Tag Archive for: Neuronale Netze

Neuronale Netzwerke zur Spam-Erkennung

Die Funktionsweise der in immer mehr Anwendungen genutzten neuronalen Netzwerke stieß bei weniger technik-affinen Menschen bislang nur auf wenig Interesse. Geschuldet wird das sicher vor allem der eher trockenen Theorie, die hinter diesen Konstrukten steht und die sich für die meisten nicht auf Anhieb erschließt. Ein populäres Beispiel für die Fähigkeiten, die ein solches neuronales Netzwerk bereits heute hat, lieferte in jüngster Zeit Googles “Inception”, welches ohne den Anspruch auf einen praktischen Nutzen eigenständig eine spektakuläre Bilderwelt kreierte, die auch Menschen ohne großes Interesse an den dahinter steckenden Technologien ins Staunen versetzte. Ansonsten bieten sich die neuronalen Netze vor allem überall dort an, wo wenig systematisches Wissen zur Verfügung steht, wie etwa bei der Bilderkennung und der Text- bzw. Sprachanalyse.

Weniger effektheischend, als die Ergebnisse von “Inception”, dafür jedoch überaus hilfreich für den vernetzten Alltag, sind neuronale Netzwerke, die zum Aufspüren und zur Kategorisierung von Spam-Seiten entwickelt werden. In diesem Anwendungsbereich können diese ein wertvolles Werkzeug sein.

Wie bei allen selbstlernenden Netzwerken muss dafür zunächst ein Grundgerüst aufgebaut werden, welches später von Hand mit Informationen gefüttert wird, bis es schließlich in der Lage ist, sich selbstständig weiter zu entwickeln, hinzuzulernen und auf diese Weise immer genauere Ergebnisse liefert.

Die Auswahl der Kriterien

Unerwünschte Webseiten mit störenden und oft illegalen Inhalten findet man im Internet zu Hauf und meist locken sie mit dubiosen Angeboten für vermeintliche Wundermittel oder gaukeln leichtgläubigen Nutzern vor, man könne ohne großes Zutun viel Geld verdienen – meist ohne ein tatsächliches Produkt oder eine Dienstleistung dahinter. Ein entsprechend programmiertes neuronales Netzwerk spürt diese Seiten anhand von bestimmten Faktoren automatisch auf. Als Trainingsdaten werden dafür zunächst von Hand Kriterien wie die Registrierungs-IP, der Nutzername und die verwendete Sprachversion eingegeben. Da das Netzwerk nur mit den Zahlen 0 und 1 arbeiten kann, müssen diese Datensätze zuvor manuell aufbereitet werden. Indem alle gewünschten Registrierungs-IPs erst auf den jeweiligen Internetdienstanbieter abgebildet werden und der Grad ihrer jeweiligen Spammigkeit von Hand bestimmt wird, lässt sich der jeweilige Durchschnitt der “Spammigkeit” eines Internetdienstanbieters berechnen. Teilt man die Anzahl der Spammer durch die Gesamtnutzerzahl eines einzelnen Anbieters, erhält man bereits ein Ergebnis, das sich zur Eingabe in das neuronale Netzwerk eignet. Ähnlich kann z. B. bei der Kombination aus Geolocation und Sprachversion verfahren werden. Mit einer Vielzahl weiterer Faktoren kann die Effizienz des neuronalen Netzwerks verbessert werden. So lassen sich etwa große Unterschiede bei dem Herkunftsland feststellen, in dem die Spam-Seiten angesiedelt sind. Ein besonders großes Erkennungspotential bieten bestimmte Keywords und Keyword-Kombinationen, die mitunter eindeutige Rückschlüsse auf ein Spam-Angebot ziehen lassen. Befindet sich z. B. die Wortkombination “Geld verdienen” besonders häufig auf einer Seite, ist dies ein recht deutliches Kriterium für die Klassifizierung als Spam. Doch auch weniger offensichtliche Faktoren helfen dem neuronalen Netzwerk dabei, hellhörig zu werden: Ein ungewöhnliches Verhältnis zwischen Vokalen und Konsonanten oder auch Seitennamen, die vermehrt Zahlen und unübliche Zeichen beinhalten, können die Spam-Wahrscheinlichkeit steigern. Kommt die verwendete IP-Adresse aus einem anonymisierten Netzwerk oder VPN, schürt dies ebenfalls den Verdacht auf unseriöse Inhalte.

Erstellung einer Korrelationsmatrix

Da jedes der einbezogenen Kriterien zur Bestimmung der Spammigkeit einer Seite eine unterschiedlich hohe Relevanz hat, müssen die einzelnen Faktoren verschieden stark gewichtet werden. Damit das neuronale Netzwerk genau das tun kann, wird deshalb eine Korrelationsmatrix erstellt. In dieser Matrix werden alle gesammelten Kriterien in Verbindung zueinander gesetzt, um es dem Netzwerk zu ermöglichen, nicht jeden Punkt nur einzeln zu werten. So ist ein Keyword wie z. B. “100 mg” an sich vergleichsweise unverdächtig. Stammt die Seite, auf der das Wort vorkommt jedoch aus einer Gegend, in der erfahrungsgemäß viele unseriöse Arzneimittelanbieter angesiedelt sind, kann dies die Spam-Wahrscheinlichkeit erhöhen.

Libraries für die Implementierung

Ein wertvolles Tool, das sich für die Implementierung des jeweiligen neuronalen Netzwerks eignet, ist die Open Source Machine Learning Library “Tensor Flow” von Google. Diese Programmierschnittstelle der zweiten Generation verfügt über einige handfeste Vorteile gegenüber anderen Libraries und ermöglicht die Parallelisierung der Arbeit. Berechnet wird sie auf der schnellen GPU des Rechners, was in direkten Vergleichen die Rechenzeit um ein Vielfaches senken konnte. Bewährt hat sich “Tensor Flow” bereits in zahlreichen kommerziellen Diensten von Google, darunter Spracherkennungssoftware, Google Photos, und Gmail.

Für eine bessere Abstraktion des Netzwerks, können zusätzlich zu der hinteren mehrere weitere Schichten angelegt werden. Die hintere Schicht bleibt dabei oft die einzige, die von außerhalb sichtbar ist.

Die Optimierung des neuronalen Netzwerks

Es liegt in der Natur der Sache, dass ein eigenständig lernfähiges Netzwerk nicht von Anfang an durch höchste Zuverlässigkeit hinsichtlich seiner Trefferquote besticht. Zum Lernen gehört Erfahrung und die muss das Netz erst noch sammeln. Zwar gelingt es auch einem noch frisch programmierten Netzwerk bereits die Erfüllung seiner Aufgabe oft recht gut, die Fehlerquote kann jedoch im Laufe der Zeit immer weiter verbessert werden. Gerade am Anfang werden noch viele Spam-Seiten nicht erkannt und einige vermeintliche Spammer stellen sich bei der Überprüfung durch den Menschen als unbedenklich heraus. Darum ist es für die Steigerung der Effizienz praktisch unerlässlich, immer wieder von Hand einzugreifen, falsche Ergebnisse zu korrigieren und dem Netzwerk auf diese Weise zu helfen.

KNN: Vorwärtspass

Wenn die Gewichte eines künstlichen neuronalen Netzwerkes trainiert sind, kann es verwendet werden, um Vorhersagen über eine am Eingang angelegte Beobachtung zu treffen. Hierzu werden Schicht für Schicht, in einem sogenannten Vorwärtspass (Forward-Pass), die Aktivierungen der einzelnen Neuronen ermittelt, bis ein Ergebnis an der Ausgabeschicht anliegt. Der ganze Prozess hat zwar einen eigenen Namen (Vorwärtspass), ist aber im Endeffekt nur ein iteratives durchführen von mehreren logistischen Regressionen und entspricht dem Vorgehen aus dem Artikel „KNN: künstliche Neuronen“.

Anwendungsbeispiel

Im folgenden Beispiel verwenden wir die Wahrheitstabelle von einem X-OR Logikgatter (siehe Abbildungen unten links) als Ground Truth Data. Ziel ist es, den Ausgangwert Y, für einen beliebig anliegenden Eingangsvektor [X1, X2] vorherzusagen. Die Aufgabe ist recht komplex, so dass eine einfache lineare oder logistische Regression keine zufriedenstellende Lösung finden wird. Die zum Einsatz kommende  Netzwerkstruktur ist ein 2-schichtiges Feedforward Netzwerk mit zwei Eingangsneuronen, einer verborgenen Schicht und einem Ausgangsneuron.

XOR Wahrheitstabelle

X1 X2 Y = X1 ⊻ X2
0 0 0
0 1 1
1 0 1
1 1 0

 

Da das Netzwerk wie anfänglich erwähnt, bereits trainiert ist, gebe ich die Gewichte (Theta) vor. Werden die Werte als Matrix dargestellt, können mit Hilfe der linearen Algebra die Aktivierungswahrscheinlichkeiten aller Neuronen einer Schicht auf einmal ausgerechnet werden.

Theta 1

θ11 =  2,7 θ12 =   3,1
θ13 =  5,6 θ14 = -6
θ15 = -5,4 θ16 =  6,2
Theta 2

θ21 =  9,6
θ22 = -6,6
θ23 = -6,5

Programmcode

Für die eigentlichen Berechnungen verwenden wir die Programmiersprache Octave oder MATLAB. Octave ist eine kostenlose alternative zu MATLAB. Wobei es nicht notwendig ist irgendetwas zu installieren, da es auch eine Online Variante von MATLAB/Octave gibt:
http://www.tutorialspoint.com/execute_matlab_online.php

 %--------------------- Daten -----------------------
 X = [0 0;       		% Eingangsdaten
      0 1;
      1 0;
      1 1] 
     
 Y = [0;1;1;0] 			% erwartete XOR Ausgangsdaten


 theta1 = [2.7, 3.1; 	% antrainierte Gewichte der ersten Schicht
           5.6,  -6;
          -5.4, 6.2]
         
 theta2 = [9.6;			% antrainierte Gewichte der zweiten Schicht
          -6.6;
          -6.5]

 m = length(X)			% Anzahl der Eingangsdaten


 %--------------------- Vorwärtspass -----------------------
 V = X					% anlegen der Eingangsdaten an die Eingangsschicht

 % 1. berechne die Aktivierungen der verborgenen Schicht
 V = [ones(m,1) V]		% hinzufügen der Bias Units  (sind immer 1)
 Zv = V * theta1			% Summe aus den Eingangswerten multipliziert mit deren Gewichten
 H = 1 ./ (1 .+ e.^-Zv)	% anwenden der Sigmoid Funktion auf die Aktivierungsstärke Zv

 % 2. berechne die Aktivierungen der Ausgangsschicht
 H = [ones(m,1) H]		% hinzufügen der Bias Units an die verborgene Schicht
 Zh = H * theta2			% Produkt aus den Aktivierungen der Neuronen in H und Theta2
 O = 1 ./ (1 .+ e.^-Zh)	% Vorhersage von dem Netzwerk

 % 3. berechne die Vorhersageungenauigkeit
 loss = (O .- Y) .^ 2 	% quadratischer Fehler von der Vorhersage und der Zielvorgabe Y
 mse = sum(loss) / m		% durchschnittlicher quadratischer Fehler aller Vorhersagen

Ein paar Sätze zu den verwendeten Befehlen. Der Punkt vor manchen Operationen gibt an, dass die Operation Elementweise durchzuführen ist (wichtig bei der Sigmoid Funktion). Die Methode ones(M,N) erzeugt eine MxN große Matrix gefüllt mit den Werten 1. Wir erzeugen damit einen Spaltenvektor der unseren Bias Units entspricht und den wir anschließend an eine vorhandene Matrix horizontal anfügen.

Wird das Programm ausgeführt schreibt es unter anderem die Werte von der Ausgabeschicht O (Output Layer) auf die Konsole. Da wir alle XOR Variationen auf einmal ausgerechnet haben, erhalten wir auch vier Vorhersagen. Verglichen mit der Zielvorgaben Y sind die Werte von O sehr vielversprechend (ähnlich).

X1 X2 Y O
0 0 0 0.057099
0 1 1 0.936134
1 0 1 0.934786
1 1 0 0.050952

 

Komplexe Netzwerke

Hätte das Netzwerk noch weitere verborgene Schichten, müssen Teile des Programmcodes wiederholt ausgeführt werden. Grundsätzlich sind drei Befehle pro Schicht notwendig:

H1 = [ones(m,1) H1]			% hinzufügen der Bias Units an die verborgene Schicht
Zh1 = H1 * theta2			% Produkt aus den Aktivierungen der Neuronen in H1 und Theta2
H2 = 1 ./ (1 .+ e.^-Zh1)		% Aktivierungswahrscheinlichkeiten für die nächste verborgene Schicht

Im nächsten Artikel schauen wir uns das Training solcher Netzwerke an.

Text-Mining mit dem Aika Algorithmus

In diesem Beitrag möchte ich das Open Source Projekt Aika vorstellen. Ziel des Projektes ist es einen Text-Mining Algorithmus zu entwickeln, der ein künstliches Neuronales Netz (kNN) mit einem Pattern Mining Algorithmus kombiniert. Dabei dient die Silbentrennung von Wörtern als initiale Aufgabe, anhand derer der Algorithmus weiterentwickelt wird. Für diese Aufgabe soll allerdings kein vordefiniertes Wörterbuch verwendet werden. Stattdessen sollen die Silben in ihrer Eigenschaft als häufig auftretende Muster in rohem Text erkannt werden. Hier reicht es allerdings nicht einen Mining Algorithmus nach häufig auftretenden Strings suchen zu lassen, da sich viele der Strings überlappen oder schlicht keinen Sinn ergeben würden. Es ist also wichtig, dass sich die erkannten Silben gegenseitig unterdrücken können und dass der Algorithmus in der Lage ist, die so entstehenden unterschiedlichen Interpretationen eines Wortes miteinander zu vergleichen und die am höchsten gewichtete auszuwählen. Beispielsweise taucht die Silbe ‘der’ zu Beginn des Wortes ‘de-re-gu-lie-ren’ auf. In diesem Fall muss der Algorithmus erkennen, dass die erste Silbe des Wortes nicht ‘der’ sondern nur ‘de’ ist.

Wenn nun nach häufig auftretenden Mustern in Text gesucht werden soll, warum verwenden wir nicht einen reinen Pattern Mining Algorithmus? Der Grund für die Kombination mit einem kNN liegt darin, dass die erkannten Muster innerhalb einer kNN Topologie aufeinander aufsetzen können. Wenn z. B. das Wort “hausboot” als Muster erkannt werden soll, dann entstünden in der Datenstruktur des Mining Algorithmus sehr viele Teilmuster, die alle evaluiert werden müssten. Viel leichter wäre es für den Algorithmus, wenn die Muster “haus” und “boot” bereits erkannt worden wären und nun als Eingaben für die Erkennung des Wortes “hausboot” dienen könnten. So ist der Algorithmus zum einen in der Lage komplexere Muster zu erkennen und muss gleichzeitig weniger Teilmuster untersuchen. Ausserdem erlaubt es ein kNN ‘weiche’ Muster zu erlernen, also Muster bei denen einzelne Eingänge optional sind, die aber trotzdem noch sicher erkannt werden. Dadurch kann eine höhere Toleranz gegenüber Fehlern erreicht werden.

Im Gegensatz zu einem klassischen kNN nutzt Aika einen eher mit Googles Pagerank vergleichbaren Ansatz um Gewichte zwischen den einzelnen Neuronen des Netzwerks zu propagieren. Der Grutext-pattern-knnndgedanke dabei ist es, dass Neuronen entsprechend höher gewichtet werden sollten, wenn sie mit anderen hoch gewichteten Neuronen in Beziehung stehen. Wenn also beispielsweise eine Silbe in vielen hoch gewichteten Worten auftaucht, wird sie selbst entsprechend höher gewichtet.

Neuronen eines kNN erlauben es aber nicht nur Konjunktionen wie etwa bei Mustern zu erlernen, sondern auch Disjunktionen. Disjunktionen sind insbesondere beim Erlernen von Grammatikregeln wichtig, wenn z. B. einzelne Worte als Nomen erkannt werden sollen. Wenn nun solche Disjunktionen erlernt werden sollen, können auch hier häufige Muster behilflich sein. Angenommen, es wurden durch den Mining Algorithmus bereits die folgenden häufigen Muster gefunden: “der Baum” (f=4), “der Hammer” (f=3) und “der Nagel” (f=6). Dann können diese Muster so umgeformt werden, dass ein neues, deutlich häufigeres Muster “der <NOMEN>” (f=13) und eine Disjunktion <NOMEN> = “Baum” oder “Hammer” oder “Nagel”, entsteht.

KNN: Natur als Vorbild – Biologische Neuronen

Bisher ist die genaue Funktionsweise des Gehirns bei der Verarbeitung sensorischer Informationen nicht bekannt. Neue Erkenntnisse im Bereich der Neurowissenschaften liefern jedoch einen Einblick über grundlegende Prinzipien wie das Gehirn von Säugetieren sensorische Informationen repräsentiert. Einer der wichtigsten Punkte ist dabei die Erkenntnis, dass der Neocortex, einem ankommenden Signal erlaubt ein komplexes Netzwerk von Neuronen zu durchlaufen, wodurch es zu einer abstrakten Repräsentation des ursprünglichen Eingabesignals kommt. Auch ist das Gehirn in der Lage die Leitfähigkeit der Verbindungen zwischen den Neuronen zu modifizieren, was sich auf eine Änderung der Abbildungsvorschrift auswirkt. Beobachtungen können dadurch noch besser getrennt und effizienter repräsentiert werden. Die Entdeckung dieses Verhaltens motivierte die Entstehung des Forschungszweiges Deep Machine Learning, welcher sich darauf fokussiert Modelle zu entwickeln, die ähnliche Charakteristiken wie der Neocortex aufweisen.

Das Eingabesignal durchläuft das Netzwerk bis zu einer Ausgabeschicht. Das Resultat dieser nicht linearen Transformation lässt sich dann beispielsweise mit einem Klassifizierungsalgorithmus auswerten. Die praktischen Anwendungen solcher Algorithmen sind sehr vielfältig. Deep Machine Learning Algorithmen liefern zurzeit die besten Ergebnisse zu vielen Problemen in Anwendungsdomänen wie Bilderkennung, Spracherkennung und der Verarbeitung natürlicher Sprache. Mit Hilfe dieser Algorithmen wurden beispielsweise neue elementare Teilchen gefunden, entdeckte Galaxien noch besser klassifiziert und Auswirkungen von Mutationen innerhalb von DNA vorhergesagt.

Das Neuron

Das Neuron ist die Basis-Recheneinheit des Gehirns. Ungefähr 86 Milliarden solcher Neuronen befinden sich im menschlichen Nervensystem, welche durch ca. 10^15 Synapsen miteinander vermascht sind. In Abbildung unten links wird eine Schemazeichnung eines biologischen Neurons dargestellt. Dieses besteht unter Anderem aus Dendriten, dem Zellkörper, der den Zellkern beinhaltet und einem Axon. Die Dendriten gehen aus dem Zellkörper hervor und sind über Synapsen mit sensorischen Zellen oder Axonen anderer Neuronen verbunden. Ihre Aufgabe ist die Aufnahme von ankommenden Signalen in Form von elektrischen Spannungsänderungen und der Transport dieser in den Zellkörper des Neurons, der Recheneinheit einer Nervenzelle. Dort angekommen entscheiden bestimmte Faktoren, ob ein Aktionspotential anhand einer Schwellwertfunktion ausgelöst wird oder nicht. Ist dies der Fall leitet das Neuron elektrische Energie über sein Axon an weitere angeschlossene Dendriten anderer Neuronen weiter.

Neuronen
Das biologische Neuron diente als Inspiration für das Software-Neuron. Beim mathematischen Modell eines Software-Neurons (Künstliches Neuron eines KNN) wird davon ausgegangen, dass die verschiedenen Dendriten unterschiedlich stark ausgeprägt sind und ein Signal daher auch verschieden stark gewichtet in den Zellkörper übertragen wird. Jedes Dendrit enthält demnach einen Faktor(θi), der das Signal(xi) vor dem Eintreffen in den Zellkörper skaliert (θixi). Diese Faktoren werden auch als Gewichte bezeichnet. Im Zellkörper selbst werden die Signale die von unterschiedlichen Neuronen stammen aufsummiert bis schließlich ein fester Bias-Wert(b) auf das Ergebnis der Summation aufaddiert wird. Anschließend bestimmt eine nicht-lineare Aktivierungsfunktion über den finalen Ausgangswert des Neurons.

Bildquelle: Wikipedia

Ähnliche Artikel:

KNN: Künstliche Neuronen

Es gibt sehr ausführliche Definitionen und Abbildungen für ein künstliches Neuron, die in diesem Artikel aber nicht behandelt werden. Der Grund dafür ist pragmatischer Natur. Es soll eine gewisse Konsistenz zu den anderen KNN-Beiträgen dieser Reihe bestehen und das Thema soll nicht zu einer wissenschaftlichen Abhandlung mutieren.

In dem Beitrag  KNN: Was sind künstliche neuronale Netze  geht es um den grundsätzlichen Aufbau von künstlichen neuronalen Netzwerken. Zusammengesetzt werden die Strukturen aus einer oftmals großen Anzahl von künstlichen Neuronen. Die nachfolgende Abbildung zeigt auf der Linken Seite einen extrahierten Ausschnitt aus einem Netzwerk. Es kann auch als einfaches allein stehendes Netzwerk betrachtet werden. Auf der rechten Seite ist eine allgemeingültigere Form zu sehen. Die Bias Unit (VB) wird üblicherweise als X0 bezeichnet und hat immer den Wert 1.

 

neuronen-netzwerk1 neuronen-netzwerk2

 


Um den Ausgangswert Y zu berechnen wird zunächst jeder Eingangswert X mit seinem dazugehörigen Gewicht theta (Theta) multipliziert und die Ergebnisse aufsummiert. Das Zwischenergebnis ist die Aktivierungsstärke z:
[
z = X_0 cdot theta_0 + X_1 cdot theta_1 + X_2 cdot theta_2
]

Im nächsten Schritt wird der eigentliche Ausgangswert Y errechnet, indem die Aktivierungsstärke z an eine Aktivierungsfunktion angelegt wird. Es gibt zwar verschiedene Funktionen, häufig wird aber die Logistische bzw. Sigmoid-Funktion verwendet. Sie ist nicht-linear und hat einen Ausgangswertebereich zwischen 0 und 1.

sigmoid-funktion [
sigmoid(z) = frac{1}{1+e^{-z}}
]

Wird das Bias Neuron und sein Gewicht nicht beachtet, bestimmen die eingehenden Daten die Aktivierungsstärke und damit den Ausgang der Funktion. Unter Verwendung der Bias Unit verschiebt sich die Funktion entlang der Y-Achse, was einer Verschiebung von einem Schwellwert gleich kommt.

Die endgültige Formel für die Aktivierung eines Neurons sieht sehr ähnlich zu der Logistischen Regression aus. Werden die Werte von X und Theta zu Vektoren zusammengefasst, lässt sich die Berechnung stark vereinfachen:
[
Y = sigmoid(Xtheta)
]

Als Programmcode müsste diese Berechnung dennoch mit einer Schleife realisiert werden oder noch besser mit einer Bibliothek für lineare Algebra.

Ähnliche Artikel:
KNN: Was sind künstliche neuronale Netze
KNN: Vorteile und Nachteile

KNN: Was sind künstliche neuronale Netze?

Ein künstliches neuronales Netzwerk (KNN) besteht aus vielen miteinander verbundenen künstlichen Neuronen. Die einzelnen Neuronen haben unterschiedliche Aufgaben und sind innerhalb von Schichten (layer) angeordnet. Sogenannte Netzwerk Topologien geben vor, wie viele Neuronen sich auf einer Schicht befinden und welche Neuronen miteinander vernetzt sind. Neuronale Netze werden im Bereich der künstlichen Intelligenz eingesetzt und sind ein Ansatz im Machine Learning, haben hier jedoch besondere Vor- und Nachteile.

Es gibt drei Schicht- und vier grundlegende Neuronen-Arten. Bei den Schichten wird unterschieden zwischen Eingabe-, Ausgabe- und verborgener Schicht (Visible, Output & Hidden Layer). Alle eingehenden Daten werden an den Eingabe-Neuronen (Visible Unit) in der Eingabeschicht angelegt. Diese wiederum geben die Daten weiter an die verbundenen Ausgabe- oder verborgenen Neuronen (Output, Hidden Unit). Zusätzlich kann in jeder Schicht noch ein Bias Neuron (Bias Unit) zum Einsatz kommen. Read more