Tag Archive for: Linux

Eine Hadoop Architektur mit Enterprise Sicherheitsniveau

Dies ist Teil 3 von 3 der Artikelserie zum Thema Eine Hadoop-Architektur mit Enterprise Sicherheitsniveau.

Die ideale Lösung

Man denkt, dass die Integration einer sehr alten Technologie, wie ActiveDirectory oder LDAP zusammen mit einem etablierten und ausgereiften Framework wie Hadoop reibungslos funktionieren würde. Leider sind solche Annahmen in der IT Welt zu gut um wahr zu sein. Zum Glück gibt es bereits erste Erfahrungsberichte  von  Unternehmen, die ihre Hadoop Infrastruktur an ein zentrales IMS gekoppelt haben.

Da die meisten Unternehmen  Active Directory als IMS benutzen, werden die im Folgenden  dargestellte Bilder und Architekturen dies ebenfalls tun.  Die vorgeschlagene Architektur ist jedoch derartig flexibel und technologieunabhängig, dass man das Active Directory auf den Bildern problemlos gegen LDAP austauschen könnte. Vielmehr ist die Integration eines Hadoop Clusters mit LDAP einfacher, da beide Technologien nativ zu Linux sind.

Schritt Eins – Integration von Hadoop mit Active Directory

Der erste Schritt, um Hadoop in dasActive Directory zu integrieren, ist ein sogenannter One-Way Trust von der Linux Welt hin zur Windows Welt . Dabei ist das Vertrauen des Authentisierungsmechanismuses von Hadoop zum Active Directory gemeint. Alle Identity Management Systeme bieten diese Funktionalität an, um sich gegenseitig vertrauen zu können und User aus anderen Domänen (Realms) zu akzeptieren. Das ermöglicht z.B. globalen Firmen mit vielen Standorten und unterschiedlichen IT Infrastrukturen und Identity Management Systemen diese zu verwalten und miteinander kommunizieren zu lassen.

Das Key Distribution Center (KDC) von Kerberos ist das Herz des Kerberos Systems im Hadoop. Hier  werden die User und ihre Passwörter oder Keytabs geschützt und verwaltet. Dabei brauchen wir lediglich den One Way Trust von KDC zu Active Directory. Allerdings gibt es eine vielversprechendere Technologie, die FreeIPA. Diese hat laut Wikipedia das Ziel, ein einfach zu verwaltendes Identity,-Policy-and-Audit-System (IPA) zur Verfügung zu stellen. Seit der Version 3.0.0 kann sich FreeIPA in das Active Directory integrieren. Die aussagekräftigen Vorteile von FreeIPA sind folgende:

  1. Reibungslose Integration mit Active Directory
  2. Es wird zusammen mit der Technologie SSSD geliefert, die das temporäre Speichern von Rechten und Passwörtern erlaubt. Das erlaubt auch offline den Zugriff auf  Fähigkeiten und Unabhängigkeit vom zentralen IPA, dem unterliegenden System.
  3. Integrierte Kerberos und Single Sign On (SSO) Funktionalitäten.

Wir lassen dann FreeIPA die Verwaltung von Kerberos und die primäre Authentisierung unseres Clusters übernehmen. Sowohl das Active Directory, als auch FreeIPA erlauben eine kinderleichte Umsetzung des One Way Trusts mithilfe von Web Tools. Im Prinzip muss man beim One Way Trust lediglich die öffentlichen Zertifikate jedes Tools mit denen der anderen bekannt machen.

Schritt Zwei – Synchronisation der Rechte & Rollen von Active Directory

Jetzt sind alle User, die sich im Active Directory befinden, unserem Hadoop Cluster bekannt. Ein User kann sich mithilfe des kinit Kommandos und nach Eingabe seines Usernames und Passwortes einloggen. Aber man braucht auch die im Active Directory definierten Rollen und Gruppen, um eine Autorisierung mithilfe von Ranger oder Sentry zu ermöglichen. Ohne die Provisionierung der Rollen haben wir bei der Autorisierung ein ähnliches Problem, wie es bei der Authentisierung aufgetreten ist.  Man müsste die Rollen selber verwalten, was nicht ideal ist.

Zum Glück gibt es verschiedene Ansätze um eine regelforme Synchronisierung der Gruppen von Active Directory in Ranger oder Sentry zu implementieren. Ranger kommt mit einem LDAP Plugin namens uxugsync, das sowohl mit LDAP als auch mit dem Active Directory kommunizieren kann. Leider hat die aktuelle Version dieses Plugins einige Nachteile:

  1. Leistungsprobleme, weil es defaultsmäßig versucht, den ganzen Hierarchiebaum von Active Directory zu synchronisieren. Das kann zu einem großen Problem für große Firmen werden, die mehrere tausend User haben. Außerdem müssen nicht alle User Zugriff auf Hadoop haben.
  2. Man kann bestimmte User syncen lassen, indem man ihren Gruppename im Gruppenfeld vom Plugin einträgt. Nachteil dabei ist, dass diese Abfrage nicht rekursiv funktioniert und alle Gruppe die im Ranger sein sollen einzeln abgefragt werden müssen, Das wiederum skaliert nicht sonderlich gut.
  3. Massive und regelmäßige Abfragen des Plugins können sogar zu einem DDoS Angriff auf den zentralen Active Directory führen.

Eine bessere Lösung wäre es, wenn wir die schönen Features des SSSD Deamons (der wie oben beschrieben zusammen mit FreeIPA kommt) ausnutzen könnten. Mithilfe von SSSD werden alle User und ihre entsprechenden Gruppen dem unterliegenden Linux Betriebssystem bekannt gemacht. Das bedeutet, dass man ein einfaches Script schreiben könnte, das die User und ihre Gruppen vom System direkt abfragt und zu Ranger oder Sentry über ihre entsprechende REST APIs überträgt. Dabei schont man sowohl das Active Directory vor regelmäßigen und aufwändigen Abfragen und schafft sogar ein schnelleres Mapping der Rollen zwischen Hadoop und Betriebssystem, auch wenn Active Directory nicht erreichbar ist. Es gibt derzeit Pläne, ein solches Plugin in den nächsten Versionen von Ranger mitzuliefern.

Schritt Drei – Anlegen und Verwaltung von technischen Usern

Unser System hat jedoch neben personalisierten Usern, die echten Personen in einem Unternehmen entsprechen, auch  technische User. Die technischen Users (Nicht Personalisierte Accounts – NPA), sind die Linux User mit denen die Hadoop Dienste gestartet werden. Dabei hat HDFS, Ambari usw. jeweils seinen eigenen User mit demselben Namen. Rein theoretisch könnten diese User auch im Active Directory einen Platz finden.

Meiner Meinung nach gehören diese User aber nicht dorthin. Erstens, weil sie keine echten User sind und zweitens, weil die Verwaltung solcher User nach Upgrades oder Neuinstallation des Clusters schwierig sein kann. Außerdem müssen solche User nicht den gleichen Sicherheitspolicies unterliegen, wie die normalen User. Am besten sollten sie kein Passwort besetzen, sondern lediglich ein Kerberos Keytab, das sich nach jedem Upgrade oder Neuinstallierung des Clusters neu generiert und in FreeIPA angelegt ist. Deswegen neige ich eher dazu, die NPAs in IPA anzulegen und zu verwalten.

High Level Architektur

Das folgende Bild fasst die Architektur zusammen. Hadoop Dienste, die üblicherweise in einer explorativen Umgebung benutzt werden, wie Hive und HBase, werden mit dargestellt. Es ist wichtig zu beachten, dass jegliche Technologie, die ein Ausführungsengine für YARN anbietet, wie Spark oder Storm, von dieser Architektur ebenfalls profitiert. Da solche Technologien nicht direkt mit den unterliegenden Daten interagieren, sondern diese immer über YARN und die entsprechenden Datanodes erhalten, benötigen sie auch keine besondere Darstellung oder Behandlung. Der Datenzugriff aus diesen 3rd Party Technologien respektiert die im Ranger definierten ACLs und Rollen des jeweiligen Users, der sie angestoßen hat.

hadoop-integration-active-directory-ipa-domain

Architektur in einer Mehrclusterumgebung

Wir haben schon das Argument untermauert, warum  unsere technischen User direkt im IPA liegen sollten. Das kann jedoch insofern Probleme verursachen, wenn man mit mehreren Clustern arbeitet, die alle die gleichen Namen für ihre technischen User haben. Man merkt sofort, dass es sich hier um eine Namenskollision handelt. Es gibt zwei Lösungsansätze hierfür:

  1. Man fügt den Namen Präfixen, die als kurze Beschreibungen der jeweiligen Umgebung dienen, wie z.B. ada, proj1, proj2 hinzu. Dadurch haben die User unterschiedliche Namen, wie proj1_hdfs für die proj1 Umgebung und ada_hdfs für die ada Umgebung. Man kann diese Lösung auch bei Kerberos KDCs benutzen, die in jeder Umgebung dediziert sind und die technischen User der jeweiligen Umgebung beibehalten.
  2. Man benutzt einen separaten Realm für jede Umgebung und damit auch eine separate IPA Instanz. Hier gibt es wiederum zwei verschiedene Ansätze. Ich muss jedoch zugeben, dass ich die Zweite nie ausprobiert habe und daher für ihre Durchführbarkeit nicht garantieren kann:
    1. Man bindet jede Umgebung einzeln über ihre FreeIPA per One Way Trust an das zentrale Active Directory. Das hat natürlich den Nachteil einer uneinheitlichen User Management Infrastruktur für alle Umgebungen, da Jede ihre eigene IPA Infrastruktur verwaltet und wartet.
    2. Man baut einen Hierarchiebaum von unterschiedlichen IPA Instanzen, so wie man es bei Forests von Active Directory Instanzen macht.

Das folgende Bild stellt den letzten Ansatz dar. Im Prinzip haben wir hier einen hierarchischen IPA Cluster mit mehreren One Way Trusts von den lokalen IPA Instanzen zu der zentralen IPA.

hadoop-local-identity-management-domain-ipa-netzwerk

Zusammenfassung

Wie Sie vielleicht von der gesamten Diskussion her abgeleitet haben, ist die Umsetzung einer unternehmerisch-konformen und personenbasierten Sicherheitsarchitektur innerhalb von Hadoop  keine einfache Sache. Man muss mit unterschiedlichen Architekturen und Ansätzen spielen, bevor man einen relativ vernünftigen oder sogar idealen Zustand erreicht hat. Die Berücksichtigung der jeweiligen IT Architektur spielt dabei eine sehr große Rolle. Ich hoffe, ich konnte die wichtigsten Merkmalen einer solchen Architektur und die Punkte, die ein Architekt besonders beachten muss, klar darstellen.

Als Zusammenfassung habe ich Ihnen am Ende eine Art Shoppingliste aller Komponenten zusammengestellt, die wichtig für den personalisierten Zugriff im Hadoop sind:

  1. Kerberos – Authentisierung
  2. FreeIPA – Authentisierung, Integration mit Active Directory
  3. Active Directory oder LDAP
  4. Ranger oder Sentry
    1. Plugin für Rollen/Gruppen Mapping zwischen AD und dem Betriebssystem
  5. Optional SSSD für schnellere Abfrage der Gruppen und Rollen des Betriebssystems

Zurück zu Teil 2 von 3 – Sicherheitstechnologie in Hadoop

Auswertung von CSV- und Log-Dateien auf der Command Line mit awk

Die Programmiersprache awk ist klein und unscheinbar, unter Data Science at the Command Line-Verfechtern allerdings ein häufiges Tool zur schnellen Analyse von CSV-Datein und vergleichbar strukturierten Daten (z. B. Logfiles) mit über Trennzeichen differenzierten Spalten. Auch in Shell-Skripten kommt awk meistens dann zum Einsatz, wenn es um den Zugriff, aber auch um die Manipulation von solchen Dateien geht.

Data Science at the Command Line: Facing the Future with Time-Tested Tools

awk wird als Skriptsprache mit nahezu jeder Linux-Distribution ausgeliefert und ist recht einfach eingehalten, kann jedoch auch schnell kryptisch werden. awk wird meistens ad-hoc auf der Kommandozeile ausgeführt, es können jedoch auch Skripte in awk-Dateien erstellt werden. Häufiger Grund für den Einsatz von awk ist die Anwendung von regulären Ausdrücken (Textmustersuche) auf Logdateien.

Nachfolgend ein kleines Tutorial für den Schnelleinstieg in diese interessante Analysetool auf Kommandozeile. Die CSV-Datei einfach hier downloaden: (einen Überblick über den Inhalt bietet auch eine Einführung in Python, die ebenfalls auf dieser CSV-Datei basiert)

wget https://www.data-science-blog.com/download/standorte.csv

CSV-Datei gedownloaded? Dann kann es losgehen im Terminal jeder beliebiger Linux-Distribution:

awk -F'|' '{print}' standorte.csv

Anweisungen, so auch die obige, beginnen stets mit “awk”. Da diese CSV-Datei nicht mit dem Standardchar (Komma), sondern einem vertikalen Strich (Pipe) getrennt ist, muss dies via “-F’|'” angegeben werden. Wäre das Trennzeichen ein Semikolon, wäre der Parameter “-F’;'” korrekt. Der Befehl gibt jede Zeile des CSV in der Kommandozeile aus, so dass wie nachfolgend den gesamten Dateiinhalt sehen:

ID|Standort|Funktion|Mitarbeiter|Umsatz|Kosten 
1|Muenchen|Verwaltung + Vertrieb|45|3500000|2300000 
2|Stuttgart|Nur Vertrieb|23|2800000|800000 
3|Hannover|Verwaltung + Vertrieb|45|1800000|1000000 
4|Leipzig|Nur Vertrieb|12|1000000|320000 
5|Dresden|Produktio + Vertrieb|65|450000|700000 
6|Frankfurt am Main|Nur Vertrieb|12|240000|20000 
7|Duesseldorf|Nur Vertrieb|43|45000|53000 
8|Kassel|Nur Vertrieb|23|250000|90000 
9|Hamburg|Verwaltung + Vertrieb|89|2800000|690000 
10|Koeln|Nur Vertrieb|21|110000|12000 
11|Potsdam|Nur Vertrieb|12|20000|67000 
12|Nuernberg|Nur Vertrieb|15|60000|30000 
13|Ingolstadt|Nur Vertrieb|8|80000|10000 
14|Wolfsburg|Nur Vertrieb|8|90000|23000 
15|Braunschweig|Nur Vertrieb|32|900000|750000 
16|Augsburg|Verwaltung + Vertrieb|45|700000|370000 
17|Chemnitz|Nur Vertrieb|4|95000|78000 
18|Bochum|Nur Vertrieb|9|32000|67000 
19|Dortmund|Produktio + Vertrieb|56|2100000|450000
20|Essen|Nur Vertrieb|10|190000|140000

Viele CSV- und Logdateien haben keinen Header, diese hier hat jedoch die erste Zeile als Header, die daher bei der Analyse nicht als Werte-Zeile fehlinterpretiert werden darf, daher wird nachfolgend von nun an die Anweisung “NR>1” mitgegeben:

awk -F'|' 'NR>1 {print}' standorte.csv

Spalten werden in awk über das Dollarzeichen angesprochen, folgende Anweisung zeigt uns alle Zeilen der zweiten Spalte:

awk -F'|' 'NR>1 {print $2}' standorte.csv

Diese Skriptsprache beherrscht assoziative Arrays. Es können demnach auch nicht-numerische Schlüssel für den Zugriff auf Datenfelder verwendet werden. Dies machen wir uns für das Anzeigen aller Standorte mit Angabe der jeweiligen Mitarbeiterzahl an dem Standort zu nutze. Die Variable a speichert alle Mitarbeiterzahlen in Spalte 4 über den Schlüssel des Standortnamens in Spalte 2, dann endet der Anweisungsblock und es folgt eine For-Schleife, die alle Schlüsselwerte ausgibt und den dazugehörigen Speicherwert (Mitarbeiterzahl) ausgibt.

awk -F'|' 'NR>1{a[$2] = $4;} END {for (i in a) print "Standort: " i " - Mitarbeiterzahl: " a[i];}' standorte.csv
Standort: Essen - Mitarbeiterzahl: 10
Standort: Bochum - Mitarbeiterzahl: 9
Standort: Hannover - Mitarbeiterzahl: 45
Standort: Frankfurt am Main - Mitarbeiterzahl: 12
Standort: Dresden - Mitarbeiterzahl: 65
Standort: Wolfsburg - Mitarbeiterzahl: 8
Standort: Dortmund - Mitarbeiterzahl: 56
Standort: Braunschweig - Mitarbeiterzahl: 32
Standort: Chemnitz - Mitarbeiterzahl: 4
Standort: Augsburg - Mitarbeiterzahl: 45
Standort: Leipzig - Mitarbeiterzahl: 12
Standort: Duesseldorf - Mitarbeiterzahl: 43
Standort: Nuernberg - Mitarbeiterzahl: 15
Standort: Hamburg - Mitarbeiterzahl: 89
Standort: Muenchen - Mitarbeiterzahl: 45
Standort: Potsdam - Mitarbeiterzahl: 12
Standort: Kassel - Mitarbeiterzahl: 23
Standort: Koeln - Mitarbeiterzahl: 21
Standort: Ingolstadt - Mitarbeiterzahl: 8
Standort: Stuttgart - Mitarbeiterzahl: 23

Auch If-Anweisungen sind einfach machbar. Folgendes Beispiel unterscheidet die Zeilennummern (Spalte1) nach geraden und ungeraden Zahlen und gibt den dazugehörigen Standortnamen (Spalte 2) aus.

awk -F'|' 'NR>1 {if ($1 % 2 == 0) print "Gerade: " $1"->"$2; else print "Ungerade: " $1"->"$2} ' standorte.csv
Ungerade: 1->Muenchen
Gerade: 2->Stuttgart
Ungerade: 3->Hannover
Gerade: 4->Leipzig
Ungerade: 5->Dresden
Gerade: 6->Frankfurt am Main
Ungerade: 7->Duesseldorf
Gerade: 8->Kassel
Ungerade: 9->Hamburg
Gerade: 10->Koeln
Ungerade: 11->Potsdam
Gerade: 12->Nuernberg
Ungerade: 13->Ingolstadt
Gerade: 14->Wolfsburg
Ungerade: 15->Braunschweig
Gerade: 16->Augsburg
Ungerade: 17->Chemnitz
Gerade: 18->Bochum
Ungerade: 19->Dortmund
Gerade: 20->Essen

Folgendes Beispiel klassifiziert alle Standorte mit weniger als 10 Mitarbeitern, allerdings nicht über “if…else…”, sondern über die Kurzabfrage nach dem Schema a>b?”True”:”False”.

awk -F'|' 'NR>1 {a[$2]=$4>=10?$2"->"$4:$2" hat weniger als 10 Mitarbeiter"; print a[$2]}' standorte.csv
Muenchen->45
Stuttgart->23
Hannover->45
Leipzig->12
Dresden->65
Frankfurt am Main->12
Duesseldorf->43
Kassel->23
Hamburg->89
Koeln->21
Potsdam->12
Nuernberg->15
Ingolstadt hat weniger als 10 Mitarbeiter
Wolfsburg hat weniger als 10 Mitarbeiter
Braunschweig->32
Augsburg->45
Chemnitz hat weniger als 10 Mitarbeiter
Bochum hat weniger als 10 Mitarbeiter
Dortmund->56
Essen hat weniger als 10 Mitarbeiter

Folgendes Code-Beispiel zeigt die Zählung der Vorkommnisse (Entsprechung: GROUP BY Spalte3, Count(*)).

awk -F'|' 'NR>1 {a[$3]++;} END {for (i in a) print i, a[i];}' standorte.csv
Produktio + Vertrieb 2
Verwaltung + Vertrieb 4
Nur Vertrieb 14

Etwas umformuliert, können wir auch die Werte pro Gruppe aufsummieren, nachfolgend beispielhaft der Gewinn (Einnahmen aus Spalte 5 – Kosten aus Spalte 6) und die Mitarbeiterzahl über die jeweilige Gruppe.

awk -F'|' 'NR>1{a[$3]+=$5-$6; b[$3]+= $4}END{for (i in a) print i "; Gewinn: " a[i] "; Mitarbeter: " b[i];}' standorte.csv
Produktio + Vertrieb; Gewinn: 1400000; Mitarbeter: 121
Verwaltung + Vertrieb; Gewinn: 4440000; Mitarbeter: 224
Nur Vertrieb; Gewinn: 3452000; Mitarbeter: 232

Das Zusammenführen von Zeichenketten erfolgt simpel durch Aneinandereihung:

c = a b     # Verknüpfung ohne Seperator
c = a";"b   # Verknüpfung mit Semikolon als Seperator
awk -F'|' 'NR>1 {if (a[$3] < $6) a[$3] = $2"->"$6;} END {for (i in a) {print i "->" a[i];}}' standorte.csv
Produktio + Vertrieb->Dresden->700000
Verwaltung + Vertrieb->Muenchen->2300000
Nur Vertrieb->Stuttgart->800000

Ein letztes Beispiel möchte keine einzelnen Zeilen des Datensatzes auflisten und auch keine Gruppierung unterscheiden, sondern die Zusammenfassung über die Angabe der gesamten Mitarbeiteranzahl und der Gewinn-Summe über alle Standorte angeben.

awk -F'|' 'NR>1{x+=$4;y+=$5-$6} END {print "Summe Mitarbeiter: " x " Summe Gewinn: " y}' standorte.csv
Summe Mitarbeiter: 577 Summe Gewinn: 9292000

Fazit

Als Programmiersprache ist awk sicherlich nur ein nice-to-have, aber wenn man das Prinzip dieser Sprache erstmal verstanden hat, kann sie ein interessantes Tool darstellen, um schon auf Kommandozeilenebene sich schnell einen Überblick über Datenbestände zu beschaffen und auch um Datenqualitätstests durchzuführen.