Data Science – Weiterbildungen mit Coursera
Anzeige
Data Science und AI sind aufstrebende Arbeitsfelder, die sich mit der Gewinnung von Wissen aus Daten beschäftigen. Die Nachfrage nach Fähigkeiten im Bereich Data Science, aber auch in angrenzenden Bereichen wie Data Engineering oder Data Analytics, ist in den letzten Jahren explodiert, da Unternehmen versuchen, die Vorteile von Big Data und künstlicher Intelligenz (KI) zu nutzen. Es lohnt sich sehr, sich in diesen Bereich weiter zu entwickeln. Dafür eignen sich die Kurse von Coursera.org.
Online-Kurse lohnen sich dann, wenn eine Karriere im Bereich der Datenanalyse oder des maschinellen Lernens angestrebt oder einfach nur ihr Wissen in diesem Bereich erweitert werden soll.
Spezialisierungskurs – Google Data Analytics
Data Science hilft dabei, Entscheidungen auf Basis von Daten zu treffen, komplexe Probleme effektiver zu lösen und Karrierechancen zu verbessern. Die Tools von Google Cloud und Jupyter Notebook sind dafür geeignet, da sie eine leistungsstarke und skalierbare Infrastruktur sowie eine interaktive Entwicklungsplattform bieten.
Das Google Zertifikat für Datenanalyse behandelt neben dem Handwerkszeug für jeden Data Analyst – wie etwa SQL – auch die notwendige Datenbereinigung und Datenvisualisierung mit den Tools von Google. Es werden weder Erfahrung noch Vorkenntnisse vorausgsetzt.
Spezialisierungskurs – Google Advanced Data Analytics
Der Zertifikatskurs der erweiterten Datenanalyse von Google baut auf dem zuvorgenannten Data Analytics Kurs auf, kann jedoch auch direkt besucht werden. Hier werden grundlegende Fähigkeiten wie SQL vorausgesetzt und vertiefende Fähigkeiten vermittelt, die für einen Data Analysten nützlich sind und auch in die Data Science eintauchen.
Dieses Kursangebot zum Aufbau erweiterter Datenanalyse-Fähigkeiten von Coursera wird ebenfalls von Google angeboten. Hier werden die Tools der Datenanalyse sowie der statistischen Handwerkzeuge für Data Science eingeführt, bis hin zum ersten Einstieg in Machine Learning.
Spezialisierungskurs – SQL für Data Science (Generalistisch)
SQL ist wichtig für etablierte und angehende Data Scientists, da es eine grundlegende Technologie für die Arbeit mit Datenbanken und relationalen Datenbankmanagementsystemen ist. SQL für Data Science ermöglicht, Daten effektiv zu organisieren und schnell Abfragen zu erstellen, um Antworten auf komplexe Fragen zu finden. Es ist auch relevant für die Arbeit mit nicht-relationalen Datenbanken und hilft Data Scientists, wertvolle Erkenntnisse aus großen Datenmengen zu gewinnen.
Auch wenn Python als Skill für einen Data Scientist ganz vorne steht, ist eine Karriere als Data Scientist ohne SQL-Kenntnisse nicht vorstellbar und dieser Kurs daher der richtige, wenn Nachbolbedarf besteht.
Spezialisierungskurs – Data Analyst Zertifikat (IBM)
Eine Karriere als Data Analyst ist attraktiv, da ihr eine hohe Nachfrage am Arbeitsmarkt gegenüber steht, die Arbeit vielfältig und herausfordernd ist, viele Weiterentwicklungsmöglichkeiten (z. B. zum Data Scientist) bietet und oft flexibel ist.
Der Online-Kurs von IBM bietet die Ausbildung der beruflichen Qualifikation zum Data Analyst. Ein weiterer Vorteil dieses Kurses ist, dass er für alle geeignet ist – unabhängig von ihrem Hintergrund oder der Vorbildung. Es sind keine Abschlüsse oder Vorkenntnisse erforderlich, was bedeutet, dass jeder, der sich für das Thema interessiert, am Kurs teilnehmen und von ihm profitieren kann.
Spezialisierungskurs – Datenverarbeitung mit Python & SQL (IBM)
Dieser Kurs bietet den Teilnehmern die Möglichkeit, ihre Kenntnisse in der Datenverarbeitung zu verbessern, eine Programmiersprache wie Python zu erlernen und grundlegende Kenntnisse in SQL zu erwerben. Diese Fähigkeiten sind für die Arbeit mit Daten unerlässlich und in der heutigen Arbeitswelt sehr gefragt. Darüber hinaus bietet der Kurs für Datenverarbeitung mit Python und SQL auch Schulungen zur Analyse und Visualisierung von Daten sowie zur Erstellung von Modellen für Maschinelles Lernen. Diese Fähigkeiten sind besonders wertvoll für die Entwicklung von Anwendungen und Systemen im Bereich der KI.
Dieser Kurs ist eine großartige Möglichkeit für alle, die ihre Kenntnisse im Bereich der Datenverarbeitung und des maschinellen Lernens verbessern möchten. Zwar werden auch hier keine Vorkenntnisse vorausgesetzt, jedoch geht der Kurs inhaltlich mehr in die Richtung Data Science als der zuvorgenannte Kurs zum Data Analyst und bietet ein umfassendes Training und Schulungen zu grundlegenden Fähigkeiten, die in der heutigen Arbeitswelt gefragt sind, und ist für jeden zugänglich, unabhängig von Hintergrund oder Erfahrung.
Spezialisierungskurs – Maschinelles Lernen (DeepLearning.AI)
Das Erlernen der Grundlagen des maschinellen Lernens (Machine Learning) ist von großer Bedeutung, da es eine der am schnellsten wachsenden und wichtigsten Technologien in der heutigen Zeit ist. Maschinelles Lernen ermöglicht es Computern, aus Erfahrung zu lernen, ohne explizit programmiert zu werden. Die Teilnehmer lernen, dem Computer das lernen zu ermöglichen.
Machinelles Lernen ist der Schlüssel zur Entwicklung von Anwendungen und Systemen im Bereich der künstlichen Intelligenz (KI) und hat Anwendungen in vielen Bereichen, von der Gesundheitsversorgung und der Finanzindustrie bis hin zur Unterhaltungsbranche und der Automobilindustrie.
Der Kurs für Maschinelles Lernen ist nicht nur ein sinnvoller Einstieg in diese Materie, sondern kann darauf aufbauend mit dem Thema Deep Learning in der Qualifikation erweitert werden.
Spezialisierungskurs – Deep Learning (DeepLearning.AI)
Das Verständnis von Deep Learning ist wichtig, da es eine Unterkategorie des maschinellen Lernens ist und viele noch mächtigere Anwendungen in verschiedenen Bereichen hat. Die populäre Applikation ChatGPT ist ein Produkt des Deep Learning. Deep Learning kann mit AI gleichgesetzt werden. Es ist eine gefragte Fähigkeit auf dem Arbeitsmarkt mit Job-Garantie.
Der Spezialisierungskurs für Deep Learning steht unabhängig für sich und erfordert keine speziellen Vorkenntnisse, darf jedoch auch als sinnvolle Ergänzung zum vorgenannten Einführungskurs in Machine Learning betrachtet werden.
Weitere Kursangebote für Data & AI auf Coursera
Die Entscheidung für ein bestimmtes Thema eines Kurses in den Bereichen Data Analytics, Data Science und AI ist eine persönliche und abhängig von den eigenen Vorkenntnissen und Vorlieben, sowie den eigenen Karrierezielen. Für die Karriere des Data Analyst sind SQL sowie allgemeine Kenntnisse rund um Data Analytics bzw. Datenverarbeitung wichtig. Von einem Data Scientist wird ferner erwartet, die theoretischen Grundlagen sowie die praktische Anwendung von Machine Learning und Deep Learning als trainierte Fähigkeit abrufbar zu haben.
Weitere Kurse von Coursera zum Thema Data & AI (link).