R als Tool im Process Mining

Die Open Source Sprache R ermöglicht eine Vielzahl von Analysemöglichkeiten, die von einer einfachen beschreibenden Darstellung eines Prozesses bis zur umfassenden statistischen Analyse reicht. Dabei können Daten aus einem Manufacturing Execution System, kurz MES, als Basis der Prozessanalyse herangezogen werden. R ist ein Open Source Programm, welches sich für die Lösung von statischen Aufgaben im Bereich der Prozessoptimierung sehr gut eignet, erfordert jedoch auf Grund des Bedienungskonzepts als Scriptsprache, grundlegende Kenntnisse der Programmierung. Aber auch eine interaktive Bedienung lässt sich mit einer Einbindung der Statistikfunktionen in ein Dashboard erreichen. Damit können entsprechend den Anforderungen, automatisierte Analysen ohne Programmierkenntnisse realisiert werden.

Der Prozess als Spagetti Diagramm

Um einen Überblick zu erhalten, wird der Prozess in einem „process value flowchart“, ähnlich einem Spagetti‐ Diagramm dargestellt und je nach Anforderung mit Angaben zu den Key Performance Indicators ergänzt. Im konkreten Fall werden die absolute Anzahl und der relative Anteil der bearbeiteten Teile angegeben. Werden Teile wie nachfolgend dargestellt, aufgrund von festgestellten Mängel bei der Qualitätskontrolle automatisiert ausgeschleust, können darüber Kennzahlen für den Ausschuss ermittelt werden.

Der Prozess in Tabellen und Diagrammen

Im folgenden Chart sind grundlegende Angaben zu den ausgeführten Prozessschritten, sowie deren Varianten dargestellt. Die Statistikansicht bietet eine Übersicht zu den Fällen, den sogenannte „Cases“, sowie zur Dauer und Taktzeit der einzelnen Aktivitäten. Dabei handelt es sich um eine Fertigungsline mit hohem Automatisierungsgrad, bei der jeder Fertigungsschritt im MES dokumentiert wird. Die Tabelle enthält statistische Angaben zur Zykluszeit, sowie der Prozessdauer zu den einzelnen Aktivitäten. In diesem Fall waren keine Timestamps für das Ende der Aktivität vorhanden, somit konnte die Prozessdauer nicht berechnet werden.

Die Anwendung von Six Sigma Tools

R verfügt über eine umfangreiche Sammlung von Bibliotheken zur Datendarstellung, sowie der Prozessanalyse. Darin sind auch Tools aus Six Sigma enthalten, die für die weitere Analyse der Prozesse eingesetzt werden können. In den folgenden Darstellungen wird die Möglichkeit aufgezeigt, zwei Produktionszeiträume, welche über eine einfache Datumseingabe im Dashboard abgegrenzt werden, gegenüber zu stellen. Dabei handelt es sich um die Ausbringung der Fertigung in Stundenwerten, die für jeden Prozessschritt errechnet wird. Das xbar und r Chart findet im Bereich der Qualitätssicherung häufig Anwendung zur ersten Beurteilung des Prozessoutputs.

Zwei weitere Six Sigma typische Kennzahlen zur Beurteilung der Prozessfähigkeit sind der Cp und Cpk Wert und deren Ermittlung ein Bestandteil der R Bibliotheken ist. Bei der Berechnung wird von einer Normalverteilung der Daten ausgegangen, wobei das Ergebnis aus der Überprüfung dieser Annahme im Chart durch Zahlen, als auch grafisch dargestellt wird.

Von Interesse ist auch die Antwort auf die Frage, welchem Trend folgt der Prozess? Bereits aus der Darstellung der beiden Produktionszeiträume im Box‐Whiskers‐Plot könnte man anhand der Mediane auf einen Trend zu einer Verschlechterung der Ausbringung schließen, den der Interquartilsabstand nicht widerspiegelt. Eine weitere Absicherung einer Aussage über den Trend, kann über einen statistischen Vergleichs der Mittelwerte erfolgen.

Der Modellvergleich

Besteht die Anforderung einer direkten Gegenüberstellung des geplanten, mit dem vorgefundenen, sogenannten „Discovered Model“, ist aufgrund der Komplexität beim Modellvergleich, dieser in R mit hohem Programmieraufwand verbunden. Besser geeignet sind dafür spezielle Process Miningtools. Diese ermöglichen den direkten Vergleich und unterstützen bei der Analyse der Ursachen zu den dargestellten Abweichungen. Bei Produktionsprozessen handelt es sich meist um sogenannte „Milestone Events“, die bei jedem Fertigungsschritt durch das MES dokumentiert werden und eine einfache Modellierung des Target Process ermöglichen. Weiterführende Analysen der Prozessdaten in R sind durch einen direkten Zugriff über ein API realisierbar oder es wurde vollständig integriert. Damit eröffnen sich wiederum die umfangreichen Möglichkeiten bei der statistischen Prozessanalyse, sowie der Einsatz von Six Sigma Tools aus dem Qualitätsmanagement. Die Analyse kann durch eine, den Kundenanforderungen entsprechende Darstellung in einem Dashboard vereinfacht werden, ermöglicht somit eine zeitnahe, weitgehend automatisierte Prozessanalyse auf Basis der Produktionsdaten.

Resümee

Process Mining in R ermöglicht zeitnahe Ergebnisse, die bis zur automatisierten Analyse in Echtzeit reicht. Der Einsatz beschleunigt erheblich das Process Controlling und hilft den Ressourceneinsatz bei der Datenerhebung, sowie deren Analyse zu reduzieren. Es kann als stand‐alone Lösung zur Untersuchung des „Discovered Process“ oder als Erweiterung für nachfolgende statistische Analysen eingesetzt werden. Als stand‐alone Lösung eignet es sich für Prozesse mit geringer Komplexität, wie in der automatisierten Fertigung. Besteht eine hohe Diversifikation oder sollen standortübergreifende Prozessanalysen durchgeführt werden, übersteigt der Ressourcenaufwand rasch die Kosten für den Einsatz einer Enterprise Software, von denen mittlerweile einige angeboten werden.

 

Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4:

Dieser Artikel ist Teil 4 von 4 aus der Reihe Datenschutz, Sicherheit und Ethik beim Process Mining.

english-flagRead this article in English:
Privacy, Security and Ethics in Process Mining – Rule 4 of 4


Schaffung einer Kooperationskultur

Möglicherweise ist der wichtigste Bestandteil bei der Schaffung eines verantwortungsbewussten Process Mining-Umfeldes der Aufbau einer Kooperationskultur innerhalb Ihrer Organisation. Process Mining kann die Fehler Ihrer Prozesse viel eindeutiger aufzeigen, als das manchen Menschen lieb ist. Daher sollten Sie Change Management-Experten miteinbeziehen wie beispielsweise Lean-Coaches, die es verstehen, Menschen dazu zu bewegen, sich gegenseitig “die Wahrheit“ zu sagen (siehe auch: Erfolgskriterien beim Process Mining).

Darüber hinaus sollten Sie vorsichtig sein, wie Sie die Ziele Ihres Process Mining-Projektes vermitteln und relevante Stakeholder so einbeziehen, dass ihre Meinung gehört wird. Ziel ist es, eine Atmosphäre zu schaffen, in der die Menschen nicht für ihre Fehler verantwortlich gemacht werden (was nur dazu führt, dass sie verbergen, was sie tun und gegen Sie arbeiten), sondern ein Umfeld zu schaffen, in dem jeder mitgenommen wird und wo die Analyse und Prozessverbesserung ein gemeinsames Ziel darstellt, für das man sich engagiert.

Was man tun sollte:

  • Vergewissern Sie sich, dass Sie die Datenqualität überprüfen, bevor Sie mit der Datenanalyse beginnen, bestenfalls durch die Einbeziehung eines Fachexperten bereits in der Datenvalidierungsphase. Auf diese Weise können Sie das Vertrauen der Prozessmanager stärken, dass die Daten widerspiegeln, was tatsächlich passiert und sicherstellen, dass Sie verstanden haben, was die Daten darstellen.
  • Arbeiten Sie auf iterative Weise und präsentieren Sie Ihre Ergebnisse als Ausgangspunkt einer Diskussion bei jeder Iteration. Geben Sie allen Beteiligten die Möglichkeit zu erklären, warum bestimmte Dinge geschehen und seien Sie offen für zusätzliche Fragen (die in der nächsten Iteration aufgegriffen werden). Dies wird dazu beitragen, die Qualität und Relevanz Ihrer Analyse zu verbessern, als auch das Vertrauen der Prozessverantwortlichen in die endgültigen Projektergebnisse zu erhöhen.

Was man nicht tun sollte:

  • Voreilige Schlüsse ziehen. Sie können nie davon ausgehen, dass Sie alles über den Prozess wissen. Zum Beispiel können langsamere Teams die schwierigen Fälle behandeln, es kann gute Gründe geben, von dem Standardprozess abzuweichen und Sie sehen möglicherweise nicht alles in den Daten (beispielsweise Vorgänge, die außerhalb des Systems durchgeführt werden). Indem Sie konstant Ihre Beobachtungen als Ausgangspunkt für Diskussionen anbringen und den Menschen die Möglichkeit einräumen, Ihre Erfahrung und Interpretationen mitzugeben, beginnen Sie, Vertrauen und die Kooperationskultur aufzubauen, die Process Mining braucht.
  • Schlussfolgerungen erzwingen, die ihren Erwartungen entsprechen oder die sie haben möchten, indem Sie die Daten falsch darstellen (oder Dinge darstellen, die nicht wirklich durch die Daten unterstützt werden). Führen Sie stattdessen ganz genau Buch über die Schritte, die Sie bei der Datenaufbereitung und in Ihrer Process-Mining-Analyse ausgeführt haben. Wenn Zweifel an der Gültigkeit bestehen oder es Fragen zu Ihrer Analysebasis gibt, dann können Sie stets zurückkehren und beispielsweise zeigen, welche Filter bei den Daten angewendet wurden, um zu der bestimmten Prozesssicht zu gelangen, die Sie vorstellen.

Maschinelles Lernen mit Entscheidungsbaumverfahren – Artikelserie

Das Entscheidungsbaumverfahren (Decision Tree) ist eine verbreitete Möglichkeit der Regression oder Klassifikation über einen vielfältigen Datensatz. Das Verfahren wird beispielsweise dazu verwendet, um die Kreditwürdigkeit von Bankkunden zu klassifizieren oder auch, um eine Funktion zur Vorhersage einer Kaufkraft zu bilden.

Sicherlich hat beinahe jeder Software-Entwickler bereits einen Entscheidungsbaum (meistens binäre Baumstrukturen) programmiert und auch Maschinenbauingenieure benutzen Entscheidungsbäume, um Konstruktionsstrukturen darzustellen. Im Data Science haben Entscheidungsbäume allerdings eine etwas andere Bedeutung, denn ein Data Scientist befasst sich weniger mit dem manuellen Erstellen von solchen Baumstrukturen, sondern viel mehr mit Algorithmen, die ausreichend gute (manchmal: best mögliche) Baumstrukturen automatisch aus eine Menge mehr oder weniger bekannter Daten heraus generieren, die dann für eine automatische Klassifikation bzw. Regression dienen können.

Entscheidungsbäume sind also eine Idee des überwachten maschinellen Lernens, bei der Algorithmen zum Einsatz kommen, die aus einer Datenmenge heraus eine hierarchische Struktur von möglichst wenigen Entscheidungswegen bilden. Diese Datenmenge stellt eine sogenannte Trainingsstichprobe dar. Meiner Erfahrung nach werde Entscheidungsbäume oftmals in ihrer Mächtigkeit, aber auch in ihrer Komplexität unterschätzt und die Einarbeitung fiel mehr selbst schwerer, als ich anfangs annahm: In der Praxis stellt das Verfahren den Data Scientist vor viele Herausforderungen.

In dieser Artikelserie wird es vier nachfolgende Teile geben (Verlinkung erfolgt nach Veröffentlichung):

 

 

Einstieg in das Maschinelle Lernen mit Python(x,y)

Python(x,y) ist eine Python-Distribution, die speziell für wissenschaftliche Arbeiten entwickelt wurde. Es umfasst neben der Programmiersprache auch die Entwicklungsumgebung Spyder und eine Reihe integrierter Python-Bibliotheken. Mithilfe von Python(x,y) kann eine Vielzahl von Interessensbereichen bearbeitet werden. Dazu zählen unter anderem Bildverarbeitung oder auch das maschinelle Lernen. Das All-in-One-Setup für Python(x,y) ist für alle gängigen Betriebssysteme online erhältlich. Read more

Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 3 von 4:

Dieser Artikel ist Teil 3 von 4 aus der Reihe Datenschutz, Sicherheit und Ethik beim Process Mining.

english-flagRead this article in English:
Consider Anonymization – Process Mining Rule 3 of 4

 

Anonymisierung in Betracht ziehen

Falls Ihr Datensatz vertrauliche Informationen enthält, können Sie auch Anonymisierungsmethoden anwenden. Wenn Sie einen Wertesatz anonymisieren, werden die tatsächlichen Werte (z.B. die Mitarbeiternamen “Mary Jones”, “Fred Smith” usw.) durch einen anderen Wert ersetzt (z.B. ”Ressource 1”, ”Ressource 2″, etc.).

Falls der gleiche Originalwert mehrfach im Datensatz auftaucht, wird er stets durch den gleichen Wert ersetzt (”Mary Jones” wird immer durch “Ressource 1” ersetzt). Auf diese Weise ermöglicht Ihnen die Anonymisierung, die ursprünglichen Daten zu verschleiern und gleichzeitig wesentliche Muster des Datensatzes für Ihre Analyse zu bewahren. Sie können z.B. die Arbeitsauslastung alle Mitarbeiter analysieren, ohne die tatsächlichen Namen zu sehen.

Einige Process Mining-Tools (wie Disco oder ProM) haben Anonymisierungsfunktionalität bereits eingebaut. Dies bedeutet, dass Sie Ihre Daten in das Process-Mining-Tool importieren und dort auswählen können, welche Datenfelder anonymisiert werden sollen. Sie können beispielsweise die Case-IDs, den Ressourcennamen, die Attributwerte oder die Zeitstempel anonymisieren. Anschließend können Sie den anonymisierten Datensatz exportieren und an Ihr Team für die Analyse weitergeben.

Was man tun sollte:

  • Denken Sie daran, dass trotz einer Anonymisierung bestimmte Informationen immer noch identifizierbar sein können. Vielleicht gibt es beispielsweise nur einen Patienten mit einer sehr seltenen Krankheit oder das Geburtsdatum Ihres Kunden in Kombination mit dem Geburtsort kann die Anzahl der möglichen Personen, auf die dies zutrifft, so stark einschränken, dass die Daten nicht mehr anonym sind.

Was man nicht tun sollte:

  • Anonymisieren der Daten, bevor Sie Ihre Daten bereinigt haben, da nach der Anonymisierung eine Datenreinigung oft nicht mehr möglich ist. Stellen Sie sich beispielsweise vor, dass in verschiedenen Regionen Kundenkategorien unterschiedliche benannt werden, obwohl sie dasselbe bedeuten. Sie möchten diese unterschiedlichen Namen in einem Datenreinigungsschritt zusammenführen. Nachdem Sie jedoch die Namen als “Kategorie 1”, “Kategorie 2” usw. anonymisiert haben, kann die Datenreinigung nicht mehr durchgeführt werden.
  • Anonymisierung von Feldern, die nicht anonymisiert werden müssen. Während eine Anonymisierung dabei helfen kann, die Muster Ihrer Daten zu bewahren, können Sie leicht relevante Informationen verlieren. Wenn Sie beispielsweise die Case-ID in Ihrem Incident-Management-Prozess anonymisieren, können Sie die Ticketnummer des Vorgangs im Service Desk-System nicht mehr ausfindig machen. Durch die Schaffung einer Kooperationskultur rund um Ihre Process Mining-Initiative (siehe Leitfaden Nr. 4) und durch eine verantwortungsvolle, zielorientierte Arbeitsweise, können Sie oft offen mit den ursprünglichen Daten arbeiten.

R Data Frames meistern mit dplyr – Teil 2

Dieser Artikel ist Teil 2 von 2 aus der Artikelserie R Data Frames meistern mit dplyr.

Noch mehr Datenbank-Features

Im ersten Teil dieser Artikel-Serie habe ich die Parallelen zwischen Data Frames in R und Relationen in SQL herausgearbeitet und gezeigt, wie das Paket dplyr eine Reihe von SQL-analogen Operationen auf Data Frames standardisiert und optimiert. In diesem Teil möchte ich nun drei weitere Analogien aufzeigen. Es handelt sich um die

  • Window Functions in dplyr als Entsprechung zu analytischen Funktionen in SQL,
  • Joins zwischen Data Frames als Pendant zu Tabellen-Joins
  • Delegation von Data Frame-Operationen zu einer bestehenden SQL-Datenbank

Window Functions

Im letzten Teil habe ich gezeigt, wie durch die Kombination von group_by() und summarise() im Handumdrehen Aggregate entstehen. Das Verb group_by() schafft dabei, wie der Name schon sagt, eine Gruppierung der Zeilen des Data Frame anhand benannter Schlüssel, die oft ordinaler oder kategorialer Natur sind (z.B. Datum, Produkt oder Mitarbeiter).

Ersetzt man die Aggregation mit summarise() durch die Funktion mutate(), um neue Spalten zu bilden, so ist der Effekt des group_by() weiterhin nutzbar, erzeugt aber „Windows“, also Gruppen von Datensätzen des Data Frames mit gleichen Werten der Gruppierungskriterien. Auf diesen Gruppen können nun mittels mutate() beliebige R-Funktionen angewendet werden. Das Ergebnis ist im Gegensatz zu summarise() keine Verdichtung auf einen Datensatz pro Gruppe, sondern eine Erweiterung jeder einzelnen Zeile um neue Werte. Das soll folgendes Beispiel verdeutlichen:

library(dplyr)
set.seed(42)	

df <- data.frame(id = 1:20, 
                 a=sample(c("Hund","Katze","Maus","Tiger"),20,replace=T),
                 b=sample(1:10,20, replace = T))
df
   id     a  b
1   1  Maus  7
2   2  Hund  3
3   3 Katze  3
4   4  Maus  4
5   5 Tiger 10
6   6  Maus 10
7   7  Hund  8
8   8  Hund  8
9   9  Hund  6
10 10 Katze  1
11 11  Maus  7
12 12  Hund  9
13 13  Hund  8
14 14 Tiger  5
15 15 Tiger  6
16 16  Maus  6
17 17 Katze  1
18 18  Maus  4
19 19  Maus  7
20 20  Maus  9
df %>%
  group_by(a) %>%
  mutate(r = row_number(),        # aus dplyr 
         n_memb = n(),            # aus dplyr
         n_dist = n_distinct(b),  # aus dplyr
         ra=rank(desc(b)),        # aus base und dplyr
         last_b = lag(b),         # aus dplyr
         next_b = lead(b),        # aus dplyr
         mb = mean(b),            # aus base
         cs = cumsum(b)  )        # aus base
Source: local data frame [20 x 11]
Groups: a [4]

     id      a     b     r n_memb n_dist    ra last_b next_b       mb     cs
                    
1      1   Maus     7     1      8      5   4.0     NA      4 6.750000     7
2      2   Hund     3     1      6      4   6.0     NA      8 7.000000     3
3      3  Katze     3     1      3      2   1.0     NA      1 1.666667     3
4      4   Maus     4     2      8      5   7.5      7     10 6.750000    11
5      5  Tiger    10     1      3      3   1.0     NA      5 7.000000    10
6      6   Maus    10     3      8      5   1.0      4      7 6.750000    21
7      7   Hund     8     2      6      4   3.0      3      8 7.000000    11
8      8   Hund     8     3      6      4   3.0      8      6 7.000000    19
9      9   Hund     6     4      6      4   5.0      8      9 7.000000    25
10    10  Katze     1     2      3      2   2.5      3      1 1.666667     4
11    11   Maus     7     4      8      5   4.0     10      6 6.750000    28
12    12   Hund     9     5      6      4   1.0      6      8 7.000000    34
13    13   Hund     8     6      6      4   3.0      9     NA 7.000000    42
14    14  Tiger     5     2      3      3   3.0     10      6 7.000000    15
15    15  Tiger     6     3      3      3   2.0      5     NA 7.000000    21
16    16   Maus     6     5      8      5   6.0      7      4 6.750000    34
17    17  Katze     1     3      3      2   2.5      1     NA 1.666667     5
18    18   Maus     4     6      8      5   7.5      6      7 6.750000    38
19    19   Maus     7     7      8      5   4.0      4      9 6.750000    45
20    20   Maus     9     8      8      5   2.0      7     NA 6.750000    54

Das group_by() unterteilt den Data Frame nach den 4 gleichen Werten von a. Innerhalb dieser Gruppen berechnen die beispielsweise eingesetzten Funktionen

  • row_number(): Die laufende Nummer in dieser Gruppe
  • n(): Die Gesamtgröße dieser Gruppe
  • n_distinct(b): Die Anzahl verschiedener Werte von b innerhalb der Gruppe
  • rank(desc(b)): Den Rang innerhalb der selben Gruppe, absteigend nach b geordnet
  • lag(b): Den Wert von b der vorherigen Zeile innerhalb derselben Gruppe
  • lead(b): Analog den Wert von b der folgenden Zeile innerhalb derselben Gruppe
  • mean(b): Den Mittelwert von b innerhalb der Gruppe
  • cumsum(b): Die kumulierte Summe der b-Werte innerhalb der Gruppe.

Wichtig ist hierbei, dass die Anwendung dieser Funktionen nicht dazu führt, dass die ursprüngliche Reihenfolge der Datensätze im Data Frame geändert wird. Hier erweist sich ein wesentlicher Unterschied zwischen Data Frames und Datenbank-Relationen von Vorteil: Die Reihenfolge von Datensätzen in Data Frames ist stabil und definiert. Sie resultiert aus der Abfolge der Elemente auf den Vektoren, die die Data Frames bilden. Im Gegensatz dazu haben Tabellen und Views keine Reihenfolge, auf die man sich beim SELECT verlassen kann. Nur mit der ORDER BY-Klausel über eindeutige Schlüsselwerte erreicht man eine definierte, stabile Reihenfolge der resultierenden Datensätze.

Die Wirkungsweise von Window Functions wird noch besser verständlich, wenn in obiger Abfrage das group_by(a) entfernt wird. Dann wirken alle genannten Funktionen auf der einzigen Gruppe, die existiert, nämlich dem gesamten Data Frame:

df %>%
  mutate(r = row_number(),        # aus dplyr 
         n_memb = n(),            # aus dplyr
         n_dist = n_distinct(b),  # aus dplyr
         ra=rank(desc(b)),        # aus base und dplyr
         last_b = lag(b),         # aus dplyr
         next_b = lead(b),        # aus dplyr
         mb = mean(b),            # aus base
         cs = cumsum(b)  )        # aus base


   id     a  b  r n_memb n_dist   ra last_b next_b  mb  cs
1   1  Maus  7  1     20      9  9.0     NA      3 6.1   7
2   2  Hund  3  2     20      9 17.5      7      3 6.1  10
3   3 Katze  3  3     20      9 17.5      3      4 6.1  13
4   4  Maus  4  4     20      9 15.5      3     10 6.1  17
5   5 Tiger 10  5     20      9  1.5      4     10 6.1  27
6   6  Maus 10  6     20      9  1.5     10      8 6.1  37
7   7  Hund  8  7     20      9  6.0     10      8 6.1  45
8   8  Hund  8  8     20      9  6.0      8      6 6.1  53
9   9  Hund  6  9     20      9 12.0      8      1 6.1  59
10 10 Katze  1 10     20      9 19.5      6      7 6.1  60
11 11  Maus  7 11     20      9  9.0      1      9 6.1  67
12 12  Hund  9 12     20      9  3.5      7      8 6.1  76
13 13  Hund  8 13     20      9  6.0      9      5 6.1  84
14 14 Tiger  5 14     20      9 14.0      8      6 6.1  89
15 15 Tiger  6 15     20      9 12.0      5      6 6.1  95
16 16  Maus  6 16     20      9 12.0      6      1 6.1 101
17 17 Katze  1 17     20      9 19.5      6      4 6.1 102
18 18  Maus  4 18     20      9 15.5      1      7 6.1 106
19 19  Maus  7 19     20      9  9.0      4      9 6.1 113
20 20  Maus  9 20     20      9  3.5      7     NA 6.1 122

Anwendbar sind hierbei sämtliche Funktionen, die auf Vektoren wirken. Diese müssen also wie in unserem Beispiel nicht unbedingt aus dplyr stammen. Allerdings komplettiert das Package die Menge der sinnvoll anwendbaren Funktionen um einige wichtige Elemente wie cumany() oder n_distinct().

Data Frames Hand in Hand…

In relationalen Datenbanken wird häufig angestrebt, das Datenmodell zu normalisieren. Dadurch bekommt man die negativen Folgen von Datenredundanz, wie Inkonsistenzen bei Datenmanipulationen und unnötig große Datenvolumina, in den Griff. Dies geschieht unter anderem dadurch, dass tabellarische Datenbestände aufgetrennt werden Stammdaten- und Faktentabellen. Letztere beziehen sich über Fremdschlüsselspalten auf die Primärschlüssel der Stammdatentabellen. Durch Joins, also Abfragen über mehrere Tabellen und Ausnutzen der Fremdschlüsselbeziehungen, werden die normalisierten Tabellen wieder zu einem fachlich kompletten Resultat denormalisiert.

In den Data Frames von R trifft man dieses Modellierungsmuster aus verschiedenen Gründen weit seltener an als in RDBMS. Dennoch gibt es neben der Normalisierung/Denormalisierung andere Fragestellungen, die sich gut durch Joins beantworten lassen. Neben der Zusammenführung von Beobachtungen unterschiedlicher Quellen anhand charakteristischer Schlüssel sind dies bestimmte Mengenoperationen wie Schnitt- und Differenzmengenbildung.

Die traditionelle R-Funktion für den Join zweier Data Frames lautet merge(). dplyr erweitert den Funktionsumfang dieser Funktion und sorgt für sprechendere Funktionsnamen und Konsistenz mit den anderen Operationen.

Hier ein synthetisches Beispiel:

products <- data.frame(
  id = 1:5, 
  name = c("Desktop", "Laptop", "Maus", "Tablet", "Smartphone"),
  preis = c(500, 700, 10, 300, 500)  
)

set.seed(1)

(salesfacts <- data.frame(
  prod_id = sample(1:5,size = 8,replace = T),
  date = as.Date('2017-01-01') + sample(1:5,size = 8,replace = T)
)  )  

 prod_id       date
1      2 2017-01-05
2      2 2017-01-02
3      3 2017-01-03
4      5 2017-01-02
5      2 2017-01-05
6      5 2017-01-03
7      5 2017-01-05
8      4 2017-01-04

Nun gilt es, die Verkäufe aus dem Data Frame sales mit den Produkten in products zusammenzuführen und auf Basis von Produkten Bilanzen zu erstellen. Diese Denormalisierung geschieht durch das Verb inner_join() auf zweierlei Art und Weise:

salesfacts %>% 
  inner_join(products, by = c("prod_id" = "id"))

  prod_id       date       name preis
1       2 2017-01-05     Laptop   700
2       2 2017-01-02     Laptop   700
3       3 2017-01-03       Maus    10
4       5 2017-01-02 Smartphone   500
5       2 2017-01-05     Laptop   700
6       5 2017-01-03 Smartphone   500
7       5 2017-01-05 Smartphone   500
8       4 2017-01-04     Tablet   300

products %>% 
  inner_join(salesfacts, by = c("id" = "prod_id")) 

  id       name preis       date
1  2     Laptop   700 2017-01-05
2  2     Laptop   700 2017-01-02
3  2     Laptop   700 2017-01-05
4  3       Maus    10 2017-01-03
5  4     Tablet   300 2017-01-04
6  5 Smartphone   500 2017-01-02
7  5 Smartphone   500 2017-01-03
8  5 Smartphone   500 2017-01-05

Die Ergebnisse sind bis auf die Reihenfolge der Spalten und der Zeilen identisch. Außerdem ist im einen Fall der gemeinsame Schlüssel der Produkt-Id als prod_id, im anderen Fall als id enthalten. dplyr entfernt also die Spalten-Duplikate der Join-Bedingungen. Letzere wird bei Bedarf im by-Argument der Join-Funktion angegeben. R-Experten erkennen hier einen „Named Vector“, also einen Vektor, bei dem jedes Element einen Namen hat. Diese Syntax verwendet dplyr, um elegant die äquivalenten Spalten zu kennzeichnen. Wird das Argument by weggelassen, so verwendet dplyr im Sinne eines „Natural Join“ automatisch alle Spalten, deren Namen in beiden Data Frames vorkommen.

Natürlich können wir dieses Beispiel mit den anderen Verben erweitern, um z.B. eine Umsatzbilanz pro Produkt zu erreichen:

salesfacts %>% 
  inner_join(products, by = c("prod_id" = "id")) %>% 
  group_by(prod_id) %>% 
  summarise(n_verk = n(), sum_preis = sum(preis), letzt_dat = max(date))

# A tibble: 4 × 4
  prod_id n_verk sum_preis  letzt_dat
                
1       2      3      2100 2017-01-05
2       3      1        10 2017-01-03
3       4      1       300 2017-01-04
4       5      3      1500 2017-01-05

dplyr bringt insgesamt 6 verschiedene Join-Funktionen mit: Neben dem bereits verwendeten Inner Join gibt es die linksseitigen und rechtsseitigen Outer Joins und den Full Join. Diese entsprechen genau der Funktionalität von SQL-Datenbanken. Daneben gibt es die Funktion semi_join(), die in SQL etwa folgendermaßen ausgedrückt würde:

SELECT ...
FROM a
WHERE EXISTS (SELECT * FROM b WHERE b.a_id = a.id)

Das Gegenteil, also ein NOT EXISTS, realisiert die sechste Join-Funktion: anti_join(). Im folgenden Beispiel sollen alle Produkte ausgegeben werden, die noch nie verkauft wurden:

products %>% anti_join(salesfacts,c("id" = "prod_id"))

  id    name preis
1  1 Desktop   500

… und in der Datenbank

Wir schon mehrfach betont, hat dplyr eine Reihe von Analogien zu SQL-Operationen auf relationalen Datenbanken. R Data Frames entsprechen Tabellen und Views und die dplyr-Operationen den Bausteinen von SELECT-Statements. Daraus ergibt sich die Möglichkeit, dplyr-Funktionen ohne viel Zutun auf eine bestehende Datenbank und deren Relationen zu deligieren.

Mir fallen folgende Szenarien ein, wo dies sinnvoll erscheint:

  • Die zu verarbeitende Datenmenge ist zu groß für das Memory des Rechners, auf dem R läuft.
  • Die interessierenden Daten liegen bereits als Tabellen und Views auf einer Datenbank vor.
  • Die Datenbank hat Features, wie z.B. Parallelverarbeitung oder Bitmap Indexe, die R nicht hat.

In der aktuellen Version 0.5.0 kann dplyr nativ vier Datenbank-Backends ansprechen: SQLite, MySQL, PostgreSQL und Google BigQuery. Ich vermute, unter der Leserschaft des Data Science Blogs dürfte MySQL (oder der Fork MariaDB) die weiteste Verbreitung haben, weshalb ich die folgenden Beispiele darauf zeige. Allerdings muss man beachten, dass MySQL keine Window Funktionen kennt, was sich 1:1 auf die Funktionalität von dplyr auswirkt.

Im folgenden möchte ich zeigen, wie dplyr sich gegen eine bestehende MySQL-Datenbank verbindet und danach einen bestehenden R Data Frame in eine neue Datenbanktabelle wegspeichert:

mysql_db <- src_mysql(host = "localhost", user = "testuser",
                   password = "********", dbname = "test")

library(ggplot2)

str(diamonds)

Classes ‘tbl_df’, ‘tbl’ and 'data.frame':       53940 obs. of  10 variables:
 $ carat  : num  0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
 $ cut    : chr  "Ideal" "Premium" "Good" "Premium" ...
 $ color  : chr  "E" "E" "E" "I" ...
 $ clarity: chr  "SI2" "SI1" "VS1" "VS2" ...
 $ depth  : num  61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
 $ table  : num  55 61 65 58 58 57 57 55 61 61 ...
 $ price  : int  326 326 327 334 335 336 336 337 337 338 ...
 $ x      : num  3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
 $ y      : num  3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
 $ z      : num  2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...

diamonds %>% mutate(cut = as.character(cut), 
                    color = as.character(color),
                    clarity = as.character(clarity)) -> diamonds

diamonds_mysql <- copy_to(mysql_db, diamonds, name="diamonds",
                         temporary = FALSE, indexes = list(
                       c("cut", "color", "clarity"), "carat", "price"))

diamonds_mysql %>% summarise(count = n())

Source:   query [?? x 1]
Database: mysql 5.5.54-0ubuntu0.14.04.1 [testuser@localhost:/test]

  count
  <dbl>
1 53940

Die erste Anweisung verbindet R mit einer bestehenden MySQL-Datenbank. Danach lade ich den Data Frame diamonds aus dem Paket ggplot2. Mit str() wird deutlich, dass drei darin enthaltene Variablen vom Typ Factor sind. Damit dplyr damit arbeiten kann, werden sie mit mutate() in Character-Vektoren gewandelt. Dann erzeugt die Funktion copy_to() auf der MySQL-Datenbank eine leere Tabelle namens diamonds, in die die Datensätze kopiert werden. Danach erhält die Tabelle noch drei Indexe (von dem der erste aus drei Segmenten besteht), und zum Schluß führt dplyr noch ein ANALYSE der Tabelle durch, um die Werteverteilungen auf den Spalten für kostenbasierte Optimierung zu bestimmen.

Meistens aber wird bereits eine bestehende Datenbanktabelle die interessierenden Daten enthalten. In diesem Fall lautet die Funktion zum Erstellen des Delegats tbl():

diamonds_mysql2 <- tbl(mysql_db,"diamonds")

identical(diamonds_mysql,diamonds_mysql2)

[1] TRUE

Die Rückgabewerte von copy_to() und von tbl() sind natürlich keine reinrassigen Data Frames, sondern Objekte, auf die die Operationen von dplyr wirken können, indem sie auf die Datenbank deligiert werden. Im folgenden Beispiel sollen alle Diamanten, die ein Gewicht von mindestens 1 Karat haben, pro Cut, Color und Clarity nach Anzahl und mittlerem Preis bilanziert werden:

bilanz <- diamonds_mysql2 %>% 
  filter(carat >= 1) %>% 
  group_by(cut,color,clarity) %>% 
  summarise(count = n(), mean_price = mean(price))

bilanz

Source:   query [?? x 5]
Database: mysql 5.5.54-0ubuntu0.14.04.1 [testuser@localhost:/test]
Groups: cut, color

     cut color clarity count mean_price
   <chr> <chr>   <chr> <dbl>      <dbl>
1   Fair     D      I1     3   9013.667
2   Fair     D     SI1    26   6398.192
3   Fair     D     SI2    29   6138.552
4   Fair     D     VS1     1   7083.000
5   Fair     D     VS2     7   8553.429
6   Fair     D    VVS1     1  10752.000
7   Fair     D    VVS2     2   9639.000
8   Fair     E      I1     5   2469.800
9   Fair     E     SI1    28   6407.464
10  Fair     E     SI2    45   5627.489
# ... with more rows

explain(bilanz)

<SQL>
SELECT `cut`, `color`, `clarity`, count(*) AS `count`, AVG(`price`) AS `mean_price`
FROM (SELECT *
FROM `diamonds`
WHERE (`carat` >= 1.0)) `cttxnwlelz`
GROUP BY `cut`, `color`, `clarity`


<PLAN>
  id select_type      table type  possible_keys  key key_len  ref  rows
1  1     PRIMARY <derived2>  ALL           <NA> <NA>    <NA> <NA> 19060
2  2     DERIVED   diamonds  ALL diamonds_carat <NA>    <NA> <NA> 50681
                            Extra
1 Using temporary; Using filesort
2                     Using where

Die Definition der Variablen bilanz geschieht dabei komplett ohne Interaktion mit der Datenbank. Erst beim Anzeigen von Daten wird das notwendige SQL ermittelt und auf der DB ausgeführt. Die ersten 10 resultierenden Datensätze werden angezeigt. Mittels der mächtigen Funktion explain() erhalten wir das erzeugte SQL-Kommando und sogar den Ausführungsplan auf der Datenbank. SQL-Kundige werden erkennen, dass die verketteten dplyr-Operationen in verschachtelte SELECT-Statements umgesetzt werden.

Zu guter Letzt sollen aber meistens die Ergebnisse der dplyr-Operationen irgendwie gesichert werden. Hier hat der Benutzer die Wahl, ob die Daten auf der Datenbank in einer neuen Tabelle gespeichert werden sollen oder ob sie komplett nach R transferiert werden sollen. Dies erfolgt mit den Funktionen compute() bzw. collect():

compute(bilanz, name = "t_bilanz", temporary = F)

df <- collect(bilanz)

str(df)

Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and 'data.frame': 265 obs. of  5 variables:
 $ cut       : chr  "Fair" "Fair" "Fair" "Fair" ...
 $ color     : chr  "D" "D" "D" "D" ...
 $ clarity   : chr  "I1" "SI1" "SI2" "VS1" ...
 $ count     : num  3 26 29 1 7 1 2 5 28 45 ...
 $ mean_price: num  9014 6398 6139 7083 8553 ...
...

Durch diese beiden Operationen wurde eine neue Datenbanktabelle „t_bilanz“ erzeugt und danach der Inhalt der Bilanz als Data Frame zurück in den R-Interpreter geholt. Damit schließt sich der Kreis.

Fazit

Mit dem Paket dplyr von Hadley Wickham wird die Arbeit mit R Data Frames auf eine neue Ebene gehoben. Die Operationen sind konsistent, vollständig und performant. Durch den Verkettungs-Operator %>% erhalten sie auch bei hoher Komplexität eine intuitive Syntax. Viele Aspekte der Funktionalität lehnen sich an Relationale Datenbanken an, sodass Analysten mit SQL-Kenntnissen rasch viele Operationen auf R Data Frames übertragen können.

Zurück zu R Data Frames meistern mit dplyr – Teil 1.

 

Datenschutz, Sicherheit und Ethik beim Process Mining – Artikelserie

Als ich vor zwölf Jahren in die Niederlande zog und anfing, bei lokalen Supermarktketten wie Albert Heijn einzukaufen, habe ich mich zunächst gegen die Bonuskarte (Treuekarte für Rabatte) gewehrt, da ich nicht wollte, dass das Unternehmen meine Einkäufe nachverfolgen konnte. Ich verstand, dass die Verwendung dieser Informationen ihnen helfen könnte, mich zu manipulieren, indem sie Produkte anwerben oder so arrangieren würden, dass ich mehr kaufen würde, als mir lieb war. Es fühlte sich einfach falsch an.

english-flagRead this article in English:
Privacy, Security and Ethics in Process Mining – Article Series

Fakt ist aber, dass keine Datenanalyse-Technik intrinsisch gut oder schlecht ist. Es liegt allein in den Händen der Menschen, ob sie die Technologie so einsetzen, dass dabei etwas Produktives und Konstruktives entsteht. Während Supermärkte die Informationen ihrer Kunden aufgrund der Treue-Karten benutzen könnten, um sicherzustellen, dass sie den längsten Weg im Geschäft haben, wenn sie ihre gewöhnlichen Produkte einkaufen (und dadurch an soviel anderen Produkten wie möglich vorbeikommen), können sie auf der anderen Seite die Informationen verwenden, um den Einkauf angenehmer zu gestalten und mehr Produkte anzubieten, die wir mögen.

Die meisten Unternehmen haben mit der Anwendung von Datenanalysetechniken begonnen, mit welchen sie ihre Daten auf die eine oder andere Weise analysieren. Diese Datenanalysen können Unternehmen und ihren Kunden gewaltige Chancen einräumen, doch mit der zunehmenden Nutzung der Data-Science-Techniken drängt sich auch die Frage der Ethik und die einer verantwortungsvollen Anwendung in den Vordergrund. Initiativen, wie die Seminarreihe ‘Responsible Data Science [1]’, beschäftigen sich mit dem Thema insofern, als ein Bewusstsein geschaffen wird und die Forscher ermutigt werden, Algorithmen zu entwickeln, die sich auf Konzepte wie Fairness, Genauigkeit, Vertraulichkeit und Transparenz stützen [2].

Process Mining kann Ihnen erstaunlichen Einblicke in Ihre Prozesse verschaffen und Ihre Verbesserungsinitiativen mit Inspiration und Enthusiasmus bereichern, wenn Sie es richtig anwenden. Aber wie können Sie sicherstellen, dass Sie Process Mining verantwortungsvoll anwenden? Was sollten Sie beachten, wenn Sie Process Mining in Ihre eigene Organisation integrieren?

In dieser Artikelserie stellen wir Ihnen vier Richtlinien vor, die Sie befolgen können, um Ihre Process Minining-Analyse verantwortungsvoll vorzubereiten:

Teil 1 von 4: Klarstellung des Analyseziels

Teil 2 von 4: Verantwortungsvoller Umgang mit Daten

Teil 3 von 4: Anonymisierung in Betracht ziehen

Teil 4 von 4: Schaffung einer Kooperationskultur

Danksagung

Wir danken Frank van Geffen und Léonard Studer, der die ersten Diskussionen in der Arbeitsgruppe rund um das verantwortungsvolle Process Mining im Jahr 2015 initiiert haben. Wir danken ausserdem Moe Wynn, Felix Mannhardt und Wil van der Aalst für ihr Feedback zu früheren Versionen dieses Artikels.

 

Wahrscheinlichkeitsverteilungen – Zentralen Grenzwertsatz verstehen mit Pyhton

Wahrscheinlichkeitsverteilung sind im Data Science ein wichtiges Handwerkszeug. Während in der Mathevorlesung die Dynamik dieser Verteilungen nur durch wildes Tafelgekritzel schwierig erlebbar zu machen ist, können wir mit Programmierkenntnissen (in diesem Fall wieder mit Python) eine kleine Testumgebung für solche Verteilungen erstellen, um ein Gefühl dafür zu entwickeln, wie unterschiedlich diese auf verschiedene Wahrscheinlichkeitswerte, Varianz und Mengen an Datenpunkten reagieren und wann sie untereinander annäherungsweise ersetzbar sind – der zentrale Grenzwertsatz. Den Schwerpunkt lege ich in diesem Artikel auf die Binominal- und Normalverteilung.

Für die folgenden Beispiele werden folgende Python-Bibliotheken benötigt:

import matplotlib.pyplot as pyplot
import random as random
import math as math

Read more

Data Leader Mindset

Wie werden Führungskräfte zum Data Leader?

Als eine Keynote am Data Leader Day 2016 (www.dataleaderday.com) erläuterte ich den Weg einer gewöhnlichen Führungskräft hin zum Data Leader, gemäß meiner Erfahrung. Ein Data Leader ist eine Führungskraft mit datengetriebener, problemlösungsorientierter Denkweise.

Die Präsentation findet sich nachfolgend eingebettet und zeigt die Route von der konventionellen Führungskraft zum innovativen Data Leader:

Read more

Interview – Mit Data Science Kundenverhalten vorhersagen

Frau Dr. Eva-Marie Müller-Stüler ist Associate Director in Decision Science der KPMG LLP in London. Sie absolvierte zur Diplom-Mathematikerin an der Technischen Universität München, mit einem einjährigen Auslandssemester in Tokyo, und promovierte an der Philipp Universität in Marburg.

linkedin-button xing-button

english-flagRead this article in English:
“Interview – Using Decision Science to forecast customer behaviour”

Data Science Blog: Frau Dr. Müller-Stüler, welcher Weg hat Sie bis an die Analytics-Spitze der KPMG geführt?

Ich hatte schon immer viel Spaß an analytischen Fragestellungen, aber auch ein großes Interesse an Menschen und Finance. Die Frage wie Menschen ticken und Entscheidungen treffen finde ich unglaublich spannend. Im Mathematikstudium und auch bei der Doktorarbeit kamen dann das Auswerten von großen Datenmengen und das Programmieren von Algorithmen hinzu. Die solide mathematische Ausbildung kombiniert mit dem spezifischen Branchen- und Finanzverständnis ermöglicht es mir das Geschäftsmodell meiner Kunden zu verstehen und Methoden zu entwickeln, die den Markt verändern und neue Wege finden.

Data Science Blog: Welche Analysen führen Sie für Ihre Kundenaufträge durch? Welche Vorteile generieren Sie für Ihre Kunden?

Unser Team beschäftigt sich hauptsächlich mit Behaviour und Customer Science. Daher auch der Slogan „We understand human behaviour and we change it“. Unser Focus ist der Mensch (z.B. Kunde oder der Mitarbeiter) und die Frage, wie wir ihn durch das Verständnis seiner Datenartefakte im Verhalten ändern bzw. zukünftiges Verhalten vorhersagen können. Auf dieser Basis entwickeln wir Always-on forecasting Modelle, die es dem Mandanten ermöglichen, bereits im Vorfeld zu agieren. Das kann z.B. bedeuten, durch ortgenaue Informationen spezifische Kundennachfrage an einem bestimmten Standort vorherzusagen, wie sie verbessert oder in die gewünschte Richtung beeinflusst werden kann oder durch welche Maßnahmen bzw. Promotions welcher Kundentyp optimal erreicht wird. Oder auch die Frage wo und mit welcher Produktmischung am besten ein neues Geschäft eröffnet werden soll, ist mit Predictive Analytics viel genauer vorherzusagen als durch herkömmliche Methoden.

Data Science Blog: Welche Voraussetzungen müssen erfüllt sein, damit prädiktive Analysen für Kundenverhalten adäquat funktionieren?

Die Daten müssen natürlich eine gewisse Qualität und Historie haben um z. B. auch Trends und Zyklen zu erkennen. Oft kann man sich aber auch über die Einbindung neuer Datenquellen einen Vorteil erschaffen. Dabei ist Erfahrung und Kreativität enorm wichtig, um zu verstehen was möglich ist und die Qualität verbessert oder ob etwas nur für mehr Rauschen sorgt.

Data Science Blog: Welche externen Datenquellen müssen Sie dafür einbinden? Wie behandeln Sie unstrukturierte Daten?

Hier in England ist man – was externe Datenquellen angeht – schon sehr verwöhnt. Wir benutzen im Schnitt an die 10.000 verschiedene Signale, die je nach Fragestellung unterschiedlich seien können: z. B. die Zusammensetzung der Bevölkerung, Nahverkehrsinformationen, die Nähe von Sehenswürdigkeiten, Krankenhäusern, Schulen, Kriminalitätsraten und vieles mehr. Der Einfluss eines Signals ist bei jedem Problem unterschiedlich. So kann eine hohe Anzahl an Taschendiebstählen ein Zeichen dafür sein, dass in der Gegend viel los ist und die Menschen im Schnitt viel Bargeld bei sich tragen. Das kann z. B. für einen Fast Food-Retailer in der Innenstadt durchaus einen positiven Einfluss auf sein Geschäft haben in einer anderen Gegend aber das Gegenteil bedeuten.

Data Science Blog: Welche Möglichkeiten bietet Data Science für die Forensik bzw. zur Betrugserkennung?

Da jeden Kunden tausende Datensignale umgeben und er durch sein Verhalten weitere produziert und aussendet, kann man gerade beim Online-Geschäft schon ein ziemlich gutes Bild über die Person bekommen. Jede Art von Mensch hat ein gewisses Verhaltensmuster und das gilt auch für Betrüger. Diese Muster muss man nur rechtzeitig erkennen oder vorherzusagen lernen.

Data Science Blog: Welche Tools verwenden Sie bei Ihrer Arbeit? In welchen Fällen setzten Sie auf proprietäre Software, wann hingegen auf Open Source?

Das hängt vom Arbeitsschritt und dem definierten Ziel ab. Wir unterscheiden unser Team in unterschiedliche Gruppen: Unsere Data Wrangler (die für das Extrahieren, Erzeugen und Aufbereiten der Daten zuständig sind) arbeiten mit anderen Tools als z. B. unsere Data Modeller. Im Grunde umfasst es die gesamte Palette von SQL Server, R, Python, manchmal aber auch Matlab oder SAS. Immer häufiger arbeiten wir auch mit auf Cloud-Technologie basierenden Lösungen. Data Visualisation und Dashboards in Qlik, Tableau oder Alteryx geben wir in der Regel jedoch an andere Teams weiter.

Data Science Blog: Wie sieht Ihrer Erfahrung nach der Arbeitsalltag als Data Scientist nach dem morgendlichen Café bis zum Feierabend aus?

Meine Rolle ist vielleicht am besten zu beschreiben als der Player-Coach. Da läuft von allem etwas mit ein. Am Anfang eines Projektes geht es vor Allem darum, mit den Mandaten die Fragestellung zu erarbeiten und das Projekt zu gewinnen. Teil dessen ist auch neue Ideen und Methoden zu entwickeln.  Während eines Projektes sind das Team Management, der Wissenstransfer im Team, der Review und das Hinterfragen der Modelle meine Hauptaufgaben. Am Schluss kommt dann der endgültige Sign-off des Projektes. Da ich oft mehrere Projekte in unterschiedlichen Stadien gleichzeitig leite, wird es garantiert nie langweilig.

Data Science Blog: Sind gute Data Scientists Ihrer Erfahrung nach tendenziell eher Beratertypen oder introvertierte Nerds?

Das hängt so ein bisschen davon ab wo man seinen Schwerpunkt sieht. Als Data Visualizer oder Data Artist geht es darum die Informationen auf das wesentlich zu reduzieren und toll und verständlich darzustellen. Dafür braucht man Kreativität und ein gutes Verständnis für das Geschäft und einen sicheren Umgang mit den Tools.

Der Data Analyst beschäftigt sich vor Allem mit dem „Slice and Dice“ von Data. Ziel ist es, die Vergangenheit zu analysieren und Zusammenhänge zu erkennen. Es ist wichtig zusätzlich zu dem finanziellen Wissen auch gute mathematische Fähigkeiten zu haben.

Der Data Scientist ist der mathematischste von allen. Er beschäftigt sich damit aus den Daten tiefere Zusammenhänge zu erkennen und Vorhersagen zu treffen. Dabei geht es um die Entwicklung von komplizierten Modellen oder auch Machine Learning Algorithmen. Ohne eine gute mathematische Ausbildung und Programmierkenntnisse ist es leider nicht möglich die Sachen in voller Tiefe zu verstehen. Die Gefahr falsche Schlüsse zu ziehen oder Korrelationen zu interpretieren, die sich aber nicht bedingen ist sehr groß. Ein einfaches Beispiel hierfür ist, dass im Sommer, wenn das Wetter schön ist, mehr Menschen Eis essen und in Seen baden gehen. Daher lässt sich eine eindeutige Korrelation zwischen Eis essen und der Anzahl an Ertrunkenen zeigen, obwohl nicht das Eis essen zum Ertrinken führt sondern die beeinflussende Variable die Temperatur ist. Daher ist ein Doktor in einem mathematiknahen Fach schon wichtig.

Genauso ist aber für den Data Scientist auch das entsprechende Finanz- und Branchenwissen wichtig, denn seine Erkenntnisse und Lösung müssen relevant für den Kunden sein und deren Probleme lösen oder Prozesse verbessern. Die tollste AI Maschine bringt keiner Bank einen Wettbewerbsvorteil, wenn sie den Eisverkauf auf Basis des Wetters vorhersagt. Das kann zwar rechnerisch 100% richtig sein, hat aber keine Relevanz für den Kunden.

Es ist im Grunde wie in anderen Bereichen (z. B. der Medizin) auch. Es gibt viele verschiedene Schwerpunkte und für ernsthafte Probleme wendet man sich am besten an einen Spezialisten, damit man keine falschen Schlüsse zieht.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftslehre, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists werden können?

Nie aufhören mit dem Lernen!  Der Markt entwickelt sich derzeit unglaublich schnell und hat so viele tolle Seiten. Man sollte einfach mit Leidenschaft, Begeisterung und Kreativität dabei sein und Spaß an der Erkennung von Mustern und Zusammenhängen haben. Wenn man sich dann noch mit interessanten und inspirierenden Menschen umgibt, von denen man noch mehr lernen kann, bin ich zuversichtlich, dass man eine tolle Arbeitszeit haben wird.