Wahrscheinlichkeit ein bestimmendes Thema in der Datenanalytik. Sechs Experten teilen ihre Einschätzungen zur weiteren Entwicklung 2018 und zeigen auf, warum das Thema von so hoher Relevanz ist. (www.internet-of-things.de – 10. Januar 2018)

Maschinelles Lernen: Klassifikation vs Regression

Das ist Artikel 2 von 4 aus der Artikelserie – Was ist eigentlich Machine Learning? Die Unterscheidung zwischen Klassifikation und Regression ist ein wichtiger Schritt für das Verständnis von Predictive Analytics. Nun möchte ich eine Erklärung liefern, die den Unterschied (hoffentlich) deutlich macht.

Regression – Die Vorhersage von stetigen Werten

Wir suchen bei der Regression demnach eine Funktion y = \beta \cdot x + \alpha, die unsere Punktwolke – mit der wir uns zutrauen, Vorhersagen über die abhängige Variable vornehmen zu können – möglichst gut beschreibt. Dabei ist y der Zielwert (abhängige Variable) und x der Eingabewert. Wir arbeiten also in einer zwei-dimensionalen Welt. Variablen, die die Funktion mathematisch definieren, werden oft als griechische Buchstaben darsgestellt. Die Variable \alpha (Alpha) ist der y-Achsenschnitt bei x = 0. Dieser wird als Bias, selten auch als Default-Wert, bezeichnet. Der Bias ist also der Wert, wenn die x-Eingabe gleich Null ist. Eine weitere Variable \beta (Beta) beschreibt die Steigung.

Ferner ist zu beachten, dass sich eine Punktwolke durch eine Gerade nie perfekt beschreiben lässt, und daher für jedes x_{i} ein Fehler \varepsilon_{i} existiert. Diesen Fehler wollen wir in diesem Artikel ignorieren.

In einem zwei-dimensionalen System (eine Eingabe und eine Ausgabe) sprechen wir von einer einfachen Regression. Generalisieren wir die Regressionsmethode auf ein multivariates System (mehr als eine Eingabe-Variable), werden die Variablen in der Regel nicht mehr als griechische Buchstaben (denn auch das griechische Alphabet ist endlich) dargestellt, sondern wir nehmen eines abstrahierende Darstellung über Gewichtungen (weights). Dies ist eine sehr treffende Symbolisierungen, denn sowohl der Bias (w_{0} statt \alpha) als auch die Steigungen (w_{1\ldots n}) sind nichts anderes als Gewichtungen zwischen den Eingaben.

    \[y = w_{0} \cdot x_{0} + w_{1} \cdot x_{1} + \ldots + w_{n} \cdot x_{n}\]

y ist eine Summe aus den jeweiligen Produkten aus x_{i} und w_{i}. Verkürzt ausgedrückt:

    \[y = \sum_{i=0}^n w_{i} \cdot x_{i}\]

Noch kürzer ausgedrückt:

    \[y = w^T \cdot x\]

Anmerkung: Das hochgestellte T steht für Transponieren, eine Notation aus der linearen Algebra, die im Ergebnis nichts anderes bewirkt als y = \sum_{i=0}^n w_{i} \cdot x_{i}.

Diese mathematische lineare Funktion kann wie folgt abgebildet werden:

Der Output ist gleich y bzw. die Ausgabe der Nettoeingabe (Net Sum) w^T \cdot x. Auf der linken Seite finden wir alle Eingabewerte, wobei der erste Wert statisch mit 1.0 belegt ist, nur für den Zweck, den Bias (w_{0}) in der Nettoeingabe aufrecht zu erhalten. Im Falle einer einfachen linearen Regression hätten wir also eine Funktion mit zwei Gewichten: y = 1 \cdot w_{0} + x \cdot w_{1}

Das Modell beschreibt, wie aus einer Reihe von Eingabewerten (n = Anzahl an x-Dimensionen) und einer Reihe von Gewichtungen (n + 1) eine Funktion entsteht, die einen y-Wert berechnet. Diese Berechnung wird auch als Forward-Propagation bezeichnet.
Doch welche Werte brauchen wir für die Gewichtungen, damit bei gegebenen x-Werten ein (mehr oder weniger) korrekter y-Wert berechnet wird? Anders gefragt, wie schaffen wir es, dass die Forward-Propagation die richtigen Werte ausspuckt?

Mit einem Training via Backpropagation!


Einfache Erklärung der Backpropagation

Die Backpropagation ist ein Optimierungsverfahren, unter Einsatz der Gradientenmethode, den Fehler einer Forward-Propagation zu berechnen und die Gewichtungen in Gegenrichtung des Fehlers anzupassen. Optimiert wird in der Form, dass der Fehler minimiert wird. Es ist ein iteratives Verfahren, bei dem mit jedem Iterationsschritt wieder eine Forward-Propagation auf Basis von Trainingsdaten durchgeführt wird und die Prädiktionsergebnisse mit den vorgegebenen Ergebnissen (der gekennzeichneten Trainingsdaten) verglichen und damit die Fehler berechnet werden. Die resultierende Fehlerfunktion ist konvex, ableitbar und hat ein zentrales globales Minimum. Dieses Minimum finden wir durch diese iterative Vorgehensweise.


Die Backpropagation zu erklären, erfordert einen separaten Artikel. Merken wir uns einfach: Die Backpropagation nutzt eine Fehlerfunktion, um die Werte der Gewichtungen schrittweise entgegen des Fehlers (bei jeder Forward-Propagation) bis zu einem Punkt anzupassen, bis keine wesentliche Verbesserung (Reduzierung des Fehlers) mehr eintritt. Nach dem Vollzug der Backpropagation erhalten wir die “richtigen” Gewichtungen und haben eine Funktion zur Vorhersage von y-Werten bei Eingabe neuer x-Werte.

Klassifikation – Die Vorhersage von Gruppenzugehörigkeiten

Bei der Klassifikation möchten wir jedoch keine Gerade oder Kurve vorhersagen, die sich durch eine Punktwolke legt, sondern wie möchten Punktwolken voneinander als Klassen unterscheiden, um später hinzukommende Punkte ihren richtigen Klassen zuweisen zu können (Klassifikation). Wir können jedoch auf dem vorherigen Modell der Prädiktion von stetigen Werten aufbauen und auch die Backpropagation zum Training einsetzen, möchten das Training dann jedoch auf die Trennung der Punktwolken ausrichten.

Hinweis: Regressions- und Klassifikationsherausforderungen werden in den Dimensionen unterschiedlich dargestellt. Zur Veranschaulichung: Während wir bei der einfachen Regression eine x-Eingabe als unabhängige Variable und eine y-Ausgabe als abhängige Variable haben, haben wir bei einer zwei-dimensionalen Klassifikation zwei x-Dimensionen als Eingabe. Die Klassen sind die y-Ausgabe (hier als Farben visualisiert).

Ergänzen wir das Modell nun um eine Aktivierungsfunktion, dass die stetigen Werte der Nettosumme über eine Funktion in Klassen unterteilt, erhalten wir einen Klassifikator: Den Perceptron-Klassifikator. Das Perzeptron gilt als der einfachste Klassifikator und ist bereits die kleinste Form eines künstlichen neuronalen Netzes. Es funktioniert nur bei linearer Trennbarkeit der Klassen.

Was soll die Aktivierungsfunktion bewirken? Wir berechnen wieder eine Nettoeingabe w^T \cdot x, die uns stetige Werte ausgiebt. Wir haben also immer noch unsere Gewichtungen, die wir trainieren können. Nun trainieren wir nur nicht auf eine “korrekte” stetige Ausgabe der Nettoeingabe hin, sondern auf eine korrekte Ausgabe der Aktivierungsfunktion \phi (Phi), die uns die stetigen Werte der Nettoeingabe in einen binären Wert (z. B. 0 oder 1) umwandelt. Das Perzeptron ist die kleinste Form des künstlichen neuronalen Netzes und funktioniert wie der lineare Regressor, jedoch ergänzt um eine Aktivierungsfunktion die bewirken soll, dass ein Neuron (hier: der einzelne Output) “feuert” oder nicht “feuert”.  Es ist ein binärer Klassifikator, der beispielsweise die Wertebereiche -1 oder +1 annehmen kann.

Das Perceptron verwendet die einfachste Form der Aktivierungsfunktion: Eine Sprungfunktion, die einer einfachen if… else… Anweisung gleich kommt.

    \[ y = \phi(w^T \cdot x) = \left\{ \begin{array}{12} 1  &  w^T \cdot x > 0\\ -1 & \text{otherwise} \end{array} \]

Fazit – Unterschied zwischen Klassifikation und Regression

Mathematisch müssen sich Regression und Klassifikation gar nicht all zu sehr voneinander unterscheiden. Viele Verfahren der Klassifikation lassen sich mit nur wenig Anpassung auch zur Regression anwenden, oder umgekehrt. Künstliche neuronale Netze, k-nächste-Nachbarn und Entscheidungsbäume sind gute Beispiele, die in der Praxis sowohl für Klassifkation als auch für Regression eingesetzt werden, natürlich mit unterschiedlichen Stärken und Schwächen.

Unterschiedlich ist jedoch der Zweck der Anwendung: Bei der Regression möchten wir stetige Werte vorhersagen (z. B. Temperatur der Maschine), bei der Klassifikation hingegen Klassen unterscheiden (z. B. Maschine überhitzt oder überhitzt nicht).

Unterschiede zwischen linearer und nicht-linearer Klassifikation und linearer und nicht-linearer Regression. Für Einsteiger in diese Thematik ist beachten, dass jede maschinell erlernte Klassifikation und Regression einen gewissen Fehler hat, der unter Betrachtung der Trainings- und Testdaten zu minimieren ist, jedoch nie ganz verschwindet.

Und Clustering?

Clustering ist eine Disziplin des unüberwachten Lernens, um Gruppen von Klassen bzw. Grenzen dieser Klassen innerhalb von unbekannten Daten zu finden. Es ist im Prinzip eine untrainierte Klassifikation zum Zwecke des Data Minings. Clustering gehört auch zum maschinellen Lernen, ist aber kein Predictive Analytics. Da keine – mit dem gewünschten Ergebnis vorliegende – Trainingsdaten vorliegen, kann auch kein Training über eine Backpropagation erfolgen. Clustering ist folglich eine schwache Klassifikation, die mit den trainingsbasierten Klassifikationsverfahren nicht funktioniert.

Ensemble Learning

Stellen Sie sich vor, Sie haben die Frage Ihres Lebens vor sich. Die korrekte Beantwortung dieser Frage wird Ihr Leben positiv beeinflussen, andernfalls negativ. Aber Sie haben Glück: Sie dürfen einen Experten, den Sie auswählen dürfen, um Rat fragen oder Sie dürfen eine annonyme Gruppe, sagen wir 1.000 Personen, um Rat fragen. Welchen Rat würden Sie sich einholen? Die einzelne Experten-Meinung oder die aggriegierte Antwort einer ganzen Gruppe von Menschen?
Oder wie wäre es mit einer Gruppe von Experten?

Ensemble Learning

Beim Einsatz eines maschinellen Lernalgorithmus auf ein bestimmtes Problem kann durchaus eine angemessene Präzision (Accuracy, eine Quote an Prädiktionsergebnissen, die als korrekt einzustufen sind) erzielt werden, doch oftmals reicht die Verlässlichkeit eines einzelnen Algorithmus nicht aus. Algorithmen können mit unterschiedlichen Parametern verwendet werden, die sich bei bestimmten Daten-Situationen verschieden auswirken. Bestimmte Algorithmen neigen zur Unteranpassung (Underfitting), andere zur Überanpassung (Overfitting).

Soll Machine Learning für den produktiven Einsatz mit bestmöglicher Zuverlässigkeit entwickelt und eingesetzt werden, kommt sinnvollerweise Ensemble Learning zum Einsatz. Beim Ensemble Learning wird ein Ensemble (Kollektiv von Prädiktoren) gebildet um ein Ensemble Average (Kollektivmittelwert) zu bilden. Sollte also beispielsweise einige Klassifizierer bei bestimmten Daten-Eingaben in ihren Ergebnissen ausreißen, steuern andere Klassifizierer dagegen. Ensemble Learning kommt somit in der Hoffnung zum Einsatz, dass eine Gruppe von Algorithmen ein besseres Ergebnis im Mittel erzeugen als es ein einzelner Algorithmus könnte.

Ich spreche nachfolgend bevorzugt von Klassifizierern, jedoch kommt Ensemble Learning auch bei der Regression zum Einsatz.

Voting Classifiers (bzw. Voting Regressors)

Eine häufige Form – und i.d.R. auch als erstes Beispiel eines Ensemble Learners – ist das Prinzip der Voting Classifiers. Das Prinzip der Voting Classifiers ist eine äußerst leicht nachvollziehbare Idee des Ensemble Learnings und daher vermutlich auch eine der bekanntesten Form der Kollektivmittelwert-Bildung. Gleich vorweg: Ja, es gibt auch Voting Regressors, jedoch ist dies ein Konzept, das nicht ganz ohne umfassendere Aggregation auf oberster Ebene auskommen wird, daher wäre für die Zwecke der akkurateren Regression eher das Stacking (siehe unten) sinnvoll.

Eine häufige Frage im Data Science ist, welcher Klassifizierer für bestimmte Zwecke die besseren sind: Entscheidungsbäume, Support-Vector-Machines, k-nächste-Nachbarn oder logistische Regressionen?

Warum nicht einfach alle nutzen? In der Tat wird genau das nicht selten praktiziert. Das Ziel dieser Form des Ensemble Learnings ist leicht zu erkennen: Die unterschiedlichen Schwächen aller Algorithmen sollen sich – so die Hoffnung – gegenseitig aufheben. Alle Algorithmen (dabei können auch mehrere gleiche Algorithmen mit jedoch jeweils unterschiedlichen Paramtern gemeint sein, z. B. mehrere knN-Klassifizierer mit unterschiedlichen k-Werten und Dimensionsgewichtungen) werden auf dasselbe Problem hin trainiert.

Stacking

Bei der Prädiktion werden entweder alle Klassifizierer gleich behandelt oder unterschiedlich gewichtet (wobei größere Unterschiede der Gewichtungen unüblich, und vermutlich auch nicht sinnvoll, sind). Entsprechend einer Ensemble-Regel werden die Ergebnisse aller Klassifizierer aggregiert, bei Klassifikation durch eine Mehrheitsentscheidung, bei Regression meistens durch Durchschnittsbildung oder (beim Stacking) durch einen weiteren Regressor.

Abgesehen davon, dass wir mit dem Ensemble-Klassifizierer bzw. Regressoren vermutlich bessere Ergebnisse haben werden, haben wir nun auch eine weitere Information hinzubekommen: Eine Entropie über die Wahrscheinlichkeit. Bestenfalls haben alle Klassifizierer die gleiche Vorhersage berechnet, schlechtestensfalls haben wir ein Unentschieden. So können wir Vorhersagen in ihrer Aussagekraft bewerten. Analog kann bei Regressionen die Varianz der Ergebnisse herangezogen werden, um das Ergebnis in seiner Aussagekraft zu bewerten.

Betrachtung im Kontext von: Eine Kette ist nur so stark, wie ihr schwächstes Glied

Oft heißt es, dass Ensemble Learning zwar bessere Ergebnisse hervorbringt, als der schwächste Klassifizier in der Gruppe, aber auch schlechtere als der beste Klassifizierer. Ist Ensemble Learning also nur ein Akt der Ratlosigkeit, welcher Klassifizierer eigentlich der bessere wäre?

Ja und nein. Ensemble Learning wird tatsächlich in der Praxis dazu verwendet, einzelne Schwächen abzufangen und auch Ausreißer-Verhalten auf bisher andersartiger Daten abzuschwächen. Es ist ferner jedoch so, dass Ensemble Learner mit vielen Klassifizieren sogar bessere Vorhersagen liefern kann, als der beste Klassifizierer im Programm.

Das liegt an dem Gesetz der großen Zahlen, dass anhand eines Beispiels verdeutlicht werden kann: Bei einem (ausbalanzierten) Münzwurf liegt die Wahrscheinlichkeit bei genau 50,00% dafür, Kopf oder Zahl zu erhalten. Werfe ich die Münze beispielsweise zehn Mal, erhalte ich aber vielleicht drei Mal Kopf und sieben mal Zahl. Werfe ich sie 100 Mal, erhalte ich vielleicht 61 Mal Kopf und 39 Mal Zahl. Selbst nur 20 Mal die Zahl zu erhalten, wäre bei nur 100 Würfen gar nicht weit weg von unwahrscheinlich. Würde ich die Münze jedoch 10.000 Male werfen, würde ich den 50% schon sehr annähern, bei 10 Millionen Würfen wird sich die Verteilung ganz sicher als Gleichverteilung mit 50,0x% für Kopf oder Zahl einpendeln.

Nun stellt man sich (etwas überspitzt, da analog zu den Wünzwürfen) nun einen Ensemble Learner mit einer Gruppe von 10.000 Klassifiziern vor. Und angenommen, jeder einzelne Klassifizierer ist enorm schwach, denn eine richtige Vorhersage trifft nur mit einer Präzision von 51% zu (also kaum mehr als Glücksspiel), dann würde jedoch die Mehrheit der 10.000 Klassifizierer (nämlich 51%) richtig liegen und die Mehrheitsentscheidung in den absolut überwiegenden Fällen die korrekte Vorhersage treffen.

Was hingehen in diesem Kontext zutrifft: Prädiktionen via Ensemble Learning sind zwangsläufig langsam. Durch Parallelisierung der Klassifikation kann natürlich viel Zeit eingespart werden, dann ist das Ensemble Learning jedoch mindestens immer noch so langsam, wie der langsamste Klassifizierer.

Bagging

Ein Argument gegen den Einsatz von gänzlich verschiedenen Algortihmen ist, dass ein solcher Ensemble Learner nur schwer zu verstehen und einzuschätzen ist (übrigens ein generelles Problem im maschinellen Lernen). Bereits ein einzelner Algorithmus (z. B. Support Vector Machine) kann nach jedem Training alleine auf Basis der jeweils ausgewählten Daten (zum Training und zum Testen) recht unterschiedlich in seiner Vorhersage ausfallen.

Bagging (kurze Form von Bootstrap Aggregation) ist ein Ensemble Learning Prinzip, bei dem grundsätzlich der gleiche Algorithmus parallel mit unterschiedlichen Aufteilungen der Daten trainiert (und natürlich getestet) wird. Die Aufteilung der Daten kann dabei komplett (der vollständige Datensatz wird verteilt und verwendet) oder auch nur über Stichproben erfolgen (dann gibt es mehrfach verwendete Datenpunkte, aber auch solche, die überhaupt nicht verwendet werden). Das Ziel ist dabei insbesondere, im Endergebnis Unter- und Überanpassung zu vermeiden. Gibt es viele Dichte-Cluster und Ausreißer in den Daten, wird nicht jeder Klassifizierer sich diesen angepasst haben können. Jede Instanz der Klassifizierer erhält weitgehend unterschiedliche Daten mit eigenen Ausreißern und Dichte-Clustern, dabei darf es durchaus Überschneidungen bei der Datenaufteilung geben.

Pasting

Pasting ist fast genau wie Bagging, nur mit dem kleinen aber feinen Unterschied, dass sich die Datenaufteilung nicht überschneiden darf. Wird ein Datenpunkt durch Zufallsauswahl einem Klassifizierer zugewiesen, wird er nicht mehr für einen anderen Klassifizierer verwendet. Über die Trainingsdaten des einen Klassifizierers verfügt demnach kein anderer Klassifizierer. Die Klassifizierer sind somit völlig unabhängig voneinander trainiert, was manchmal explizit gewollt sein kann. Pasting setzt natürlich voraus, dass genug Daten vorhanden sind. Diese Voraussetzung ist gleichermaßen auch eine Antwort auf viele Probleme: Wie können große Datenmengen schnell verarbeitet werden? Durch die Aufteilung ohne Überschneidung auf parallele Knoten.

Random Forest

Random Forests sollten an dieser Stelle im Text eigentlich nicht stehen, denn sie sind ein Beispiel des parallelen Ensembles bzw. des Voting Classifiers mit Entscheidungsbäumen (Decision Trees). Random Forests möchte ich an dieser Stelle dennoch ansprechen, denn sie sind eine äußerst gängige Anwendung des Baggings oder (seltener) auch des Pastings für Entscheidungsbaumverfahren. Die Datenmenge wird durch Zufall aufgeteilt und aus jeder Aufteilung heraus wird ein Entscheidungsbaum erstellt. Eine Mehrheitsentscheidung der Klassifikationen aller Bäume ist das Ensemble Learning des Random Forests.

Random Forest ist ein Verfahren der Klassifikation oder Regression, das bereits so üblich ist, dass es mittlerweile längst in (fast) allen Machine Learning Bibliotheken implemeniert ist und – dank dieser Implementierung – in der Anwendung nicht komplizierter, als ein einzelner Entscheidungsbaum.

Stacking

Stacking ist eine Erweiterung des Voting Classifiers oder Voting Regressors um eine höhere Ebene (Blending-Level), die die beste Aggregation der Einzel-Ergebnisse erlernt. An der Spitze steht beim Stacking (mindestens) ein weiterer Klassifikator oder Regressor

Stacking ist insbesondere dann sinnvoll, wenn die Ergebnisse der einzelnen Algorithmen sehr unterschiedlich ausfallen können, was bei der Regression – da stetige Werte statt wenige Klassen – nahezu immer der Fall ist. Stacking-Algorithmen können sogar mehrere Schichten umfassen, was ihr Training wesentlich schwieriger gestaltet.

Boosting (Sequential Ensemble Learning)

Bagging, Pasting und Stacking sind parallele Verfahren des Ensemble Learning (was nicht bedeutet, dass die parallel dargestellten Algorithmen in der Praxis nicht doch sequenziell abgearbeitet werden). Zwangsweise sequenziell durchgeführt wird hingegen das Boosting, bei dem wir schwache Klassifizierer bzw. Regressoren durch Iteration in ihrem Training verstärken wollen. Boosting kann somit als eine Alternative zum Deep Learning gesehen werden. Während beim Deep Learning ein starker Algorithmus durch ein mehrschichtiges künstliches neuronales Netz dafür entworfen und trainiert wird, um ein komplexes Problem zu lösen (beispielsweise Testerkennung [OCR]), können derartige Herausforderungen auch mit schwächeren Klassifikatoren unter Einsatz von Boosting realisiert werden.

Boosting bezieht sich allein auf das Training und ist aus einer Not heraus entstanden: Wie bekommen wir bessere Prädiktionen mit einem eigentlich schwachen Lernalgorithmus, der tendenziell Unteranpassung erzeugt? Boosting ist eine Antwort auf Herausforderungen der Klassifikation oder Regression, bei der ein Algorithmus iterativ, also in mehreren Durchläufen, durch Anpassung von Gewichten trainiert wird.

Eines der bekanntesten Boosting-Verfahren ist AdaBoost. Der erste Schritt ist ein normales Training. Beim darauffolgenden Testen zeigen sich Klassifikations-/Regressionsfehler. Die fehlerhaft vorhergesagten Datenpunkte werden dann für einen nächsten Durchlauf höher gewichtet. Diese Iteration läuft einige Male, bis die Fehlerquote sich nicht mehr verbessert.

Bei AdaBoost werden falsch vorhergesagte Datensätze im jeweils nächsten Durchlauf höher gewichtet. Bei einem alternativen Boosing-Verfahren, dem Gradient Boosting (auf Basis der Gradientenmethode), werden Gewichtungen explizit in Gegenrichtung des Prädiktionsfehlers angepasst.

Was beispielsweise beim Voting Classifier der Random Forest ist, bei dem mehrere Entscheidungsbäume parallel arbeiten, sind das Äquvivalent beim Boosting die Gradient Boosted Trees, bei denen jeder Baum nur einen Teil der Daten akkurat beschreiben kann, die sequentielle Verschachtelung der Bäume jedoch auch herausfordernde Klassifikationen meistert.

Um bei dem Beispiel der Entscheidungsbäume zu bleiben: Sowohl Random Forests als auch Gradient Boosted Trees arbeiten grundsätzlich mit flachen Bäumen (schwache Klassifikatoren). Gradient Boosted Trees können durch die iterative Verstärkung generell eine höhere Präzision der Prädiktion erreichen als Random Forests, wenn die Feature- und Parameter-Auswahl bereits zu Anfang sinnvoll ist. Random Forests sind hingegen wiederum robuster bei der Feature- und Parameter-Auswahl, verstärken sich jedoch nicht gegenseitig, sondern sind in ihrem Endergebnis so gut, wie die Mehrheit der Bäume.

Buchempfehlungen

Mehr zum Thema Machine Learning und Ensemble Learning gewünscht? Folgende zwei Buchempfehlungen bieten nicht nur Erklärungen, sondern demonstrieren Ensemble Learning auch mit Beispiel-Code mit Python Scikit-Learn.

Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems Machine Learning mit Python: Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional)

Lineare Regression in Python mit Scitkit-Learn

Die lineare Regressionsanalyse ist ein häufiger Einstieg ins maschinelle Lernen um stetige Werte vorherzusagen (Prediction bzw. Prädiktion). Hinter der Regression steht oftmals die Methode der kleinsten Fehlerquadrate und die hat mehr als eine mathematische Methode zur Lösungsfindung (Gradientenverfahren und Normalengleichung). Alternativ kann auch die Maximum Likelihood-Methode zur Regression verwendet werden. Wir wollen uns in diesem Artikel nicht auf die Mathematik konzentrieren, sondern uns direkt an die Anwendung mit Python Scikit-Learn machen:

Haupt-Lernziele:

  • Einführung in Machine Learning mit Scikit-Learn
  • Lineare Regression mit Scikit-Learn

Neben-Lernziele:

  • Datenvorbereitung (Data Preparation) mit Pandas und Scikit-Learn
  • Datenvisualisierung mit der Matplotlib direkt und indirekt (über Pandas)

Was wir inhaltlich tun:

Der Versuch einer Vorhersage eines Fahrzeugpreises auf Basis einer quantitativ-messbaren Eigenschaft eines Fahrzeuges.


Die Daten als Download

Für dieses Beispiel verwende ich die Datei “Automobil_data.txt” von Kaggle.com. Die Daten lassen sich über folgenden Link downloaden, nur leider wird ein (kostenloser) Account benötigt:
https://www.kaggle.com/toramky/automobile-dataset/downloads/automobile-dataset.zip
Sollte der Download-Link unerwartet mal nicht mehr funktionieren, freue ich mich über einen Hinweis als Kommentar 🙂

Die Entwicklungsumgebung

Ich verwende hier die Python-Distribution Anaconda 3 und als Entwicklungs-Umgebung Spyder (in Anaconda enthalten). Genauso gut funktionieren jedoch auch Jupyter Notebook, Eclipse mit PyDev oder direkt die IPython QT-Console.


Zuerst einmal müssen wir die Daten in unsere Python-Session laden und werden einige Transformationen durchführen müssen. Wir starten zunächst mit dem Importieren von drei Bibliotheken NumPy und Pandas, deren Bedeutung ich nicht weiter erläutern werde, somit voraussetze.

import matplotlib.pyplot as plt  # Die Nr.1 der Bibliotheken zur Datenvisualisierung
import numpy as np               # Bibliothek "Nummerisches Python"
import pandas as pd              # Bibliothek "Panel Data"

Wir nutzen die Pandas-Bibliothek, um die “Automobile_data.txt” in ein pd.DataFrame zu laden.

dataSet = pd.read_csv("Automobile_data.txt",  # Hier liegt die Datei im selben Verzeichnis wie das Python-Skript!
                      delimiter = ',',
                      thousands = None,
                      decimal = '.')

Schauen wir uns dann die ersten fünf Zeilen in IPython via dataSet.head().

In : dataSet.head()
Out: 
   symboling normalized-losses         make fuel-type aspiration num-of-doors  \
0          3                 ?  alfa-romero       gas        std          two   
1          3                 ?  alfa-romero       gas        std          two   
2          1                 ?  alfa-romero       gas        std          two   
3          2               164         audi       gas        std         four   
4          2               164         audi       gas        std         four   

    body-style drive-wheels engine-location  wheel-base  ...    engine-size  \
0  convertible          rwd           front        88.6  ...            130   
1  convertible          rwd           front        88.6  ...            130   
2    hatchback          rwd           front        94.5  ...            152   
3        sedan          fwd           front        99.8  ...            109   
4        sedan          4wd           front        99.4  ...            136   

   fuel-system  bore  stroke compression-ratio horsepower  peak-rpm city-mpg  \
0         mpfi  3.47    2.68               9.0        111      5000       21   
1         mpfi  3.47    2.68               9.0        111      5000       21   
2         mpfi  2.68    3.47               9.0        154      5000       19   
3         mpfi  3.19     3.4              10.0        102      5500       24   
4         mpfi  3.19     3.4               8.0        115      5500       18   

  highway-mpg  price  
0          27  13495  
1          27  16500  
2          26  16500  
3          30  13950  
4          22  17450  

[5 rows x 26 columns]

Hinweis: Der Datensatz hat viele Spalten, so dass diese in der Darstellung mit einem Backslash \ umgebrochen werden.

Gleich noch eine weitere Ausgabe dataSet.info(), die uns etwas über die Beschaffenheit der importierten Daten verrät:

In : dataSet.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
symboling            205 non-null int64
normalized-losses    205 non-null object
make                 205 non-null object
fuel-type            205 non-null object
aspiration           205 non-null object
num-of-doors         205 non-null object
body-style           205 non-null object
drive-wheels         205 non-null object
engine-location      205 non-null object
wheel-base           205 non-null float64
length               205 non-null float64
width                205 non-null float64
height               205 non-null float64
curb-weight          205 non-null int64
engine-type          205 non-null object
num-of-cylinders     205 non-null object
engine-size          205 non-null int64
fuel-system          205 non-null object
bore                 205 non-null object
stroke               205 non-null object
compression-ratio    205 non-null float64
horsepower           205 non-null object
peak-rpm             205 non-null object
city-mpg             205 non-null int64
highway-mpg          205 non-null int64
price                205 non-null object
dtypes: float64(5), int64(5), object(16)
memory usage: 41.7+ KB

Einige Spalten entsprechen hinsichtlich des Datentypes nicht der Erwartung. Für die Spalten ‘horsepower’ und ‘peak-rpm’ würde ich eine Ganzzahl (Integer) erwarten, für ‘price’ hingegen eine Fließkommazahl (Float), allerdings sind die drei Spalten als Object deklariert. Mit Trick 17 im Data Science, der Anzeige der Minimum- und Maximum-Werte einer zu untersuchenden Datenreihe, kommen wir dem Übeltäter schnell auf die Schliche:

dataSet['horsepower'].min()
Out: '100'

dataSet['horsepower'].max()
Out: '?'

Datenbereinigung

Für eine Regressionsanalyse benötigen wir nummerische Werte (intervall- oder ratioskaliert), diese möchten wir auch durch richtige Datentypen-Deklaration herstellen. Nun wird eine Konvertierung in den gewünschten Datentyp jedoch an den (mit ‘?’ aufgefüllten) Datenlücken scheitern.

Schauen wir uns doch einmal die Datenreihen an, in denen in der Spalte ‘peak-rpm’ Fragezeichen stehen:

dataSet[dataSet['peak-rpm'] == '?'][['engine-type', 'num-of-cylinders']]
Out: 
    engine-type num-of-cylinders
130         ohc             four
131         ohc             four

Zwei Datenreihen sind vorhanden, bei denen ‘peak-rpm’ mit einem ‘?’ aufgefüllt wurde. Nun könnten wir diese Datenreihen einfach rauslöschen. Oder mit sinnvollen (im Sinne von wahrscheinlichen) Werten auffüllen. Vermutlichen haben beide Einträge – beide sind OHC-Motoren mit 4 Zylindern – eine ähnliche Drehzahl-Angabe wie vergleichbare Motoren. Mit folgendem Quellcode, gruppieren wir die Spalten ‘engine-type’ und ‘num-of-cylinders’ und bilden für diese Klassen den arithmetischen Mittelwert (.mean()) für die ‘peak-rpm’.

dataSet_rpm = dataSet[dataSet['peak-rpm'] != '?'][['engine-type', 'num-of-cylinders','peak-rpm']]
dataSet_rpm['peak-rpm'] = dataSet_rpm['peak-rpm'].astype(float)
dataSet_rpm_grouped = dataSet_rpm.groupby(['engine-type', 'num-of-cylinders'])
dataSet_rpm_grouped['peak-rpm'].mean()

Und schauen wir uns das Ergebnis an:

dataSet_rpm_grouped['peak-rpm'].mean()
Out: 
engine-type  num-of-cylinders
dohc         four                5700.000000 -- 
             six                 5050.000000
dohcv        eight               5750.000000
l            four                4668.181818
             three               5100.000000
ohc          five                5081.818182
             four                5155.468750
             six                 4821.428571
ohcf         four                4775.000000
             six                 5900.000000
ohcv         eight               4625.000000
             six                 5212.500000
             twelve              5000.000000
rotor        two                 6000.000000
Name: peak-rpm, dtype: float64

Ein Vier-Zylinder-OHC-Motor hat demnach durchschnittlich einen Drehzahl-Peak von 5155 Umdrehungen pro Minute. Ohne nun (fahrlässigerweise) auf die Verteilung in dieser Klasse zu achten, nehmen wir einfach diesen Schätzwert, um die zwei fehlende Datenpunkte zu ersetzen.

Wir möchten jedoch die Original-Daten erhalten und legen ein neues DataSet (dataSet_c) an, in welches wir die Korrekturen vornehmen:

dataSet_c = dataSet.copy()   # das "c"-Anhängsel steht für "corrected"

Nun können wir die fehlenden Peak-RPM-Einträge mit unserem Schätzwert ersetzen:

dataSet_c.loc[dataSet_c['peak-rpm'] == '?', 'peak-rpm'] = 5155

Was bei einer Drehzahl-Angabe noch funktionieren mag, ist für anderen Spalten bereits etwas schwieriger: Die beiden Spalten ‘price’ und ‘horsepower’ sind ebenfalls vom Typ Object, da sie ‘?’ enthalten. Verzichten wir einfach auf die betroffenen Zeilen:

dataSet_c = dataSet_c[dataSet_c['price'] != '?']                    # entsprechende Zeilen herausfiltern
dataSet_c['price'] = dataSet_c['price'].astype(float)               # Typ-Konvertierung zu Float

dataSet_c = dataSet_c[dataSet_c.horsepower != '?']                  # entsprechende Zeilen herausfiltern
dataSet_c['horsepower'] = dataSet_c['horsepower'].astype(float)     # Typ-Konvertierung in Int

Datenvisualisierung mit Pandas

Wir wollen uns nicht lange vom eigentlichen Ziel ablenken, dennoch nutzen wir die Visualisierungsfähigkeiten der Pandas-Library (welche die Matplotlib inkludiert), um uns dann die Anzahlen an Einträgen nach Hersteller der Fahrzeuge (Spalte ‘make’) anzeigen zu lassen:

dataSet_grouped_make = dataSet_c.groupby('make')
dataSet_grouped_make['make'].count().plot(kind = 'bar', figsize = (10, 10))
plt.show()    # Besser jedes Plot abschließen! Auch wenn es in Pandas entstanden ist.

Oder die durchschnittliche PS-Zahl nach Hersteller:

(dataSet_c.groupby('make'))['horsepower'].mean().plot(kind = 'barh',
                                                      title = 'Mean Horsepower',
                                                      figsize = (10, 10))
plt.show()

Vorbereitung der Regressionsanalyse

Nun kommen wir endlich zur Regressionsanalyse, die wir mit Scikit-Learn umsetzen möchten. Die Regressionsanalyse können wir nur mit intervall- oder ratioskalierten Datenspalten betreiben, daher beschränken wir uns auf diese. Die “price”-Spalte nehmen wir jedoch heraus und setzen sie als unsere Zielgröße fest.

""" ----- Vorbereitung für die Regressionsanalyse ----- """
cols_ratio = ['horsepower', 'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-size', 'compression-ratio', 'city-mpg', 'highway-mpg']
cols_target = ['price']

dataSet_ratio = dataSet_c.loc[:, cols_ratio]
dataSet_target = dataSet_c[cols_target]

Interessant ist zudem die Betrachtung vorab, wie die einzelnen nummerischen Attribute untereinander korrelieren. Dafür nehmen wir auch die ‘price’-Spalte wieder in die Betrachtung hinein und hinterlegen auch eine Farbskala mit dem Preis (höhere Preise, hellere Farben).

grr = pd.plotting.scatter_matrix(dataSet_c[cols_target + cols_ratio]
                                 ,c = dataSet_target
                                 ,figsize=(15, 15)
                                 ,marker = 'o'
                                 ,hist_kwds={'bins' : 20}
                                 ,s = 60
                                 ,alpha = 0.8)
plt.show()

Die lineare Korrelation ist hier sehr interessant, da wir auch nur eine lineare Regression beabsichtigen.

Wie man in dieser Scatter-Matrix recht gut erkennen kann, scheinen einige Größen-Paare nahezu perfekt zu korrelieren, andere nicht.

Korrelation…

  • …nahezu perfekt linear: highway-mpg vs city-mpg (mpg = Miles per Gallon)
  • … eher nicht gegeben: highway-mpg vs height
  • … nicht linear, dafür aber nicht-linear: highway-mpg vs price

Nun, wir wollen den Preis eines Fahrzeuges vorhersagen, wenn wir eine andere quantitative Größe gegeben haben. Auf den Preis bezogen, erscheint mir die Motorleistung (Horsepower) einigermaßen linear zu korrelieren. Versuchen wir hier die lineare Regression und setzen somit die Spalte ‘horsepower’ als X und ‘price’ als y fest.

X = dataSet_ratio[['horsepower']] # doppelte [], da eine Liste von Spalten zu übergeben ist
y = dataSet_c[cols_target]

Die gängige Konvention ist übrigens, X groß zu schreiben, weil hier auch mehrere x-Dimensionen enthalten sein dürfen (multivariate Regression). y hingegen, ist stets nur eine Zielgröße (eine Dimension).

Die lineare Regression ist ein überwachtes Verfahren des maschinellen Lernens, somit müssen wir unsere Prädiktionsergebnisse mit Test-Daten testen, die nicht für das Training verwendet werden dürfen. Scitkit-Learn (oder kurz: sklearn) bietet hierfür eine Funktion an, die uns das Aufteilen der Daten abnimmt:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size = 0.3,     # 70% der Daten für das Training
                                                    random_state = None) # bei Bedarf kann hier "dem Zufall auf die Sprünge geholfen" werden

Zu beachten ist dabei, dass die Daten vor dem Aufteilen in Trainings- und Testdaten gut zu durchmischen sind. Auch dies übernimmt die train_test_split-Funktion für uns, nur sollte man im Hinterkopf behalten, dass die Ergebnisse (auf Grund der Zufallsauswahl) nach jedem Durchlauf immer wieder etwas anders aussehen.

Lineare Regression mit Scikit-Learn

Nun kommen wir zur Durchführung der linearen Regression mit Scitkit-Learn, die sich in drei Zeilen trainieren lässt:

""" ----- Lineare Regressionsanalyse ------- """

from sklearn.linear_model import LinearRegression   # importieren der Klasse

lr = LinearRegression()                             # instanziieren der Klasse

lr.fit(X_train, y_train)                            # trainieren

Aber Vorsicht! Bevor wir eine Prädiktion durchführen, wollen wir festlegen, wie wir die Güte der Prädiktion bewerten wollen. Die gängigsten Messungen für eine lineare Regression sind der MSE und R².

MSE = \frac{\sum_{i=1}^n (y_i - \hat{y_i})^2}{n}

Ein großer MSE ist schlecht, ein kleiner gut.

R^2 = 1 - \frac{MSE}{Var(y)}= \frac{\frac{1}{n} \cdot \sum_{i=1}^n (y_i - \hat{y_i})^2}{\frac{1}{n} \cdot \sum_{i=1}^n (y_i - \hat{\mu_y})^2}

Ein kleines R² ist schlecht, ein großes R² gut. Ein R² = 1.0 wäre theoretisch perfekt (da der Fehler = 0.00 wäre), jedoch in der Praxis unmöglich, da dieser nur bei absolut perfekter Korrelation auftreten würde. Die Klasse LinearRegression hat eine R²-Messmethode implementiert (score(x, y)).

print('------ Lineare Regression -----')
print('Funktion via sklearn: y = %.3f * x + %.3f' % (lr.coef_[0], lr.intercept_))
print("Alpha: {}".format(lr.intercept_))
print("Beta: {}".format(lr.coef_[0]))
print("Training Set R² Score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test Set R² Score: {:.2f}".format(lr.score(X_test, y_test)))
print("\n")

Die Ausgabe (ein Beispiel!):

------ Lineare Regression -----
Funktion via sklearn: y = 170.919 * x + -4254.701     # Die Funktion ist als y = 171 * x - 4254.7
Alpha: [-4254.70114803]                               # y-Achsenschnitt bei x = 0
Beta: [ 170.91919086]                                 # Steigung der Gerade
Training Set R² Score: 0.62                           
Test Set R² Score: 0.73

Nach jedem Durchlauf ändert sich mit der Datenaufteilung (train_test_split()) das Modell etwas und auch R² schwankt um eine gewisse Bandbreite. Berauschend sind die Ergebnisse dabei nicht, und wenn wir uns die Regressionsgerade einmal ansehen, wird auch klar, warum:

plt.figure(figsize=(10,10))
plt.scatter(X_train, y_train, color = 'blue')                 # Blaue Punkte sind Trainingsdaten
plt.scatter(X_test, y_test, color = 'green')                  # Grüne Punkte sind Testdaten
plt.plot(X_train, lr.predict(X_train), color = 'red')         # Hier ensteht die Gerade (x, y) = (x, lr.predict(x)
plt.xlabel(X_train.columns[0])
plt.ylabel(cols_target[0])
plt.show()

Bei kleineren Leistungsbereichen, etwa bis 100 PS, ist die Preis-Varianz noch annehmbar gering, doch bei höheren Leistungsbereichen ist die Spannweite deutlich größer. (Nachträgliche Anmerkung vom 06.05.2018: relativ betrachtet, bleibt der Fehler über alle Wertebereiche ungefähr gleich [relativer Fehler]. Die absoluten Fehlerwerte haben jedoch bei größeren x-Werten so eine Varianz der möglichen y-Werte, dass keine befriedigenden Prädiktionen zu erwarten sind.)

Egal wie wir eine Gerade in diese Punktwolke legen, wir werden keine befriedigende Fehlergröße erhalten.

Nehmen wir einmal eine andere Spalte für X, bei der wir vor allem eine nicht-lineare Korrelation erkannt haben: “highway-mpg”

X = dataSet_ratio[['highway-mpg']]
y = dataSet_c[cols_target]

Wenn wir dann das Training wiederholen:

------ Lineare Regression -----
Funktion via sklearn: y = -868.787 * x + 40575.036
Alpha: [ 40575.03556055]
Beta: [-868.7869183]
Training Set R² Score: 0.49
Test Set R² Score: 0.40

Die R²-Werte sind nicht gerade berauschend, und das erklärt sich auch leicht, wenn wir die Trainings- und Testdaten sowie die gelernte Funktionsgerade visualisieren:

Die Gerade lässt sich nicht wirklich gut durch diese Punktwolke legen, da letztere eher eine Kurve als eine Gerade bildet. Im Grunde könnte eine Gerade noch einigermaßen gut in den Bereich von 22 bis 43 mpg passen und vermutlich annehmbare Ergebnisse liefern. Die Wertebereiche darunter und darüber jedoch verzerren zu sehr und sorgen zudem dafür, dass die Gerade auch innerhalb des mittleren Bereiches zu weit nach oben verschoben ist (ggf. könnte hier eine Ridge-/Lasso-Regression helfen).

Richtig gute Vorhersagen über nicht-lineare Verhältnisse können jedoch nur mit einer nicht-linearen Regression erreicht werden.

Nicht-lineare Regression mit Scikit-Learn

Nicht-lineare Regressionsanalysen erlauben es uns, nicht-lineare korrelierende Werte-Paare als Funktion zu erlernen. Im folgenden Scatter-Plot sehen wir zum einen die gewohnte lineare Regressionsgerade (y = a * x + b) in rot, eine polinominale Regressionskurve dritten Grades (y = a * x³ + b * x² + c * x + d) in violet sowie einen Entscheidungsweg einer Entscheidungsbaum-Regression in gelb.

Nicht-lineare Regressionsanalysen passen sich dem Verlauf der Punktwolke sehr viel besser an und können somit in der Regel auch sehr gute Vorhersageergebnisse liefern. Ich ziehe hier nun jedoch einen Gedankenstrich, liefere aber den Quellcode für die lineare Regression als auch für die beiden nicht-linearen Regressionen mit:

Python Script Regression via Scikit-Learn

Weitere Anmerkungen

  • Bibliotheken wie Scitkit-Learn erlauben es, machinelle Lernverfahren schnell und unkompliziert anwenden zu können. Allerdings sollte man auch verstehen, wei diese Verfahren im Hintergrund mathematisch arbeiten. Diese Bibliotheken befreien uns also nicht gänzlich von der grauen Theorie.
  • Statt der “reinen” lineare Regression (LinearRegression()) können auch eine Ridge-Regression (Ridge()), Lasso-Regression (Lasso()) oder eine Kombination aus beiden als sogenannte ElasticNet-Regression (ElasticNet()). Bei diesen kann über Parametern gesteuert werden, wie stark Ausreißer in den Daten berücksichtigt werden sollen.
  • Vor einer Regression sollten die Werte skaliert werden, idealerweise durch Standardisierung der Werte (sklearn.preprocessing.StandardScaler()) oder durch Normierung (sklearn.preprocessing.Normalizer()).
  • Wir haben hier nur zwei-dimensional betrachtet. In der Praxis ist das jedoch selten ausreichend, auch der Fahrzeug-Preis ist weder von der Motor-Leistung, noch von dem Kraftstoffverbrauch alleine abhängig – Es nehmen viele Größen auf den Preis Einfluss, somit benötigen wir multivariate Regressionsanalysen.

Data Science Knowledge Stack – Was ein Data Scientist können muss

Was muss ein Data Scientist können? Diese Frage wurde bereits häufig gestellt und auch häufig beantwortet. In der Tat ist man sich mittlerweile recht einig darüber, welche Aufgaben ein Data Scientist für Aufgaben übernehmen kann und welche Fähigkeiten dafür notwendig sind. Ich möchte versuchen, diesen Konsens in eine Grafik zu bringen: Ein Schichten-Modell, ähnlich des OSI-Layer-Modells (welches übrigens auch jeder Data Scientist kennen sollte).
Ich gebe Einführungs-Seminare in Data Science für Kaufleute und Ingenieure und bei der Erläuterung, was wir in den Seminaren gemeinsam theoretisch und mit praxisnahen Übungen erarbeiten müssen, bin ich auf die Idee für dieses Schichten-Modell gekommen. Denn bei meinen Seminaren fängt es mit der Problemstellung bereits an, ich gebe nämlich Seminare für Data Science für Business Analytics mit Python. Also nicht beispielsweise für medizinische Analysen und auch nicht mit R oder Julia. Ich vermittle also nicht irgendein Data Science, sondern eine ganz bestimmte Richtung.

Ein Data Scientist muss bei jedem Data Science Vorhaben Probleme auf unterschiedlichsten Ebenen bewältigen, beispielsweise klappt der Datenzugriff nicht wie geplant oder die Daten haben eine andere Struktur als erwartet. Ein Data Scientist kann Stunden damit verbringen, seinen eigenen Quellcode zu debuggen oder sich in neue Data Science Pakete für seine ausgewählte Programmiersprache einzuarbeiten. Auch müssen die richtigen Algorithmen zur Datenauswertung ausgewählt, richtig parametrisiert und getestet werden, manchmal stellt sich dabei heraus, dass die ausgewählten Methoden nicht die optimalen waren. Letztendlich soll ein Mehrwert für den Fachbereich generiert werden und auch auf dieser Ebene wird ein Data Scientist vor besondere Herausforderungen gestellt.


english-flagRead this article in English:
“Data Science Knowledge Stack – Abstraction of the Data Scientist Skillset”


Data Science Knowledge Stack

Mit dem Data Science Knowledge Stack möchte ich einen strukturierten Einblick in die Aufgaben und Herausforderungen eines Data Scientists geben. Die Schichten des Stapels stellen zudem einen bidirektionalen Fluss dar, der von oben nach unten und von unten nach oben verläuft, denn Data Science als Disziplin ist ebenfalls bidirektional: Wir versuchen gestellte Fragen mit Daten zu beantworten oder wir schauen, welche Potenziale in den Daten liegen, um bisher nicht gestellte Fragen zu beantworten.

Der Data Science Knowledge Stack besteht aus sechs Schichten:

Database Technology Knowledge

Ein Data Scientist arbeitet im Schwerpunkt mit Daten und die liegen selten direkt in einer CSV-Datei strukturiert vor, sondern in der Regel in einer oder in mehreren Datenbanken, die ihren eigenen Regeln unterliegen. Insbesondere Geschäftsdaten, beispielsweise aus dem ERP- oder CRM-System, liegen in relationalen Datenbanken vor, oftmals von Microsoft, Oracle, SAP oder eine Open-Source-Alternative. Ein guter Data Scientist beherrscht nicht nur die Structured Query Language (SQL), sondern ist sich auch der Bedeutung relationaler Beziehungen bewusst, kennt also auch das Prinzip der Normalisierung.

Andere Arten von Datenbanken, sogenannte NoSQL-Datenbanken (Not only SQL)  beruhen auf Dateiformaten, einer Spalten- oder einer Graphenorientiertheit, wie beispielsweise MongoDB, Cassandra oder GraphDB. Einige dieser Datenbanken verwenden zum Datenzugriff eigene Programmiersprachen (z. B. JavaScript bei MongoDB oder die graphenorientierte Datenbank Neo4J hat eine eigene Sprache namens Cypher). Manche dieser Datenbanken bieten einen alternativen Zugriff über SQL (z. B. Hive für Hadoop).

Ein Data Scientist muss mit unterschiedlichen Datenbanksystemen zurechtkommen und mindestens SQL – den Quasi-Standard für Datenverarbeitung – sehr gut beherrschen.

Data Access & Transformation Knowledge

Liegen Daten in einer Datenbank vor, können Data Scientists einfache (und auch nicht so einfache) Analysen bereits direkt auf der Datenbank ausführen. Doch wie bekommen wir die Daten in unsere speziellen Analyse-Tools? Hierfür muss ein Data Scientist wissen, wie Daten aus der Datenbank exportiert werden können. Für einmalige Aktionen kann ein Export als CSV-Datei reichen, doch welche Trennzeichen und Textqualifier können verwendet werden? Eventuell ist der Export zu groß, so dass die Datei gesplittet werden muss.
Soll eine direkte und synchrone Datenanbindung zwischen dem Analyse-Tool und der Datenbank bestehen, kommen Schnittstellen wie REST, ODBC oder JDBC ins Spiel. Manchmal muss auch eine Socket-Verbindung hergestellt werden und das Prinzip einer Client-Server-Architektur sollte bekannt sein. Auch mit synchronen und asynchronen Verschlüsselungsverfahren sollte ein Data Scientist vertraut sein, denn nicht selten wird mit vertraulichen Daten gearbeitet und ein Mindeststandard an Sicherheit ist zumindest bei geschäftlichen Anwendungen stets einzuhalten.

Viele Daten liegen nicht strukturiert in einer Datenbank vor, sondern sind sogenannte unstrukturierte oder semi-strukturierte Daten aus Dokumenten oder aus Internetquellen. Auch hier haben wir es mit Schnittstellen zutun, ein häufiger Einstieg für Data Scientists stellt beispielsweise die Twitter-API dar. Manchmal wollen wir Daten in nahezu Echtzeit streamen, beispielsweise Maschinendaten. Dies kann recht anspruchsvoll sein, so das Data Streaming beinahe eine eigene Disziplin darstellt, mit der ein Data Scientist schnell in Berührung kommen kann.

Programming Language Knowledge

Programmiersprachen sind für Data Scientists Werkzeuge, um Daten zu verarbeiten und die Verarbeitung zu automatisieren. Data Scientists sind in der Regel keine richtigen Software-Entwickler, sie müssen sich nicht um Software-Sicherheit oder -Ergonomie kümmern. Ein gewisses Basiswissen über Software-Architekturen hilft jedoch oftmals, denn immerhin sollen manche Data Science Programme in eine IT-Landschaft integriert werden. Unverzichtbar ist hingegen das Verständnis für objektorientierte Programmierung und die gute Kenntnis der Syntax der ausgewählten Programmiersprachen, zumal nicht jede Programmiersprache für alle Vorhaben die sinnvollste ist.

Auf dem Level der Programmiersprache gibt es beim Arbeitsalltag eines Data Scientists bereits viele Fallstricke, die in der Programmiersprache selbst begründet sind, denn jede hat ihre eigenen Tücken und Details entscheiden darüber, ob eine Analyse richtig oder falsch abläuft: Beispielsweise ob Datenobjekte als Kopie oder als Referenz übergeben oder wie NULL-Werte behandelt werden.

Data Science Tool & Library Knowledge

Hat ein Data Scientist seine Daten erstmal in sein favorisiertes Tool geladen, beispielsweise in eines von IBM, SAS oder in eine Open-Source-Alternative wie Octave, fängt seine Kernarbeit gerade erst an. Diese Tools sind allerdings eher nicht selbsterklärend und auch deshalb gibt es ein vielfältiges Zertifizierungsangebot für diverse Data Science Tools. Viele (wenn nicht die meisten) Data Scientists arbeiten überwiegend direkt mit einer Programmiersprache, doch reicht diese alleine nicht aus, um effektiv statistische Datenanalysen oder Machine Learning zu betreiben: Wir verwenden Data Science Bibliotheken, also Pakete (Packages), die uns Datenstrukturen und Methoden als Vorgabe bereitstellen und die Programmiersprache somit erweitern, damit allerdings oftmals auch neue Tücken erzeugen. Eine solche Bibliothek, beispielsweise Scikit-Learn für Python, ist eine in der Programmiersprache umgesetzte Methodensammlung und somit ein Data Science Tool. Die Verwendung derartiger Bibliotheken will jedoch gelernt sein und erfordert für die zuverlässige Anwendung daher Einarbeitung und Praxiserfahrung.

Geht es um Big Data Analytics, also die Analyse von besonders großen Daten, betreten wir das Feld von Distributed Computing (Verteiltes Rechnen). Tools (bzw. Frameworks) wie Apache Hadoop, Apache Spark oder Apache Flink ermöglichen es, Daten zeitlich parallel auf mehren Servern zu verarbeiten und auszuwerten. Auch stellen diese Tools wiederum eigene Bibliotheken bereit, für Machine Learning z. B. Mahout, MLlib und FlinkML.

Data Science Method Knowledge

Ein Data Scientist ist nicht einfach nur ein Bediener von Tools, sondern er nutzt die Tools, um seine Analyse-Methoden auf Daten anzuwenden, die er für die festgelegten Ziele ausgewählt hat. Diese Analyse-Methoden sind beispielweise Auswertungen der beschreibenden Statistik, Schätzverfahren oder Hypothesen-Tests. Etwas mathematischer sind Verfahren des maschinellen Lernens zum Data Mining, beispielsweise Clusterung oder Dimensionsreduktion oder mehr in Richtung automatisierter Entscheidungsfindung durch Klassifikation oder Regression.

Maschinelle Lernverfahren funktionieren in der Regel nicht auf Anhieb, sie müssen unter Einsatz von Optimierungsverfahren, wie der Gradientenmethode, verbessert werden. Ein Data Scientist muss Unter- und Überanpassung erkennen können und er muss beweisen, dass die Vorhersageergebnisse für den geplanten Einsatz akkurat genug sind.

Spezielle Anwendungen bedingen spezielles Wissen, was beispielsweise für die Themengebiete der Bilderkennung (Visual Computing) oder der Verarbeitung von menschlicher Sprache (Natural Language Processiong) zutrifft. Spätestens an dieser Stelle öffnen wir die Tür zum Deep Learning.

Fachexpertise

Data Science ist kein Selbstzweck, sondern eine Disziplin, die Fragen aus anderen Fachgebieten mit Daten beantworten möchte. Aus diesem Grund ist Data Science so vielfältig. Betriebswirtschaftler brauchen Data Scientists, um Finanztransaktionen zu analysieren, beispielsweise um Betrugsszenarien zu erkennen oder um die Kundenbedürfnisse besser zu verstehen oder aber, um Lieferketten zu optimieren. Naturwissenschaftler wie Geologen, Biologen oder Experimental-Physiker nutzen ebenfalls Data Science, um ihre Beobachtungen mit dem Ziel der Erkenntnisgewinnung zu machen. Ingenieure möchten die Situation und Zusammenhänge von Maschinenanlagen oder Fahrzeugen besser verstehen und Mediziner interessieren sich für die bessere Diagnostik und Medikation bei ihren Patienten.

Damit ein Data Scientist einen bestimmten Fachbereich mit seinem Wissen über Daten, Tools und Analyse-Methoden ergebnisorientiert unterstützen kann, benötigt er selbst ein Mindestmaß an der entsprechenden Fachexpertise. Wer Analysen für Kaufleute, Ingenieure, Naturwissenschaftler, Mediziner, Juristen oder andere Interessenten machen möchte, muss eben jene Leute auch fachlich verstehen können.

Engere Data Science Definition

Während die Data Science Pioniere längst hochgradig spezialisierte Teams aufgebaut haben, suchen beispielsweise kleinere Unternehmen eher den Data Science Allrounder, der vom Zugriff auf die Datenbank bis hin zur Implementierung der analytischen Anwendung das volle Aufgabenspektrum unter Abstrichen beim Spezialwissen übernehmen kann. Unternehmen mit spezialisierten Daten-Experten unterscheiden jedoch längst in Data Scientists, Data Engineers und Business Analysts. Die Definition für Data Science und die Abgrenzung der Fähigkeiten, die ein Data Scientist haben sollte, schwankt daher zwischen der breiteren und einer engeren Abgrenzung.

Die engere Betrachtung sieht vor, dass ein Data Engineer die Datenbereitstellung übernimmt, der Data Scientist diese in seine Tools lädt und gemeinsam mit den Kollegen aus dem Fachbereich die Datenanalyse betreibt. Demnach bräuchte ein Data Scientist kein Wissen über Datenbanken oder APIs und auch die Fachexpertise wäre nicht notwendig…

In der beruflichen Praxis sieht Data Science meiner Erfahrung nach so nicht aus, das Aufgabenspektrum umfasst mehr als nur den Kernbereich. Dieser Irrtum entsteht in Data Science Kursen und auch in Seminaren – würde ich nicht oft genug auf das Gesamtbild hinweisen. In Kursen und Seminaren, die Data Science als Disziplin vermitteln wollen, wird sich selbstverständlich auf den Kernbereich fokussiert: Programmierung, Tools und Methoden aus der Mathematik & Statistik.