Tag Archive for: Data Engineer

Benjamin Aunkofer über Karriere mit Daten, Datenkompetenz und Datenstrategie

Data Jobs – Podcast-Folge mit Benjamin Aunkofer

In der heutigen Geschäftswelt ist der Einsatz von Daten unerlässlich, insbesondere für Unternehmen mit über 100 Mitarbeitern, die erfolgreich bleiben möchten. In der Podcast-Episode “Data Jobs – Was brauchst Du, um im Datenbereich richtig Karriere zu machen?” diskutieren Dr. Christian Krug und Benjamin Aunkofer, Gründer von DATANOMIQ, wie Angestellte ihre Datenkenntnisse verbessern und damit ihre berufliche Laufbahn aktiv vorantreiben können. Dies steigert nicht nur ihren persönlichen Erfolg, sondern erhöht auch den Nutzen und die Wettbewerbsfähigkeit des Unternehmens. Datenkompetenz ist demnach ein wesentlicher Faktor für den Erfolg sowohl auf individueller als auch auf Unternehmensebene.

In dem Interview erläutert Benjamin Aunkofer, wie man den Einstieg auch als Quereinsteiger schafft. Das Sprichwort „Ohne Fleiß kein Preis“ trifft besonders auf die Entwicklung beruflicher Fähigkeiten zu, insbesondere im Bereich der Datenverarbeitung und -analyse. Anstelle den Abend mit Serien auf Netflix zu verbringen, könnte man die Zeit nutzen, um sich durch Fachliteratur weiterzubilden. Es gibt eine Vielzahl von Büchern zu Themen wie Data Science, Künstliche Intelligenz, Process Mining oder Datenstrategie, die wertvolle Einblicke und Kenntnisse bieten können.

Der Nutzen steht in einem guten Verhältnis zum Aufwand, so Benjamin Aunkofer. Für diejenigen, die wirklich daran interessiert sind, in eine Datenkarriere einzusteigen, stehen die Türen offen. Der Einstieg erfordert zwar Engagement und Lernbereitschaft, ist aber für entschlossene Individuen absolut machbar. Dabei muss man nicht unbedingt eine Laufbahn als Data Scientist anstreben. Jede Fachkraft und insbesondere Führungskräfte können erheblich davon profitieren, die Grundlagen von Data Engineering und Data Science zu verstehen. Diese Kenntnisse ermöglichen es, fundiertere Entscheidungen zu treffen und die Potenziale der Datenanalyse optimal für das Unternehmen zu nutzen.

Podcast-Folge mit Benjamin Aunkofer und Dr. Christian Krug darüber, wie Menschen mit Daten Karriere machen und den Unternehmenserfolg herstellen!

Podcast-Folge mit Benjamin Aunkofer und Dr. Christian Krug darüber, wie Menschen mit Daten Karriere machen und den Unternehmenserfolg herstellen.

 

Zur Podcast-Folge auf Spotify: https://open.spotify.com/show/6Ow7ySMbgnir27etMYkpxT?si=dc0fd2b3c6454bfa

Zur Podcast-Folge auf iTunes: https://podcasts.apple.com/de/podcast/unf-ck-your-data/id1673832019

Zur Podcast-Folge auf Google: https://podcasts.google.com/feed/aHR0cHM6Ly9mZWVkcy5jYXB0aXZhdGUuZm0vdW5mY2steW91ci1kYXRhLw?ep=14

Zur Podcast-Folge auf Deezer: https://deezer.page.link/FnT5kRSjf2k54iib6

Interview – Künstliche Intelligenz im Unternehmen & der Mangel an IT-Fachkräften

Interview mit Sebastian van der Meer über den Einsatz von künstlicher Intelligenz im Unternehmen und dem Mangel an IT-Fachkräften

Sebastian van der Meer

Sebastian van der Meer ist Managing Partner der lexoro Gruppe, einem Technologie- und Beratungsunternehmen in den Zukunftsmärkten: Data-Science, Machine-Learning, Big-Data, Robotics und DevOps. Das Leistungsspektrum ist vielschichtig. Sie vermitteln Top-Experten an Unternehmen (Perm & IT-Contracting), arbeiten mit eigenen Teams für innovative Unternehmen an spannenden IT-Projekten und entwickeln zugleich eigene Produkte und Start-Ups in Zukunftsmärkten. Dabei immer im Mittelpunkt: Menschen und deren Verbindung mit exzellenter Technologiekompetenz.

Data Science Blog: Herr van der Meer, wenn man Google News mit den richtigen Stichwörtern abruft, scheinen die Themen Künstliche Intelligenz, Data Science und Machine Learning bei vielen Unternehmen bereits angekommen zu sein – Ist das so?

Das ist eine sehr gute Frage! Weltweit, vor allem in der USA und China, sind diese bereits „angekommen“, wenn man es so formulieren kann. Allerdings sind wir in Europa leider weit hinterher. Dazu gibt es ja bereits viele Studien und Umfragen, die dies beweisen. Vereinzelt gibt es große mittelständische- und Konzernunternehmen in Deutschland, die bereits eigene Einheiten und Teams in diesen Bereich und auch neue Geschäftsbereiche dadurch ermöglicht haben. Hier gibt es bereits tolle Beispiele, was mit K.I. erreichbar ist. Vor allem die Branchen Versicherungs- und Finanzdienstleistungen, Pharma/Life Science und Automotive sind den anderen in Deutschland etwas voraus.

Data Science Blog: Wird das Thema Data Science oder Machine Learning früher oder später für jedes Unternehmen relevant sein? Muss jedes Unternehmen sich mit K.I. befassen?

Data Science, Machine Learning, künstliche Intelligenz – das sind mehr als bloße Hype-Begriffe und entfernte Zukunftsmusik! Wir stecken mitten in massiven strukturellen Veränderungen. Die Digitalisierungswelle der vergangenen Jahre war nur der Anfang. Jede Branche ist betroffen. Schnell kann ein Gefühl von Bedrohung und Angst vor dem Unbekannten aufkommen. Tatsächlich liegen aber nie zuvor dagewesene Chancen und Potentiale vor unseren Füßen. Die Herausforderung ist es diese zu erkennen und dann die notwendigen Veränderungen umzusetzen. Daher sind wir der Meinung, dass jedes Unternehmen sich damit befassen muss und soll, wenn es in der Zukunft noch existieren will.

Wir unterstützen Unternehmen dabei ihre individuellen Herausforderungen, Hürden und Möglichkeiten zu identifizieren, die der große Hype „künstliche Intelligenz“ mit sich bringt. Hier geht es darum genau zu definieren, welche KI-Optionen überhaupt für das Unternehmen existieren. Mit Use-Cases zeigen wir, welchen Mehrwert sie dem Unternehmen bieten. Wenn die K.I. Strategie festgelegt ist, unterstützen wir bei der technischen Implementierung und definieren und rekrutieren bei Bedarf die relevanten Mitarbeiter.

Data Science Blog: Die Politik strebt stets nach Vollbeschäftigung. Die K.I. scheint diesem Leitziel entgegen gerichtet zu sein. Glauben Sie hier werden vor allem Ängste geschürt oder sind die Auswirkungen auf den Arbeitsmarkt durch das Vordringen von K.I. wirklich so gravierend?

Zu diesem Thema gibt es bereits viele Meinungen und Studien, die veröffentlicht worden sind. Eine interessante Studie hat vorhergesagt, dass in den nächsten 5 Jahren, weltweit 1.3 Millionen Stellen/Berufe durch K.I. wegfallen werden. Dafür aber in den gleichen Zeitnahmen 1.7 Millionen neue Stellen und Berufe entstehen werden. Hier gehen die Meinungen aber ganz klar auseinander. Die Einen sehen die Chancen, die Möglichkeiten und die Anderen sehen die Angst oder das Ungewisse. Eins steht fest, der Arbeitsmarkt wird sich in den nächsten 5 bis 10 Jahren komplett verändern und anpassen. Viele Berufe werden wegfallen, dafür werden aber viele neue Berufe hinzukommen. Vor einigen Jahren gab es noch keinen „Data Scientist“ Beruf und jetzt ist es einer der best bezahltesten IT Stellen in Unternehmen. Allein das zeigt doch auch, welche Chancen es in der Zukunft geben wird.

Data Science Blog: Wie sieht der Arbeitsmarkt in den Bereichen Data Science, Machine Learning und Künstliche Intelligenz aus?

Der Markt ist sehr intransparent. Jeder definiert einen Data Scientist anders. Zudem wird sich der Beruf und seine Anforderungen aufgrund des technischen Fortschritts stetig verändern. Der heutige Data Scientist wird sicher nicht der gleiche Data Scientist in 5 oder 10 Jahren sein. Die Anforderungen sind enorm hoch und die Konkurrenz, der sogenannte „War of Talents“ ist auch in Deutschland angekommen. Der Anspruch an Veränderungsbereitschaft und technisch stets up to date und versiert zu sein, ist extrem hoch. Das gleiche gilt auch für die anderen K.I. Berufe von heute, wie z.B. den Computer Vision Engineer, der Robotics Spezialist oder den DevOps Engineer.

Data Science Blog: Worauf sollten Unternehmen vor, während und nach der Einstellung von Data Scientists achten?

Das Allerwichtigste ist der Anfang. Es sollte ganz klar definiert sein, warum die Person gesucht wird, was die Aufgaben sind und welche Ergebnisse sich das Unternehmen mit der Einstellung erwartet bzw. erhofft. Oftmals hören wir von Unternehmen, dass sie Spezialisten in dem Bereich Data Science / Machine Learning suchen und große Anforderungen haben, aber diese gar nicht umgesetzt werden können, weil z.B. die Datengrundlage im Unternehmen fehlt. Nur 5% der Data Scientists in unserem Netzwerk sind der Ansicht, dass vorhandene Daten in ihrem Unternehmen bereits optimal verwertet werden. Der Data Scientist sollte schnell ins Unternehmen integriert werde um schnellstmöglich Ergebnisse erzielen zu können. Um die wirklich guten Leute für sich zu gewinnen, muss ein Unternehmen aber auch bereit sein finanziell tiefer in die Tasche zu greifen. Außerdem müssen die Unternehmen den top Experten ein technisch attraktives Umfeld bieten, daher sollte auch die Unternehmen stets up-to-date sein mit der heutigen Technologie.

Data Science Blog: Was macht einen guten Data Scientist eigentlich aus?

Ein guter Data Scientist sollte in folgenden Bereichen sehr gut aufgestellt sein: Präsentations- und Kommunikationsfähigkeiten, Machine Learning Kenntnisse, Programmiersprachen und ein allgemeines Business-Verständnis. Er sollte sich stets weiterentwickeln und von den Trends up to date sein. Auf relevanten Blogs, wie dieser Data Science Blog, aktiv sein und sich auf Messen/Meetups etc bekannt machen.

Außerdem sollte er sich mit uns in Verbindung setzen. Denn ein weiterer, wie wir finden, sehr wichtiger Punkt, ist es sich gut verkaufen zu können. Hierzu haben wir uns in dem letzten Jahr sehr viel Gedanken gemacht und auch Studien durchgeführt. Wir wollen es jedem K.I. -Experten ermöglichen einen eigenen Fingerabdruck zu haben. Bei uns ist dies als der SkillPrint bekannt. Hierfür haben wir eine holistische Darstellung entwickelt, die jeden Kandidaten einen individuellen Fingerabdruck seiner Kompetenzen abbildet. Hierfür durchlaufen die Kandidaten einen Online-Test, der von uns mit top K.I. Experten entwickelt wurde. Dieser bildet folgendes ab: Methoden Expertise, Applied Data Science Erfahrung, Branchen know-how, Technology & Tools und Business knowledge. Und die immer im Detail in 3 Ebenen.

Der darauf entstehende SkillPrint/Fingerprint ist ein Qualitätssigel für den Experten und damit auch für das Unternehmen, das den Experten einstellt.

Interesse an einem Austausch zu verschiedenen Karriereperspektiven im Bereich Data Science/ Machine Learning? Dann registrieren Sie sich direkt auf dem lexoro Talent Check-In und ein lexoro-Berater wird sich bei Ihnen melden.

Lexoro Data Science Survey

Wir von lexoro möchten die Community mit informativen Beiträgen fördern und erstellen dazu regelmäßige Mini-Studien. Die aktuelle Umfrage finden Sie in diesen Artikel eingebettet (siehe unten) oder mit einem Klick auf diesen Direktlink.

Data Science…more than Python, TensorFlow & Neural Networks

Künstliche Intelligenz, Data Science, Machine Learning – das sind die Schlagwörter der Stunde. Man kann sich den Berichten und Artikeln über die technologischen Entwicklungen, Trends und die Veränderungen, die uns bevorstehen kaum entziehen. Viele sind sich einig: Wir stehen vor einem Paradigmenwechsel vorangetrieben durch einen technologischen Fortschritt, dessen Geschwindigkeit – auch wenn es vielen zu schnell geht – exponentiell zunimmt. Und auch wenn wir noch am Anfang dieses neuen Zeitalters stehen, so sind die Veränderungen jetzt schon zu spüren – in den Unternehmen, in unserem Alltag, in unserer Kommunikation…

Der Arbeitsmarkt im Speziellen sieht sich auch einem starken Veränderungsprozess unterworfen. Berufe, die noch vor nicht allzu langer Zeit als nicht durch Maschinen ersetzbar galten, sind dabei zu verschwinden oder zumindest sich zu verändern. Gleichzeitig entstehen neue Jobs, neue Rollen, neue Verantwortungsbereiche. Kaum ein Unternehmen kommt daran vorbei sich den Herausforderungen dieses technologischen Wandels zu stellen. Neue Strukturen, Abteilungen, Arbeitsmodelle und Jobs entstehen.

Doch um auf die anfangs genannten Hype-Begriffe zurückzukommen – was verbirgt sich eigentlich hinter Data Science, Machine Learning und Artificial Intelligence?! Was macht einen guten Data Scientist eigentlich aus?

Die Antwort scheint aus Sicht vieler Manager einfach: im Studium Python lernen, regelmäßig Big Data Tools von Hadoop nutzen, sich in TensorFlow einarbeiten und etwas über Neural Networks lesen – und fertig ist der Data Scientist. Doch so einfach ist es leider nicht. Oder eher zum Glück?! Neue Job-Rollen erfordern auch neue Denkweisen im Recruiting! Wir entfernen uns von einem strikten Rollen-basiertem Recruiting und fokussieren uns immer mehr auf die individuellen Kompetenzen und Stärken der einzelnen Personen. Wir sind davon überzeugt, dass die treibenden Köpfe hinter der bereits laufenden Datenrevolution deutlich facettenreicher und vielschichtiger sind als sich das so mancher vielleicht wünschen mag.

Diesem Facettenreichtum und dieser Vielschichtigkeit wollen wir auf den Grund gehen und dieser Survey soll einen Beitrag dazu leisten. Welche Kompetenzen sollte ein guter Data Scientist aus Ihrer Sicht mitbringen? In welchen Bereichen würden Sie persönlich sich gerne weiterentwickeln? Haben Sie die Möglichkeiten dazu? Sind Sie auf dem richtigen Weg sich zu einem Data Scientist oder Machine Learning Expert zu entwickeln? Oder suchen Sie nach einem ganz anderen Karriereweg?
Mit einem Zeit-Investment von nur 5 Minuten leisten Sie einen wertvollen Beitrag zur Entwicklung unseres A.I.-Skillprints, der es ermöglichen wird, eine automatische, datengestützte Analyse Ihrer A.I.-bezogenen Fähigkeiten durchzuführen und Empfehlungen für eine optimale Karriereentwicklung zu erhalten.

Vielen Dank im Voraus für Ihre Teilnahme!

Das lexoro-Team


Data Science Knowledge Stack – Was ein Data Scientist können muss

Was muss ein Data Scientist können? Diese Frage wurde bereits häufig gestellt und auch häufig beantwortet. In der Tat ist man sich mittlerweile recht einig darüber, welche Aufgaben ein Data Scientist für Aufgaben übernehmen kann und welche Fähigkeiten dafür notwendig sind. Ich möchte versuchen, diesen Konsens in eine Grafik zu bringen: Ein Schichten-Modell, ähnlich des OSI-Layer-Modells (welches übrigens auch jeder Data Scientist kennen sollte).
Ich gebe Einführungs-Seminare in Data Science für Kaufleute und Ingenieure und bei der Erläuterung, was wir in den Seminaren gemeinsam theoretisch und mit praxisnahen Übungen erarbeiten müssen, bin ich auf die Idee für dieses Schichten-Modell gekommen. Denn bei meinen Seminaren fängt es mit der Problemstellung bereits an, ich gebe nämlich Seminare für Data Science für Business Analytics mit Python. Also nicht beispielsweise für medizinische Analysen und auch nicht mit R oder Julia. Ich vermittle also nicht irgendein Data Science, sondern eine ganz bestimmte Richtung.

Ein Data Scientist muss bei jedem Data Science Vorhaben Probleme auf unterschiedlichsten Ebenen bewältigen, beispielsweise klappt der Datenzugriff nicht wie geplant oder die Daten haben eine andere Struktur als erwartet. Ein Data Scientist kann Stunden damit verbringen, seinen eigenen Quellcode zu debuggen oder sich in neue Data Science Pakete für seine ausgewählte Programmiersprache einzuarbeiten. Auch müssen die richtigen Algorithmen zur Datenauswertung ausgewählt, richtig parametrisiert und getestet werden, manchmal stellt sich dabei heraus, dass die ausgewählten Methoden nicht die optimalen waren. Letztendlich soll ein Mehrwert für den Fachbereich generiert werden und auch auf dieser Ebene wird ein Data Scientist vor besondere Herausforderungen gestellt.


english-flagRead this article in English:
“Data Science Knowledge Stack – Abstraction of the Data Scientist Skillset”


Data Science Knowledge Stack

Mit dem Data Science Knowledge Stack möchte ich einen strukturierten Einblick in die Aufgaben und Herausforderungen eines Data Scientists geben. Die Schichten des Stapels stellen zudem einen bidirektionalen Fluss dar, der von oben nach unten und von unten nach oben verläuft, denn Data Science als Disziplin ist ebenfalls bidirektional: Wir versuchen gestellte Fragen mit Daten zu beantworten oder wir schauen, welche Potenziale in den Daten liegen, um bisher nicht gestellte Fragen zu beantworten.

Der Data Science Knowledge Stack besteht aus sechs Schichten:

Database Technology Knowledge

Ein Data Scientist arbeitet im Schwerpunkt mit Daten und die liegen selten direkt in einer CSV-Datei strukturiert vor, sondern in der Regel in einer oder in mehreren Datenbanken, die ihren eigenen Regeln unterliegen. Insbesondere Geschäftsdaten, beispielsweise aus dem ERP- oder CRM-System, liegen in relationalen Datenbanken vor, oftmals von Microsoft, Oracle, SAP oder eine Open-Source-Alternative. Ein guter Data Scientist beherrscht nicht nur die Structured Query Language (SQL), sondern ist sich auch der Bedeutung relationaler Beziehungen bewusst, kennt also auch das Prinzip der Normalisierung.

Andere Arten von Datenbanken, sogenannte NoSQL-Datenbanken (Not only SQL)  beruhen auf Dateiformaten, einer Spalten- oder einer Graphenorientiertheit, wie beispielsweise MongoDB, Cassandra oder GraphDB. Einige dieser Datenbanken verwenden zum Datenzugriff eigene Programmiersprachen (z. B. JavaScript bei MongoDB oder die graphenorientierte Datenbank Neo4J hat eine eigene Sprache namens Cypher). Manche dieser Datenbanken bieten einen alternativen Zugriff über SQL (z. B. Hive für Hadoop).

Ein Data Scientist muss mit unterschiedlichen Datenbanksystemen zurechtkommen und mindestens SQL – den Quasi-Standard für Datenverarbeitung – sehr gut beherrschen.

Data Access & Transformation Knowledge

Liegen Daten in einer Datenbank vor, können Data Scientists einfache (und auch nicht so einfache) Analysen bereits direkt auf der Datenbank ausführen. Doch wie bekommen wir die Daten in unsere speziellen Analyse-Tools? Hierfür muss ein Data Scientist wissen, wie Daten aus der Datenbank exportiert werden können. Für einmalige Aktionen kann ein Export als CSV-Datei reichen, doch welche Trennzeichen und Textqualifier können verwendet werden? Eventuell ist der Export zu groß, so dass die Datei gesplittet werden muss.
Soll eine direkte und synchrone Datenanbindung zwischen dem Analyse-Tool und der Datenbank bestehen, kommen Schnittstellen wie REST, ODBC oder JDBC ins Spiel. Manchmal muss auch eine Socket-Verbindung hergestellt werden und das Prinzip einer Client-Server-Architektur sollte bekannt sein. Auch mit synchronen und asynchronen Verschlüsselungsverfahren sollte ein Data Scientist vertraut sein, denn nicht selten wird mit vertraulichen Daten gearbeitet und ein Mindeststandard an Sicherheit ist zumindest bei geschäftlichen Anwendungen stets einzuhalten.

Viele Daten liegen nicht strukturiert in einer Datenbank vor, sondern sind sogenannte unstrukturierte oder semi-strukturierte Daten aus Dokumenten oder aus Internetquellen. Auch hier haben wir es mit Schnittstellen zutun, ein häufiger Einstieg für Data Scientists stellt beispielsweise die Twitter-API dar. Manchmal wollen wir Daten in nahezu Echtzeit streamen, beispielsweise Maschinendaten. Dies kann recht anspruchsvoll sein, so das Data Streaming beinahe eine eigene Disziplin darstellt, mit der ein Data Scientist schnell in Berührung kommen kann.

Programming Language Knowledge

Programmiersprachen sind für Data Scientists Werkzeuge, um Daten zu verarbeiten und die Verarbeitung zu automatisieren. Data Scientists sind in der Regel keine richtigen Software-Entwickler, sie müssen sich nicht um Software-Sicherheit oder -Ergonomie kümmern. Ein gewisses Basiswissen über Software-Architekturen hilft jedoch oftmals, denn immerhin sollen manche Data Science Programme in eine IT-Landschaft integriert werden. Unverzichtbar ist hingegen das Verständnis für objektorientierte Programmierung und die gute Kenntnis der Syntax der ausgewählten Programmiersprachen, zumal nicht jede Programmiersprache für alle Vorhaben die sinnvollste ist.

Auf dem Level der Programmiersprache gibt es beim Arbeitsalltag eines Data Scientists bereits viele Fallstricke, die in der Programmiersprache selbst begründet sind, denn jede hat ihre eigenen Tücken und Details entscheiden darüber, ob eine Analyse richtig oder falsch abläuft: Beispielsweise ob Datenobjekte als Kopie oder als Referenz übergeben oder wie NULL-Werte behandelt werden.

Data Science Tool & Library Knowledge

Hat ein Data Scientist seine Daten erstmal in sein favorisiertes Tool geladen, beispielsweise in eines von IBM, SAS oder in eine Open-Source-Alternative wie Octave, fängt seine Kernarbeit gerade erst an. Diese Tools sind allerdings eher nicht selbsterklärend und auch deshalb gibt es ein vielfältiges Zertifizierungsangebot für diverse Data Science Tools. Viele (wenn nicht die meisten) Data Scientists arbeiten überwiegend direkt mit einer Programmiersprache, doch reicht diese alleine nicht aus, um effektiv statistische Datenanalysen oder Machine Learning zu betreiben: Wir verwenden Data Science Bibliotheken, also Pakete (Packages), die uns Datenstrukturen und Methoden als Vorgabe bereitstellen und die Programmiersprache somit erweitern, damit allerdings oftmals auch neue Tücken erzeugen. Eine solche Bibliothek, beispielsweise Scikit-Learn für Python, ist eine in der Programmiersprache umgesetzte Methodensammlung und somit ein Data Science Tool. Die Verwendung derartiger Bibliotheken will jedoch gelernt sein und erfordert für die zuverlässige Anwendung daher Einarbeitung und Praxiserfahrung.

Geht es um Big Data Analytics, also die Analyse von besonders großen Daten, betreten wir das Feld von Distributed Computing (Verteiltes Rechnen). Tools (bzw. Frameworks) wie Apache Hadoop, Apache Spark oder Apache Flink ermöglichen es, Daten zeitlich parallel auf mehren Servern zu verarbeiten und auszuwerten. Auch stellen diese Tools wiederum eigene Bibliotheken bereit, für Machine Learning z. B. Mahout, MLlib und FlinkML.

Data Science Method Knowledge

Ein Data Scientist ist nicht einfach nur ein Bediener von Tools, sondern er nutzt die Tools, um seine Analyse-Methoden auf Daten anzuwenden, die er für die festgelegten Ziele ausgewählt hat. Diese Analyse-Methoden sind beispielweise Auswertungen der beschreibenden Statistik, Schätzverfahren oder Hypothesen-Tests. Etwas mathematischer sind Verfahren des maschinellen Lernens zum Data Mining, beispielsweise Clusterung oder Dimensionsreduktion oder mehr in Richtung automatisierter Entscheidungsfindung durch Klassifikation oder Regression.

Maschinelle Lernverfahren funktionieren in der Regel nicht auf Anhieb, sie müssen unter Einsatz von Optimierungsverfahren, wie der Gradientenmethode, verbessert werden. Ein Data Scientist muss Unter- und Überanpassung erkennen können und er muss beweisen, dass die Vorhersageergebnisse für den geplanten Einsatz akkurat genug sind.

Spezielle Anwendungen bedingen spezielles Wissen, was beispielsweise für die Themengebiete der Bilderkennung (Visual Computing) oder der Verarbeitung von menschlicher Sprache (Natural Language Processiong) zutrifft. Spätestens an dieser Stelle öffnen wir die Tür zum Deep Learning.

Fachexpertise

Data Science ist kein Selbstzweck, sondern eine Disziplin, die Fragen aus anderen Fachgebieten mit Daten beantworten möchte. Aus diesem Grund ist Data Science so vielfältig. Betriebswirtschaftler brauchen Data Scientists, um Finanztransaktionen zu analysieren, beispielsweise um Betrugsszenarien zu erkennen oder um die Kundenbedürfnisse besser zu verstehen oder aber, um Lieferketten zu optimieren. Naturwissenschaftler wie Geologen, Biologen oder Experimental-Physiker nutzen ebenfalls Data Science, um ihre Beobachtungen mit dem Ziel der Erkenntnisgewinnung zu machen. Ingenieure möchten die Situation und Zusammenhänge von Maschinenanlagen oder Fahrzeugen besser verstehen und Mediziner interessieren sich für die bessere Diagnostik und Medikation bei ihren Patienten.

Damit ein Data Scientist einen bestimmten Fachbereich mit seinem Wissen über Daten, Tools und Analyse-Methoden ergebnisorientiert unterstützen kann, benötigt er selbst ein Mindestmaß an der entsprechenden Fachexpertise. Wer Analysen für Kaufleute, Ingenieure, Naturwissenschaftler, Mediziner, Juristen oder andere Interessenten machen möchte, muss eben jene Leute auch fachlich verstehen können.

Engere Data Science Definition

Während die Data Science Pioniere längst hochgradig spezialisierte Teams aufgebaut haben, suchen beispielsweise kleinere Unternehmen eher den Data Science Allrounder, der vom Zugriff auf die Datenbank bis hin zur Implementierung der analytischen Anwendung das volle Aufgabenspektrum unter Abstrichen beim Spezialwissen übernehmen kann. Unternehmen mit spezialisierten Daten-Experten unterscheiden jedoch längst in Data Scientists, Data Engineers und Business Analysts. Die Definition für Data Science und die Abgrenzung der Fähigkeiten, die ein Data Scientist haben sollte, schwankt daher zwischen der breiteren und einer engeren Abgrenzung.

Die engere Betrachtung sieht vor, dass ein Data Engineer die Datenbereitstellung übernimmt, der Data Scientist diese in seine Tools lädt und gemeinsam mit den Kollegen aus dem Fachbereich die Datenanalyse betreibt. Demnach bräuchte ein Data Scientist kein Wissen über Datenbanken oder APIs und auch die Fachexpertise wäre nicht notwendig…

In der beruflichen Praxis sieht Data Science meiner Erfahrung nach so nicht aus, das Aufgabenspektrum umfasst mehr als nur den Kernbereich. Dieser Irrtum entsteht in Data Science Kursen und auch in Seminaren – würde ich nicht oft genug auf das Gesamtbild hinweisen. In Kursen und Seminaren, die Data Science als Disziplin vermitteln wollen, wird sich selbstverständlich auf den Kernbereich fokussiert: Programmierung, Tools und Methoden aus der Mathematik & Statistik.

Data Science vs Data Engineering

Das Berufsbild des Data Scientsts ist gerade erst in Deutschland angekommen, da kommen schon wieder neue Jobbezeichnungen auf uns zu. “Ist das wirklich notwendig?”, wird sich so mancher fragen. Aber die Antwort lautet ganz klar: ja!

Welcher Data Scientist kennt das nicht: ein Recruiter ruft an, spricht von einer tollen neuen Herausforderung für einen Data Scientist wie man es sich ja offensichtlich auf seinem LinkedIn-Profil für sich beansprucht, doch bei der Besprechung der Vakanz stellt sich schnell heraus, dass man über fast keine der geforderten Skills verfügt. Dieser Mismatch liegt vor allem daran, dass unter den Job des Data Scientist alle möglichen Tätigkeitsprofile, Methoden- und Tool-Wissen zusammengefasst werden, die ein einzelner Mensch kaum in seinem Leben lernen kann.

Viele offene Jobs, die unter der Bezeichnung Data Science besetzt werden sollen, beschreiben eher das Berufsbild des Data Engineers.


english-flagRead this article in English:
“Data Scientist vs Data Engineer – What is the Difference?”


Was macht ein Data Engineer?

Im Data Engineering geht es vor allem darum, Daten zu sammeln bzw. zu generieren, zu speichern, historisieren, aufzubereiten, anzureichern und nachfolgenden Instanzen zur Verfügung zu stellen. Ein Data Engineer, je nach Rang oft auch als Big Data Engineer oder Big Data Architect bezeichnet, modelliert skalierbare Datenbank- und Datenfluss-Architekturen, entwickelt und verbessert die IT-Infrastruktur hardware- und softwareseitig, befasst sich dabei auch mit Themen wie IT-Security, Datensicherheit und Datenschutz. Ein Data Engineer ist je nach Bedarf teilweise Administrator der IT-Systeme und auch ein Software Entwickler, denn er erweitert die Software-Landschaft bei Bedarf um eigene Komponenten. Neben den Aufgaben im Bereich ETL / Data Warehousing, führt er auch Analysen durch, zum Beispiel solche, um die Datenqualität oder Nutzerzugriffe zu untersuchen.

Ein Data Engineer arbeitet vor allem mit Datenbanken und Data Warehousing Tools.

Ein Data Engineer ist tendenziell ein ausgebildeter Ingenieur/Informatiker und eher weit vom eigentlichen Kerngeschäft des Unternehmens entfernt. Die Karrierestufen des Data Engineers sind in der Regel:

  1. (Big) Data Architect
  2. BI Architect
  3. Senior Data Engineer
  4. Data Engineer

Was macht ein Data Scientist?

Auch wenn es viele Überschneidungspunkte mit dem Tätigkeitsfeld des Data Engineers geben mag, so lässt sich der Data Scientist dadurch abgrenzen, dass er seine Arbeitszeit möglichst dazu nutzt, die zur Verfügung stehenden Daten explorativ und gezielt zu analysieren, die Analyseergebnisse zu visualisieren und in einen roten Faden einzuspannen (Storytelling). Anders als der Data Engineer, bekommt ein Data Scientist ein Rechenzentrum nur selten zu Gesicht, denn er zapft Daten über Schnittstellen an, die ihm der Data Engineer bereitstellt.

Ein Data Scientist befasst sich mit mathematischen Modellen, arbeitet vornehmlich mit statistischen Verfahren und wendet sie auf die Daten an, um Wissen zu generieren. Gängige Methoden des Data Mining, Machine Learning und Predictive Modelling sollten einem Data Scientist bekannt sein, wobei natürlich jeder ganz individuell Schwerpunkte setzt. Data Scientists arbeiten grundsätzlich nahe am Fachbereich und benötigen entsprechendes Fachbereichswissen. Data Scientists arbeiten mit proprietären Tools (z. B. von IBM, SAS oder QlikTech) und programmieren Analysen auch selbst, beispielsweise in Scala, Java, Python, Julia oder R.

Data Scientists können vielfältige akademische Hintergründe haben, einige sind Informatiker oder Ingenieure für Elektrotechnik, andere sind Physiker oder Mathematiker, nicht wenige auch Wirtschaftswissenschaftler.

  1. Chief Data Scientist
  2. Senior Data Scientist
  3. Data Scientist
  4. Data Analyst oder Junior Data Scientist

Data Scientist vs Data Analyst

Oft werde ich gefragt, wo eigentlich der Unterschied zwischen einem Data Scientist und einem Data Analyst läge bzw. ob es dafür überhaupt ein Unterscheidungskriterium gäbe:

Meiner Erfahrung nach, steht die Bezeichnung Data Scientist für die neuen Herausforderungen für den klassischen Begriff des Data Analysten. Ein Data Analyst betreibt Datenanalysen wie ein Data Scientist, komplexere Themen, wie Predictive Analytics und Machine Learning bzw. künstliche Intelligenz, sind aber eher was für den Data Scientist. Ein Data Scientist ist sozusagen ein Data Analyst++.

Und ein Business Analyst?

Business Analysten können (müssen aber nicht) auch Data Analysten sein. In jedem Fall haben sie einen sehr starkem Bezug zum Fachbereich bzw. zum Kerngeschäft des Unternehmens. Im Business Analytics geht es um die Analyse von Geschäftsmodellen und Geschäftserfolgen. Gerade die Analyse von Geschäftserfolgen geschieht in der Regel IT-gestützt und da setzen viele Business Analysten an. Dashboards, KPIs und SQL sind das Handwerkszeug eines guten Business Analysten.