Tag Archive for: Data Science

7 Gründe, warum es sich jetzt lohnt, Python zu lernen

Hot Skill: Python

7 Gründe, warum es sich jetzt lohnt, Python zu lernen

Die digitale Transformation nimmt Fahrt auf und stellt sowohl Arbeitgeber:innen als auch Arbeitnehmer:innen vor neue Herausforderungen. Um mit dieser Entwicklung Schritt zu halten, lohnt es sich, auf den Zug aufzuspringen und das eigene Portfolio um wichtige Schlüsselkompetenzen zu erweitern. Doch in der heutigen Zeit, wo täglich mehr Lernoptionen und -angebote auf den Markt drängen, ist es besonders wichtig, die eigene, knappe Zeit in die richtigen, zukunftsträchtigen Fähigkeiten zu investieren.

Infolge des rasanten, digitalen Wandels haben sich neue, wichtige Qualifikationen herauskristallisiert, die sich langfristig für Lernwillige auszahlen. Insbesondere technische Fähigkeiten werden von Unternehmen dringend benötigt, um den eigenen Marktanteil zu verteidigen. Unter allen möglichen Qualifikationen hat sich eine bestimmte Fähigkeit in den letzten Jahren von vielversprechend zu unverzichtbar gemausert: Die Programmiersprache Python. Denn Python ist insbesondere in den vergangenen fünf Jahren dem Image des Underdogs entwachsen und hat sich zum Champion unter den Tech-Skills entwickelt.

Wer jetzt denkt, dass Python als Programmiersprache nur für ITler und Tech Nerds lohnenswert ist: Weit gefehlt! Viele Unternehmen beginnen gerade erst die wahren Möglichkeiten von Big Data und künstlicher Intelligenz zu erschließen und Führungskräfte suchen aktiv nach Mitarbeiter:innen, die in der Lage sind, diese Transformation durch technische Fähigkeiten zu unterstützen. Wenn Sie sich in diesem Jahr weiterentwickeln möchten und nach einer Fähigkeit Ausschau halten, die Ihre Karriere weiter voranbringt und langfristig sichert, dann ist dies der ideale Zeitpunkt für Sie, sich mit Python weiterzuqualifizieren.

Nicht nur für Schlangenbeschwörer: Warum es sich jetzt lohnt, Python zu lernen

Falls Sie bei dem Wort Python eher an glänzende Schuppen denken als an Programmcode, dann lassen Sie uns Ihnen etwas Kontext geben: Python ist eine Programmiersprache, die für die Entwicklung von Software genutzt wird. Als serverseitige Sprache ist sie die Logik und das Fundament hinter Benutzereingaben und der Interaktion von Datenbanken mit dem Server. Python ist Open-Source, kostenlos und kann von jedem benutzt und verändert werden, weshalb ihre Verwendung besonders in der Datenwissenschaft sehr beliebt ist. Nicht zuletzt lebt Python von seiner Community, einer engagierten Gemeinschaft rund um die Themen künstliche Intelligenz, maschinelles Lernen, Datenanalyse und -modellierung, mit umfangreichen Ressourcen und über 137.000 Bibliotheken wie TensorFlow, Scikit-learn und Keras.

In der Data Science wird Python verwendet, um große Mengen komplexer Daten zu analysieren und aus ihnen relevante Informationen abzuleiten. Lohnt es sich also, Python zu lernen? Absolut! Laut der Stack Overflow Developer Survey wurde Python 2020 als die drittbeliebteste Technologie des Jahres eingestuft. Sie gilt als eine der angesagtesten Fähigkeiten und als beliebteste Programmiersprache in der Welt nach Angaben des PYPL Popularität der Programmiersprache Index. Wir haben 7 Gründe zusammengefasst, warum es sich jetzt lohnt, Python zu lernen:.

1. An Vielseitigkeit kaum zu übertreffen

Python ist ein wahrer Allrounder unter den Hard Skills! Ein wesentlicher Vorteil von Python ist, dass es in einer Vielzahl von Fachbereichen eingesetzt werden kann. Die häufigsten Bereiche, in denen Python Verwendung findet, sind u. a.:

  • Data Analytics & Data Science
  • Mathematik
  • Web-Entwicklung
  • Finanzen und Handel
  • Automatisierung und künstliche Intelligenz
  • Spieleentwicklung

2. Zahlt sich mehrfach aus

Diejenigen, für die sich eine neue Fähigkeit doppelt lohnen soll, liegen mit Python goldrichtig. Python-Entwickler:innen zählen seit Jahren zu den Bestbezahltesten der Branche. Und auch Data Scientists, für deren Job Python unerlässlich ist, liegen im weltweiten Gehaltsrennen ganz weit vorn. Die Nachfrage nach Python-Entwickler:innen ist hoch – und wächst. Und auch für andere Abteilungen wird die Fähigkeit immer wertvoller. Wer Python beherrscht, wird nicht lange nach einem guten Job Ausschau halten müssen. Unter den Top 10 der gefragtesten Programmier-Skills nach denen Arbeitgeber:innen suchen, liegt Python auf Platz 7. Die Arbeitsmarktaussichten sind also hervorragend.

3. Schnelle Erfolge auch für Neulinge

2016 war das schillernde Jahr, in dem Python Java als beliebteste Sprache an US-Universitäten ablöste und seitdem ist die Programmiersprache besonders unter Anfänger:innen sehr beliebt. In den letzten Jahren konnte Python seine Pole Position immer weiter ausbauen. Und das mit gutem Grund: Python ist leicht zu erlernen und befähigt seine Nutzer:innen dazu, eigene Webanwendungen zu erstellen oder simple Arbeitsabläufe zu automatisieren. Dazu bringt Python eine aufgeräumte und gut lesbare Syntax mit, was sie besonders einsteigerfreundlich macht. Wer mit dem Programmieren anfängt, will nicht mit einer komplizierten Sprache mit allerhand seltsamen Ausnahmen starten. Mit Python machen Sie es sich einfach und sind dennoch effektiv. Ein Doppelsieg!

4. Ideal für Zeitsparfüchse

Mit der Python-Programmierung erwarten Sie nicht nur schnelle Lernerfolge, auch Ihre Arbeit wird effektiver und damit schneller. Im Gegensatz zu anderen Programmiersprachen, braucht die Entwicklung mit Python weniger Code und damit weniger Zeit. Für alle Fans von Effizienz ist Python wie gemacht. Und sie bietet einen weiteren großen Zeitbonus. Unliebsame, sich wiederholende Aufgaben können mithilfe von Python automatisiert werden. Wer schon einmal Stunden damit verbracht hat, Dateien umzubenennen oder Hunderte von Tabellenzeilen zu aktualisieren, der weiß, wie mühsam solche Aufgaben sein können. Umso schöner, dass diese Aufgaben von jetzt an von Ihrem Computer erledigt werden könnten.

5. Über den IT-Tellerrand hinaus

Ob im Marketing, Sales oder im Business Development, Python hat sich längst aus seiner reinen IT-Ecke heraus und in andere Unternehmensbereiche vorgewagt. Denn auch diese Abteilungen stehen vor einer Reihe an Herausforderungen, bei denen Python helfen kann: Reporting, Content-Optimierung, A/B-Tests, Kundensegmentierung, automatisierte Kampagnen, Feedback-Analyse und vieles mehr. Mit Python können Erkenntnisse aus vorliegenden Daten gewonnen werden, besser informierte, datengetriebene Entscheidungen getroffen werden, viele Routineaktivitäten automatisiert und der ROI von Kampagnen erhöht werden.

6. Programmieren für Big Player

Wollten Sie schon immer für einen Tech-Giganten wie Google oder Facebook arbeiten? Dann könnte Python Ihre goldene Eintrittskarte sein, denn viele große und vor allem technologieaffine Unternehmen wie YouTube, IBM, Dropbox oder Instagram nutzen Python für eine Vielzahl von Zwecken und sind immer auf der Suche nach Nachwuchstalenten. Dropbox verwendet Python fast für ihr gesamtes Code-Fundament, einschließlich der Analysen, der Server- und API-Backends und des Desktop-Clients. Wenn Sie Ihrem Lebenslauf einen großen Namen hinzufügen wollen, sollte Python auf demselben Blatt zu finden sein.

7. Ein Must-Have für Datenprofis

Besonders Pythons Anwendung in der Datenwissenschaft und im Data Engineering treibt seine Popularität in ungeahnte Höhen. Aber was macht Python so wichtig für Data Science und Machine Learning? Lange Zeit wurde R als die beste Sprache in diesem Spezialgebiet angesehen, doch Python bietet für die Data Science zahlreiche Vorteile. Bibliotheken und Frameworks wie PyBrain, NumPy und PyMySQL für KI sind wichtige Argumente. Außerdem können Skripte erstellt werden, um einfache Prozesse zu automatisieren. Das macht den Arbeitsalltag von Datenprofis besonders effizient.

Investieren Sie in Ihre berufliche Zukunft und starten Sie jetzt Ihre Python-Weiterbildung! Egal, ob Programmier-Neuling oder Data Nerd: Die Haufe Akademie bietet die passende Weiterbildung für Sie: spannende Online-Kurse für Vollberufstätige und Schnelldurchläufer:innen im Bereich Python, Daten und künstliche Intelligenz.

In Kooperation mit stackfuel.

Quellen:

Get in IT: “WELCHE PROGRAMMIERSPRACHE SOLLTEST DU LERNEN?” [11.06.2021]

Coding Nomads: “Why Learn Python? 6 Reasons Why it’s So Hot Right Now.” [11.06.2021]

Experten-Training: Angewandte Künstliche Intelligenz

Anzeige

Im Rahmen dieses praxisorientierten Kurses wird anhand eines konkreten Beispiels ein gesamter Prozess zur Mustererkennung nachvollzogen und selbst programmiert. Dabei werden die möglichen Methoden beleuchtet und angewandt.

Aufbaukurs: Angewandte Künstliche Intelligenz

Am 2.11. – 3.11.2022 oder 18.1. + 19.1.2023 in Gotha

Ziele:

–        Datenvorverarbeitung zur Nutzung von KI

–        Einsatz von Künstlichen Neuronalen Netzen für spezielle Anwendungen (Lernen mit Lehrer)

–        Nutzung von Anaconda, Tensorflow und Keras an konkreten Beispielen

–        Erarbeitung und Einsatz von KI-Methoden zur Datenverarbeitung

–        KI zur Mustererkennung (z. B. k-MEANS, Lernen ohne Lehrer)

 

Zielgruppe:

–        Erfahrene aus den Bereichen Programmierung, Entwicklung, Anwendung

 

Voraussetzungen:

–        Grundlegende Programmierkenntnisse empfehlenswert (aber nicht erforderlich)

 

Inhalte:

–        Datenverarbeitungsmethoden kennenlernen und nutzen

–        Programmierung und Nutzung von Klassifizierungsmethoden

–        Anwendung vom bestärkenden Lernen (Reinforcement Learning)

–        Einsatz kostenloser und kostenpflichtiger Tools zur Datenauswertung

–        Umfangreiche Darstellung der Ergebnisse

 

Ausweichtermin:

–        18.1. + 19.1.2023 in Gotha

 

Ein Schulungstag umfasst 6 Lehrveranstaltungsstunden (9.30 Uhr – 15.30 Uhr) und findet großenteils am PC statt. Die Verpflegung ist jeweils inklusive.

 

Preis pro Kurs (2 Tage): 980 Euro (netto)

Die Teilnehmerzahl pro Modul ist auf 6 begrenzt.

Rückfragen sowie Anmeldungen: schulung@cc-online.eu

Ansprechpartner: Prof. Dr.-Ing. Christian Döbel (Leiter Steinbeis Transferzentrum „Integrierte Systeme und Digitale Transformation“, ISD)

 

Anbieter-Informationen:
Steinbeis-Transferzentrum ISD (Zentrale: Steinbeis Transfer GmbH) – Ausfeldstr. 21 – 99880 Waltershausen – Tel. 03622 208334
E-Mail SU2209@stw.de
USt.-Ident-Nr. DE814628518 – Registergericht Stuttgart HRB 25312

Geschäftsführer: Dipl.-Ing. (FH) M. Eng. Erik Burchardt

Data Science und Python: Ein eingespieltes Team

Data Science ist ein immer wichtigeres Instrument für Unternehmen, um wertvolle Einblicke in die eigenen Systeme zu bekommen, ineffiziente Arbeitsweisen zu optimieren und um sich Vorteile gegenüber dem Wettbewerb zu verschaffen. Auch abseits der klassischen Softwarekonzerne verstehen Unternehmen mehr und mehr, welche Potenziale in einer systematischen Datenanalyse und in bereits kleinen Machine Learning-Projekten stecken – sei es für die schnellere Auswertung großer Excel-Sheets oder für eine Datenaufbereitung als zusätzlichen Service, der sich als neues Feature an die Kundschaft verkaufen lässt.

Das sind die typischen Phasen eines Data Science-Projekts. Jeder dieser sieben Schritte lässt sich mit Python umsetzen.

Das sind die typischen Phasen eines Data Science-Projekts. Jeder dieser sieben Schritte lässt sich mit Python umsetzen.

Python steht hoch im Kurs

Unternehmen, die den Nutzen der Data Science verstanden haben, suchen händeringend nach gut ausgebildeten Fachkräften. Eine essenzielle Fähigkeit hierfür: Das Programmieren mit Python. Die Open-Source-Programmiersprache wurde Anfang der 1990er-Jahre vom niederländischen Softwareentwickler Guido van Rossum entwickelt und hat sich innerhalb der letzten 30 Jahre als fester Bestandteil der internationalen IT-Landschaft etabliert.

Python überzeugt seine Anwender:innen mit größter Einfachheit, einer übersichtlichen Syntax und einer geringen Anzahl an Schlüsselwörtern. Im Gegensatz zu anderen beliebten Programmiersprachen wie etwa C++, PHP oder JavaScript kommen Python-Skripte mit vergleichsweise wenig Code aus und ermöglichen Anfänger:innen einen schnellen Einstieg. Zu guter Letzt ist Python plattformunabhängig, sodass Anwendungen auf Linux-, Mac-, Windows- und Unix-Systemen funktionieren.

Aber warum ist Python besonders in der Data Science so beliebt?

Zusätzlich zu den genannten Eigenschaften können sich Anwender:innen aus einem großen Pool an kostenlosen Erweiterungen (genannt „Libraries“ bzw. „Bibliotheken“) bedienen. So gibt es zahlreiche Bibliotheken

speziell für die Data Science, die Entwickler:innen und Python-Communities gratis zur Verfügung stellen. Damit lassen sich alle Schritte eines Data Science-Projekts – vom Sammeln und Bereinigen der Daten bis hin zur Analyse, Vorhersage und Visualisierung – nur mit Python als einziger Programmiersprache umsetzen.

Übrigens: Nur etwa fünf Prozent der weltweiten Python-Entwickler:innen arbeiten in Deutschland. Es werden zwar von Jahr zu Jahr mehr, aber dennoch ist die deutschsprachige Python-Community bisher vergleichsweise klein.

Einblick in die Praxis: Wie wird Python in der Data Science bereits angewendet?

Für viele Data Scientists ist Python die Sprache der Wahl, besonders wenn ein Programm mithilfe von künstlicher Intelligenz aus einem vorhandenen Datensatz „lernen“ und Aussagen über zukünftige Ereignisse treffen soll. Aufgrund seiner vielseitigen Anwendungsmöglichkeiten, der großen Data Science-Community bestehend aus Wissenschaftler:innen, Entwickler:innen und Hobby-Programmierer:innen sowie den frei verfügbaren Bibliotheken, vertrauen nicht nur die großen Tech-Konzerne wie Google, Netflix oder IBM auf Python. Auch Gesundheitsämter, Universitäten oder Banken setzen bei Data Science-Projekten auf Python. Was Sie mit der Programmiersprache theoretisch erreichen können und wie Python bereits eingesetzt wird, erfahren Sie hier anhand von drei Beispielen:

  1. Schneller und zuverlässiger FAQ-Service dank Chatbots

Auf vielen Webseiten öffnet sich heutzutage nach kurzer Zeit unten rechts ein kleines Chatfenster, in dem Nutzer:innen automatisch gefragt werden, ob sie Hilfe beim Online-Shopping, bei der Reklamation oder bei anderen Themen benötigen. Diese so genannten Chatbots dienen als kleine Helfer im Online-Service und sind meistens mit Python programmiert.

  1. Waldbrände verhindern – oder zumindest ihre Entwicklung vorhersagen

Auch die Natur kann von der Datenwissenschaft mit Python profitieren. Um beispielsweise den Verlauf eines Waldbrandes vorherzusagen und ihn schneller zu kontrollieren, kann eine Kombination aus den Daten vergangener Waldbrände, Informationen über den aktuellen Zustand des Waldes sowie Wetter- und Windvorhersagen eine große Hilfe sein.

Mithilfe der Datenwissenschaft können Forstämter und Kommunen dafür sorgen, dass die Feuerwehr ihre Einsätze besser plant, weniger Schäden entstehen und chaotische Waldbrände vermieden werden. Je mehr Daten zur Verfügung stehen, desto zuverlässiger unterstützt die Datenanalyse bei der Waldbrandbekämpfung.

  1. Große Potenziale für Medizin und Pharmazie

Data Science und Machine Learning bieten auch für Medizin und Pharmazie gewaltige Chancen, um Medikamente, Therapien und Vorhersagen zu optimieren. Ein wichtiges Stichwort ist hierbei die computergestützte Diagnose – etwa bei der Früherkennung von Parkinson oder verschiedenen Krebsarten.

In Kombination mit klassischen Untersuchungsmethoden lassen sich so schneller zuverlässigere Prognosen treffen, die das Eingriffsrisiko minimieren und somit Leben retten.

Was muss ich mitbringen, um Python zu lernen?

Wie bereits erwähnt ist Python eine einfache Programmiersprache, die gut lesbar ist und mit wenig Code auskommt. Trotzdem zögern viele Anfänger:innen, wenn sie das erste Mal die Kommandozeile aufrufen und mit einem Programm beginnen. Wesentlich komplexer wird es, wenn sich Anwender:innen in Python an einem Data Science-Projekt widmen, da hier nicht nur eine gewisse Code-Kenntnis, sondern auch Mathematik und Statistik wichtig sind. Wir empfehlen Ihnen deshalb: Konzentrieren Sie sich auf die folgenden vier Bereiche, um möglichst einfach in die Welt der Data Science mit Python einzusteigen.

Statistik und Mathematik

Es lässt sich nicht leugnen, dass Mathematik das Herzstück der Data Science ist. Um jedoch Daten gewinnbringend mit Python auszuwerten, muss man auch kein Alan Mathematik-Spezialist sein. Es ist von Vorteil, wenn Sie Ihre Mathematikkenntnisse aus der Schulzeit auffrischen und sich vor Ihrem ersten Projekt in die statistischen Grundphänomene einlesen. So fällt es Ihnen später leichter, Korrelationen und Fehler im Datensatz zu erkennen.

Interesse an Programmierung und Visualisierung

Zwar unterscheidet sich Python in Syntax und Struktur von anderen bekannten Programmiersprachen, aber dennoch fällt Ihnen der Einstieg leichter, wenn Sie bereits vorab ein Interesse am Programmieren besitzen. Allein das Verständnis, wie aus einem HTML-Code eine ansehnliche Webseite wird, vereinfacht es Ihnen, den Zusammenhang von Code-Input und Programm-Output zu verstehen.Es gibt aber auch Python-Trainings und -Kurse, in denen keinerlei Programmiererfahrungen vorausgesetzt werden.   Darüber hinaus spielt die Visualisierung der Daten eine wichtige Rolle, um die Erkenntnisse der Data Science auch für andere Kolleg:innen begreifbar zu machen.

Englischkenntnisse sind von Vorteil

Da wie eingangs erwähnt nur wenige Python-Entwickler:innen aus Deutschland stammen, werden Sie viele Tutorials und Foren-Beiträge in englischer Sprache vorfinden. Damit Sie besser verstehen, welche Anweisungen die Python-Community empfiehlt, ist eine gewisse Englischkenntnis bzw. ein Wörterbuch in greifbarer Nähe vorteilhaft.

Motivation und Neugier

Zuletzt hängt der Erfolg Ihrer Data Science-Projekte mit Python auch von Ihrer Motivation und Neugier ab. In diversen Foren, wie zum Beispiel auf der US-amerikanischen Plattform Reddit, finden Sie kleine Aufgaben speziell für Anfänger:innen, die Ihnen Schritt für Schritt den Umgang mit Python erleichtern. Wenn Sie sich mit solchen Aufgaben üben, werden Sie schnell den Umgang mit Python erlernen.

Die Trainings der Haufe Akademie zu Python und Data Science

Die Haufe Akademie ist ein Sponsor des Data Science Blogs. Lernen Sie mit ihr die Basics der Programmiersprache Python und erfahren Sie, wie Sie selbst einfache Automatisierungen wie auch größere Data Science-Projekte erfolgreich umsetzen können. Mehr erfahren über die Haufe Akademie!

Webinar zum Statistikprogramm R

Anzeige

R – ein unverzichtbares Werkzeug für Data Scientists. Lassen Sie auch Ihre Mitarbeitenden auf den neusten Stand in der Open Source Statistiksoftware R aus der modernen Datenanalyse bringen. Zielgruppe unserer Fortbildungen sind nicht nur Statistikerinnen und Statistiker, sondern auch Anwenderinnen und Anwender jeder Fachrichtung aus Industrie und Forschungseinrichtungen, die mit R ihre Daten effektiv analysieren möchten. Die Teilnehmenden erwerben Qualifikationen zur selbstständigen Analyse eigener Daten sowie Schlüsselkompetenzen im Umgang mit Big Data.

Webinar zum Statistikprogramm R

Inhalte Basiskurs:

  • Installation von R und zugehöriger Entwicklungsumgebung
  • Grundlagen von R: Syntax, Datentypen, Operatoren, Funktionen, Indizierung
  • R-Hilfe effektiv nutzen
  • Ein- und Ausgabe von Daten
  • Behandlung fehlender Werte
  • Statistische Kennzahlen
  • Visualisierung

Inhalte Vertiefungskurs:

  • Effizienter Umgang mit R:
  • Eigene Funktionen, Schleifen vermeiden durch *apply – Einführung in ggplot2 und dplyr
  • Statistische Tests und Lineare Regression
  • Dynamische Berichterstellung
  • Angewandte Datenanalyse anhand von Fallbeispielen

Termine:

  • R-Basiskurs: 14. und 15. November 2022 (jeweils 9:00 – 17:30 Uhr)
  • R-Vertiefungskurs: 17. und 18. November 2022 (jeweils 9:00 – 16:30 Uhr)

Kosten: pro 2-tägigem Kurs 750 €; bei Buchung beider Kurse im November erhalten Sie einen Preisnachlass von 200€

Weitere Informationen zu den Inhalten und zur Anmeldung finden Sie unter: https://wb.zhb.tu-dortmund.de/seminare/dortmunder-r-kurse/

Bei Fragen können Sie sich an Daniel Neubauer (daniel.neubauer@tu-dortmund.de; Tel.: 0231 755 6632) wenden.

Zertifikatsstudium – Data Science & Big Data

Anzeige

Datenanalyse, Datenmanagement und die zielgerichtete Darstellung der Ergebnisse – darum geht es im berufsbegleitenden Zertifikatsstudium ‚Data Science & Big Data‘ der TU Dortmund.

Technische Universität Dortmund: Anmeldungen für das Zertifikatsstudium ‚Data Science & Big Data‘ (Start: Februar 2023) möglich.

Datenanalyse, Datenmanagement und die zielgerichtete Darstellung der Ergebnisse – darum geht es im berufsbegleitenden Zertifikatsstudium ‚Data Science & Big Data‘ der TU Dortmund.

Der Kurs richtet sich an alle Berufsgruppen, die sich mit dem Management und der Analyse von Daten beschäftigen, wie z. B. Data Scientists, Business Analysten, Softwareentwickler, Consultants, wissenschaftliche Mitarbeitende (universitär oder außeruniversitär) o.ä.

Ziel ist der Erwerb moderner Kenntnisse in Theorie und Praxis von Data Science- und Big Data-Projekten. Die Übungen mit realen Datensätzen sowie die Option, die Abschlussarbeit auf Basis von eigenen Daten (‚bring your own data‘) zu verfassen, unterstützen den Transfer des Gelernten in die berufliche Praxis. Das Zertifikatsstudium umfasst zehn Termine und dauert neun Monate. Nach erfolgreicher Abschlussprüfung vergibt die Technische Universität Dortmund ein Zertifikat, mit dem der Kompetenzausbau nachgewiesen werden kann.

Näheres finden Sie unter: https://wb.zhb.tu-dortmund.de/datascience

Bei frühzeitiger Anmeldung oder wenn mehrere Personen aus Ihrem Unternehmen am Kurs teilnehmen, profitieren Sie zudem von unseren Rabattangeboten:

  • Early Bird: Sie erhalten 5% Preisnachlass auf das Teilnahmeentgelt bei Anmeldung bis zum 30. September 2022.
  • Weitersagen lohnt sich: Wenn Sie gemeinsam mit einer/einem Kollegin/Kollegen oder mehreren Personen aus Ihrem Unternehmen am Kurs teilnehmen, reduziert sich das Teilnahmeentgelt bei bis zu zwei angemeldeten Personen um 5 % pro Person, darüber hinausgehend zahlt jede weitere Person 10 % weniger.

Bei Fragen können Sie sich an Daniel Neubauer (daniel.neubauer@tu-dortmund.de; 0231 755 6632) wenden.

Haufe Akademie Data Science Buzzword Bingo

Buzzword Bingo: Data Science – Teil III

Im ersten Teil unserer Serie „Buzzword Bingo: Data Science“ widmeten wir uns den Begriffen Künstliche Intelligenz, Algorithmen und Maschinelles Lernen, im zweiten Teil den Begriffen Big Data, Predictive Analytics und Internet of Things. Nun geht es hier im dritten und letzten Teil weiter mit der Begriffsklärung dreier weiterer Begriffe aus dem Data Science-Umfeld.

Buzzword Bingo: Data Science – Teil III: Künstliche neuronale Netze & Deep Learning

Im dritten Teil unserer dreiteiligen Reihe „Buzzword Bingo Data Science“ beschäftigen wir uns mit den Begriffen „künstliche neuronale Netze“ und „Deep Learning“.

Künstliche neuronale Netze

Künstliche neuronale Netze beschreiben eine besondere Form des überwachten maschinellen Lernens. Das Besondere hier ist, dass mit künstlichen neuronalen Netzen versucht wird, die Funktionsweise des menschlichen Gehirns nachzuahmen. Dort können biologische Nervenzellen durch elektrische Impulse von benachbarten Neuronen erregt werden. Nach bestimmten Regeln leiten Neuronen diese elektrischen Impulse dann wiederum an benachbarte Neuronen weiter. Häufig benutzte Signalwege werden dabei verstärkt, wenig benutzte Verbindungen werden gleichzeitig im Laufe der Zeit abgeschwächt. Dies wird beim Menschen üblicherweise dann als Lernen bezeichnet.

Dasselbe geschieht auch bei künstlichen neuronalen Netzen: Künstliche Neuronen werden hier hinter- und nebeneinander geschaltet. Diese Neuronen nehmen dann Informationen auf, modifizieren und verarbeiten diese nach bestimmten Regeln und geben dann Informationen wiederum an andere Neuronen ab. Üblicherweise werden bei künstlichen neuronalen Netzen mindestens drei Schichten von Neuronen unterschieden.

  • Die Eingabeschicht nimmt Informationen aus der Umwelt auf und speist diese in das neuronale Netz ein.
  • Die verborgene(n) Schichte(n) liegen zwischen der Eingabe- und der Ausgabeschicht. Hier werden wie beschrieben die eingegebenen Informationen von den einzelnen Neuronen verarbeitet und anschließend weitergegeben. Der Name „verborgene“ Schicht betont dabei, dass für Anwender meist nicht erkennbar ist, in welcher Form ein neuronales Netz die Eingabeinformationen in den verborgenen Schichten verarbeitet.
  • Die letzte Schicht eines neuronalen Netzes ist die Ausgabeschicht. Diese beinhaltet die Ausgabeneuronen, welche die eigentliche Entscheidung, auf die das neuronale Netz trainiert wurde, als Information ausgeben.

Das besondere an neuronalen Netzen: Wie die Neuronen die Informationen zwischen den verborgenen Schichten verarbeiten und an die nächste Schicht weitergeben, erlernt ein künstliches neuronales Netz selbstständig. Hierfür werden – einfach ausgedrückt – die verschiedenen Pfade durch ein neuronales Netz, die verschiedene Entscheidungen beinhalten, häufig hintereinander ausprobiert. Führt ein bestimmter Pfad während des Trainings des neuronalen Netzes nicht zu dem vordefinierten korrekten Ergebnis, wird dieser Pfad verändert und in dieser Form zukünftig eher nicht mehr verwendet. Führt ein Pfad stattdessen erfolgreich zu dem vordefinierten Ergebnis, dann wird dieser Pfad bestärkt. Schlussendlich kann, wie bei jedem überwachten Lernprozess, ein erfolgreich trainiertes künstliches neuronales Netz auf unbekannte Eingangsdaten angewandt werden.

Auch wenn diese Funktionsweise auf den ersten Blick nicht sehr leicht verständlich ist: Am Ende handelt es sich auch hier bloß um einen Algorithmus, dessen Ziel es ist, Muster in Daten zu erkennen. Zwei Eigenschaften teilen sich künstliche neuronale Netze aber tatsächlich mit den natürlichen Vorbildern: Sie können sich besonders gut an viele verschiedene Aufgaben anpassen, benötigen dafür aber auch meistens mehr Beispiele (Daten) und Zeit als die klassischen maschinellen Lernverfahren.

Sonderform: Deep Learning

Deep Learning ist eine besondere Form von künstlichen neuronalen Netzen. Hierbei werden viele verdeckte Schichten hintereinander verwendet, wodurch ein tiefes (also „deep“) neuronales Netz entsteht.

Je tiefer ein neuronales Netz ist, umso komplexere Zusammenhänge kann es abbilden. Aber es benötigt auch deutlich mehr Rechenleistung als ein flaches neuronales Netz. Seit einigen Jahren steht diese Leistung günstig zur Verfügung, weshalb diese Form des maschinellen Lernens an Bedeutung gewonnen hat.

Data Science & Big Data

Buzzword Bingo: Data Science – Teil II

Im ersten Teil unserer Serie „Buzzword Bingo: Data Science“ widmeten wir uns den Begriffen Künstliche Intelligenz, Algorithmen und Maschinelles Lernen. Nun geht es hier im zweiten Teil weiter mit der Begriffsklärung dreier weiterer Begriffe aus dem Data Science-Umfeld.

Buzzword Bingo: Data Science – Teil II: Big Data, Predictive Analytics & Internet of Things

Im zweiten Teil unserer dreiteiligen Reihe „Buzzword Bingo Data Science“ beschäftigen wir uns mit den Begriffen „Big Data“, „Predictive Analytics“ und „Internet of Things“.

Big Data

Interaktionen auf Internetseiten und in Webshops, Likes, Shares und Kommentare in Social Media, Nutzungsdaten aus Streamingdiensten wie Netflix und Spotify, von mobilen Endgeräten wie Smartphones oder Fitnesstrackern aufgezeichnete Bewegungsdate oder Zahlungsaktivitäten mit der Kreditkarte: Wir alle produzieren in unserem Leben alltäglich immense Datenmengen.

Im Zusammenhang mit künstlicher Intelligenz wird dabei häufig von „Big Data“ gesprochen. Und weil es in der öffentlichen Diskussion um Daten häufig um personenbezogene Daten geht, ist der Begriff Big Data oft eher negativ konnotiert. Dabei ist Big Data eigentlich ein völlig wertfreier Begriff. Im Wesentlichen müssen drei Faktoren erfüllt werden, damit Daten als „big“ gelten. Da die drei Fachbegriffe im Englischen alle mit einem „V“ beginnen, wird häufig auch von den drei V der Big Data gesprochen.

Doch welche Eigenschaften sind dies?

  • Volume (Datenmenge): Unter Big Data werden Daten(-mengen) verstanden, die zu groß sind, um sie mit klassischen Methoden zu bearbeiten, weil beispielsweise ein einzelner Computer nicht in der Läge wäre, diese Datenmenge zu verarbeiten.
  • Velocity (Geschwindigkeit der Datenerfassung und -verarbeitung): Unter Big Data werden Daten(-mengen) verstanden, die in einer sehr hohen Geschwindigkeit generiert werden und dementsprechend auch in einer hohen Geschwindigkeit ausgewertet und weiterverarbeitet werden müssen, um Aktualität zu gewährleisten.
  • Variety (Datenkomplexität oder Datenvielfalt): Unter Big Data werden Daten(-mengen) verstanden, die so komplex sind, dass auf den ersten Blick keine Zusammenhänge erkennbar sind. Diese Zusammenhänge können erst mit speziellen maschinellen Lernverfahren aufgedeckt werden. Dazu gehört auch, dass ein Großteil aller Daten in unstrukturierten Formaten wie Texten, Bildern oder Videos abgespeichert ist.

Häufig werden neben diesen drei V auch weitere Faktoren aufgezählt, welche Big Data definieren. Dazu gehören Variability (Schwankungen, d.h. die Bedeutung von Daten kann sich verändern), Veracity (Wahrhaftigkeit, d.h. Big Data muss gründlich auf die Korrektheit der Daten geprüft werden), Visualization (Visualisierungen helfen, um komplexe Zusammenhänge in großen Datensets aufzudecken) und Value (Wert, d.h. die Auswertung von Big Data sollte immer mit einem unternehmerischen Vorteil einhergehen).

Predictive Analytics

  • Heute schon die Verkaufszahlen von morgen kennen, sodass eine rechtzeitige Nachbestellung knapper Produkte möglich ist?
  • Bereits am Donnerstagabend die Regenwahrscheinlichkeit für das kommende Wochenende kennen, sodass passende Kleidung für den Kurztrip gepackt werden kann?
  • Frühzeitig vor bevorstehenden Maschinenausfällen gewarnt werden, sodass die passenden Ersatzteile bestellt und das benötigte technische Personal angefragt werden kann?

Als Königsdisziplin der Data Science gilt für viele die genaue Vorhersage zukünftiger Zustände oder Ereignisse. Im Englischen wird dann von „Predictive Analytics“ gesprochen. Diese Methoden werden in vielen verschiedenen Branchen und Anwendungsfeldern genutzt. Die Prognose von Absatzzahlen, die Wettervorhersage oder Predictive Maintenance (engl. für vorausschauende Wartung) von Maschinen und Anlagen sind nur drei mögliche Beispiele.

Zu beachten ist allerdings, dass Predictive-Analytics-Modelle keine Wahrsagerei sind. Die Vorhersage zukünftiger Ereignisse beruht immer auf historischen Daten. Das bedeutet, dass maschinelle Modelle mit Methoden des überwachten maschinellen Lernens darauf trainiert werden, Zusammenhänge zwischen vielen verschiedenen Eingangseigenschaften und einer vorherzusagenden Ausgangseigenschaft zu erkennen. Im Falle der Predicitve Maintenance könnten solche Eingangseigenschaften beispielsweise das Alter einer Produktionsmaschine, der Zeitraum seit der letzten Wartung, die Umgebungstemperatur, die Produktionsgeschwindigkeit und viele weitere sein. In den historischen Daten könnte ein Algorithmus nun untersuchen, ob diese Eingangseigenschaften einen Zusammenhang damit aufweisen, ob die Maschine innerhalb der kommenden 7 Tage ausfallen wird. Hierfür muss zunächst eine ausreichend große Menge an Daten zur Verfügung stehen. Wenn ein vorherzusagendes Ereignis in der Vergangenheit nur sehr selten aufgetreten ist, dann stehen auch nur wenige Daten zur Verfügung, um dasselbe Ereignis für die Zukunft vorherzusagen. Sobald der Algorithmus einen entsprechenden Zusammenhang identifiziert hat, kann dieses trainierte maschinelle Modell nun verwendet werden, um zukünftige Maschinenausfälle rechtzeitig vorherzusagen.

Natürlich müssen solche Modelle dauerhaft darauf geprüft werden, ob sie die Realität immer noch so gut abbilden, wie zu dem Zeitpunkt, zu dem sie trainiert worden sind. Wenn sich nämlich die Umweltparameter ändern, das heißt, wenn Faktoren auftreten, die zum Trainingszeitpunkt noch nicht bekannt waren, dann muss auch das maschinelle Modell neu trainiert werden. Für unser Beispiel könnte dies bedeuten, dass wenn die Maschine für die Produktion eines neuen Produktes eingesetzt wird, auch für dieses neue Produkt zunächst geprüft werden müsste, ob die in der Vergangenheit gefundenen Zusammenhänge immer noch Bestand haben.

Internet of Things

Selbstfahrende Autos, smarte Kühlschränke, Heizungssysteme und Glühbirnen, Fitnesstracker und vieles mehr: das Buzzword „Internet of Things“ (häufig als IoT abgekürzt) beschreibt den Trend, nicht nur Computer über Netzwerke miteinander zu verbinden, sondern auch verschiedene alltägliche Objekte mit in diese Netzwerke aufzunehmen. Seinen Anfang genommen hat dieser Trend in erster Linie im Bereich der Unterhaltungselektronik. In vielen Haushalten sind schon seit Jahren Fernseher, Computer, Spielekonsole und Drucker über das Heimnetzwerk miteinander verbunden und lassen sich per Smartphone bedienen.

Damit ist das IoT natürlich eng verbunden mit Big Data, denn all diese Geräte produzieren nicht nur ständig Daten, sondern sie sind auch auf Informationen sowie auf Daten von anderen Geräten angewiesen, um zu funktionieren.

Buzzword Bingo: Data Science – Teil I

Rund um das Thema Data Science gibt es unglaublich viele verschiedene Buzzwords, die Ihnen sicherlich auch schon vielfach begegnet sind. Sei es der Begriff Künstliche Intelligenz, Big Data oder auch Deep Learning. Die Bedeutung dieser Begriffe ist jedoch nicht immer ganz klar und häufig werden Begriffe auch vertauscht oder in missverständlichen Zusammenhängen benutzt. Höchste Zeit also, sich einmal mit den genauen Definitionen dieser Begriffe zu beschäftigen!

Buzzword Bingo: Data Science – Teil 1: Künstliche Intelligenz, Algorithmen & Maschinelles Lernen

Im ersten Teil unserer dreiteiligen Reihe „Buzzword Bingo Data Science“ beschäftigen wir uns zunächst mit den drei Begriffen „Künstliche Intelligenz“, „Algorithmus“ und „Maschinelles Lernen“.

Künstliche Intelligenz

Der im Bereich der Data Science u. a. am häufigsten genutzte Begriff ist derjenige der „Künstlichen Intelligenz“. Viele Menschen denken bei dem Begriff sofort an hochspezialisierte Maschinen à la „The Matrix“ oder „I, Robot“. Dabei ist der Begriff deutlich älter als viele denken. Bereits 1956 wurde der englische Begriff “artificial intelligence” zum ersten Mal in einem Workshop-Titel am US-amerikanischen Dartmouth College genutzt.

Heutzutage besitzt der Begriff der künstlichen Intelligenz keine allgemeingültige Definition. Es handelt sich bei künstlicher Intelligenz grundsätzlich um ein Teilgebiet der Informatik, das sich mit der Automatisierung von intelligentem Verhalten befasst. Es geht also darum, dass ein Computerprogramm auf eine Eingabe eine intelligente Reaktion zeigt. Zu beachten ist hierbei, dass eine künstliche Intelligenz nur ein scheinbar intelligentes Verhalten zeigen kann. Künstliche Intelligenz wird heutzutage sehr weit gefasst und kann vieles umfassen: von klassischen, regelbasierten Algorithmen bis hin zu selbstlernenden künstlichen neuronalen Netzen.

Das zentrale Forschungsziel ist die Entwicklung einer sogenannten Allgemeinen Künstlichen Intelligenz, also einer Maschine, die in der Lage sein wird, autonom beliebige Probleme zu lösen. Es gibt eine fortlaufende Debatte darüber, ob dieses Ziel jemals erreicht werden kann bzw. ob es erreicht werden sollte.

In den vergangenen Jahren ist auch die sogenannte xAI (engl. Explainable AI; erklärbare künstliche Intelligenz) in den Mittelpunkt der Forschungsinteressen gerückt. Dabei geht es um die Problematik, dass künstliche Intelligenzen sogenannte Black Boxen sind. Das bedeutet, dass ein menschlicher User die Entscheidung einer künstlichen Intelligenz üblicherweise nicht nachvollziehen kann. Eine xAI wäre im Vergleich jedoch eine Glass Box, die Entscheidungen einer solchen künstlichen Intelligenz wären für Menschen also nachvollziehbar.

Algorithmen

Algorithmen sind klar definierte, vorgegebene Prozeduren, mit denen klar definierte Aufgaben gelöst werden können. Dabei kann der Lösungsweg des Algorithmus entweder durch Menschen vorgegeben, also programmiert werden oder Algorithmen lernen durch Methoden des maschinellen Lernens selbstständig den Lösungsweg für eine Prozedur.

Im Bereich der Data Science bezeichnen wir mit Algorithmen kleine Programme, die scheinbar intelligent handeln. Dementsprechend stecken auch hinter künstlichen Intelligenzen Algorithmen. Werden Algorithmen mit klar definierten Eingaben versorgt, führen sie somit zu einem eindeutigen, konstanten Ergebnis. Dabei gilt aber leider auch der Grundsatz der Informatik „Mist rein, Mist raus“. Ein Algorithmus kann immer nur auf sinnvolle Eingaben sinnvolle Ausgaben erzeugen. Die Komplexität von Algorithmen kann sehr vielfältig sein und je komplexer ein solcher Algorithmus ist, desto „intelligenter“ erscheint er oftmals.

Maschinelles Lernen

Maschinelles Lernen ist ein Überbegriff für eine Vielzahl von Verfahren, mit denen ein Computer oder eine künstliche Intelligenz automatisch Muster in Daten erkennt. Beim maschinellen Lernen wird grundsätzlich zwischen dem überwachten und unüberwachten Lernen unterschieden.

Beim überwachten Lernen lernt ein Algorithmus den Zusammenhang zwischen bekannten Eingabe- und Ausgabewerten. Nachdem dieser Zusammenhang vom Algorithmus erlernt wurde, kann dieses maschinelle Modell dann auf neue Eingabewerte angewandt und somit unbekannte Ausgabewerte vorhergesagt werden. Beispielsweise könnte mithilfe einer Regression zunächst der Zusammenhang zwischen Lufttemperatur und dem Wochentag (jeweils bekannte Eingabewerte) sowie der Anzahl der verkauften Eiskugeln (für die Vergangenheit bekannte Ausgabewerte) in einem Freibad untersucht werden. Sobald dieser Zusammenhang einmal ausreichend genau bestimmt worden ist, kann er auch für die Zukunft fortgeschrieben werden. Das bedeutet, es wäre dann möglich, anhand des nächsten Wochentages sowie der vorhergesagten Lufttemperatur (bekannte Eingabewerte für die Zukunft) die Anzahl der verkauften Eiskugeln (unbekannte Ausgabewerte für die Zukunft) zu prognostizieren und somit die Absatzmenge genauer planen zu können.

Beim unüberwachten Lernen auf der anderen Seite sind nur Eingabedaten vorhanden, es gibt keine den Eingabedaten zugehörigen Ausgabedaten. Hier wird dann mit Methoden wie beispielsweise dem Clustering versucht, verschiedene Datenpunkte anhand ihrer Eigenschaften in verschiedene Gruppen aufzuteilen. Beispielsweise könnte ein Clustering-Algorithmus verschiedene Besucher:innen eines Webshops in verschiedene Gruppen einteilen: Es könnte beispielsweise eine Gruppe von Besucher:innen geben, die sehr zielstrebig ein einzelnes Produkt in den Warenkorb legen und ihren Kauf direkt abschließen. Andere Besucher:innen könnten allerdings viele verschiedene Produkte ansehen, in den Warenkorb legen und am Ende nur wenige oder vielleicht sogar gar keine Käufe tätigen. Wieder andere Kund:innen könnten unter Umständen lediglich auf der Suche nach Artikeln im Sale sein und keine anderen Produkte ansehen.

Aufgrund ihres Nutzungsverhaltens auf der Website könnte ein Clustering-Algorithmus mit ausreichend aufbereiteten Daten nun all diese Kund:innen in verschiedene Gruppen oder Cluster einteilen. Was der Algorithmus jedoch nicht leisten kann ist zu erklären, was die erkannten Cluster genau bedeuten. Hierfür braucht es nach wie vor menschliche Intelligenz gepaart mit Fachwissen.

6 Faktoren, wie Process Mining Projekte zum Erfolg werden

Zuerst wollte ich diesen Artikel mit “6 Gründe, warum Process Mining Projekt scheitern” betiteln, das würde dann aber doch etwas zu negativ klingen. Kein Process Mining Projekt muss scheitern oder überhaupt in Verzögerungen geraten, denn das lässt sich mit etwas Erfahrung und der richtigen Einstellung zum Projekt immer verhindern.

Process Mining - Process Flow ChartNach dutzenden Process Mining Projekten mit unterschiedlichen Rahmenbedingungen gebe ich hier nun sechs handfeste Hinweise, wie Process Mining Projekte generell zum Erfolg werden:

1. Richtige Erwartungshaltung setzen und kommunizieren

Dieser Punkt mag banal klingen, das ist jedoch nicht der Fall. Ich habe schon einige Process Mining Projekte gesehen, die deswegen gescheitert sind, weil dem Vorstand oder anderen Entscheidern gegenüber falsche Versprechungen abgegeben wurden. Tatsächlich werden Process Mining Projekte oft mit ambitionierten Zielen gestartet, wie dem Herabsenken von Prozesskosten um konkrete 10% oder dem Reduzieren der Durchlaufzeit eines bestimmten Prozesses um 20%. Es sei den Entscheidern nicht zu verübeln, dass Budgets gestrichen und Projekte eingestampft werden, wenn diese konkreten Versprechen nicht realisiert werden können.

Dabei können exakt diese Ziele oftmals doch erreicht werden, nur nicht gleich bei den ersten Projektiterationen, denn oft fehlen Datenpunkte, die wichtige Prozessaktivitäten in operativen Prozessketten dokumentieren. Das Event Log kann anfangs – gerade für exotischere Prozesse in weniger verbreiteten IT-Systemen – oft noch nicht sofort vollständig erstellt werden.

Aber eben genau diese Lücken in der Prozessdatenerfassung sind ein “Finding”, denn sie zeigen erst auf, an welchen Stellen es blinde Flecken in der Daten- und Prozesstransparenz noch gibt. Somit ist im Process Mining auch der Weg der datenbasierten Prozesstransparenz ein oder sogar DAS große Ziel.

Konkretes Beispiel: Eine Krankenversicherung wollte die Prozesse der Reha-Bewilligung für ihre Versicherte analysieren. Unter Einsatz eines umfangreichen Process Mining Tools sollten die Prozesse tiefgehend analysiert und unnötige Prozessschleifen identifizieren, aber auch den Prozess abkürzen, indem Ausschlusspunkte frühzeitig im Prozess entdeckt werden. Das war das Versprechen an den Vorstand, der das Budget einfror, auf Grund nicht erreichter Ziele.

In der Tat gab es bei der Rekonstruktion der Prozesse aus den Legacy-Systemen, die über Jahrzehnte von der IT der Krankenkasse selbst entwickelt wurden, viele Lücken in den Daten und somit blinde Flecken in der Prozessen. Die Aufdeckung aber genau dieser Lücken führt dazu, dass diese geschlossen werden können und die vollständige Transparenz über Daten damit erst hergestellt wird. Erst dann, im zweiten Schritt, können die Prozesse ausführlich genug auf Optimierungspotenziale untersucht werden.

Process Mining nicht zu betreiben, weil die Prozesse nicht lückenlos getrackt werden, ist im Grunde unterlassene Hilfeleistung gegenüber des Unternehmens.

2. Process Mining als Methode, nicht als Tool verstehen

Viele Process Mining Projekte drehen sich vor allem um die Auswahl und die Einführung der richtigen Process Mining Tools. Auf das richtige Tool zu setzen, ist natürlich ein wichtiger Aspekt im Process Mining Projekt. Abhängig davon, ob es sich beim Vorhaben der Prozessanalyse um eine einmalige Angelegenheit oder ein tägliches Monitoring von Prozessen handelt, kommen unterschiedliche Tools in die Vorauswahl. Auch ob beispielsweise bereits ein BI-System etabliert ist und ob ein ausgeklügeltes Berechtigungskonzept für die Prozessanalysen notwendig ist, spielen für die Auswahl eine Rolle, sowie viele weitere Faktoren.

Dennoch sollte nicht vergessen werden, dass Process Mining in erster Linie kein Tool, sondern eine Analysemethodik ist, bei der es im ersten Abschnitt um die Rekonstruktion der Prozesse aus operativen IT-Systemen in ein resultierendes Prozessprotokoell (Event Log) geht, im zweiten Schritt um eine (im Kern) Graphenanalyse zur Visualisierung der Prozessflüsse mit weiteren Analyse-/Reporting-Elementen. Wird diese Perspektive auf Process Mining nicht aus den Augen verloren, können Unternehmen viele Kosten sparen, denn es erlaubt die Konzentration auf lösungsorientierte Konzepte.

Konkretes Beispiel: Ein Unternehmen plante die Einführung von Process Mining über einen marktführenden Tool-Anbieter. Nahezu alle Ressourcen wurden für die Tool-Einführung allokiert, das eigentliche Vorhaben schien rein in der Tool-Einführung aufgehen zu müssen, bis Projektanforderungen sogar zu Gunsten des auserwählten Tools angepasst wurden, um es realisieren zu können.
Zudem kann das Unternehmen noch vor der umfangreichen Tool-Einführung, erste Schritte oder Zumindest erste Machbarkeitstests mit einem günstigeren Tool durchführen, oder sogar gänzlich kostenlos z. B. mit PM4Py (Python Package für Process Mining).

Oftmals sind die Tools der Marktführer auf Grund der Preismodelle schädlich für die Durchdringung von Process Mining im Unternehmen, denn nicht alle Abteilungen verfügen über die notwendigen Budgets und gerade experimentelle Projekte finden keinen Sponsor. Umso wichtiger ist es, diese Analysetechnik als Methodik zu verstehen, die auch mit einem Tool-Mix funktionieren kann. Ich kenne mehrere Unternehmen, die aus verschiedenen Gründen nicht ein, nicht zwei, sondern gleich mehrere Tools im Unternehmen im Einsatz haben.

3. Auf Unabhängigkeit und Wiederverwendbarkeit setzen

Wie zuvor bereits erwähnt, kann für ein Unternehmen ein Mix aus mehreren Tools infrage kommen und eigentlich sollte dieser Punkt sich um die richtige Tool-Auswahl drehen. Der Markt für Process Mining Software Tools in einem turbulenten Umfeld, die Tools, Funktionsumfänge und Konditionen ändern sich häufig und sind noch nicht vollends ausgereift. Viele der höherpreisigen Process Mining Tools wollen die Erstellung des Event Logs übernehmen und setzen dabei meistens auf vorgefertigte SQL-Skripte, die in der Plattform (also dem Tool) laufen und dort an kundenindividuelle Prozesse (z. B. durch ERP-Customizing) angepasst werden können.

Wie bereits erwähnt, besteht das Verfahren für Process Mining aus zwei Abschnitten, der erste ist die Erstellung des Event Logs, der zweite die eigentliche Analyse im Process Mining Tool, in welches das Event Log geladen wird. Soll das Tool auch den ersten Abschnitt übernehmen, steckt viel unternehmensindividuelles Prozess-Know-How im Tool, welches nicht für andere Tools verwendet werden kann. Es entsteht eine Abhängigkeit vom Tool, eine Migration zu einem anderen Tool wird schwieriger.

Konkretes Beispiel: Ein Unternehmen starten einen Proof of Concept für die Einführung eines Process Mining Tools, dabei wird ein Budget i.H.v. hundertausenden bereit gestellt, um drei Tools von unterschiedlichen Software-Herstellern gegeneinander antreten zu lassen. Die Tools sollen jeweils eine Gesamtlösung darstellen und Process Mining komplett liefern können, inklusive Event Logs.

Das Unternehmen könnte sich den Proof of Concept zum überwiegenden Teil sparen, wenn der erste Abschnitt des Process Minings – die Erstellung der Event Logs – vom Unternehmen selbst durchgeführt werden würde. Die Tools der Anbieter würden dann nur noch der eigentlichen Analyse der Event Logs dienen, die Anforderungen verringern sich und die Tools werden austauschbarer.

Unternehmen können Event Logs selbst herstellen und in ein Data Warehouse speisen, die dann alle Process Mining Tools mit Prozessdaten versorgen können. Die investierten Aufwände in Process Mining würden somit nachhaltiger (weil länger nutzbar) werden und die Abhängigkeit von bestimmter Software würde sich auf ein Minimum reduzieren, wir riskieren keinen neuen Aufwand für Migration von einem Anbieter zum nächsten. Übrigens können die Event Logs dann auch in andere Tools z. B. für Business Intelligence (BI) geladen und anderweitig analysiert werden.

4. Den richtigen Fokus setzen

Für Process Mining sollte nicht nur im Generellen eine realistische Erwartungshaltung kommuniziert werden, sondern auch im Speziellen, durch Selektion der besten Prozesse für den Start der Process Mining Vorhaben. Auf den ersten Blick sind das sicherlich die Prozesse, die aus Führungssicht als besonders kritisch betrachtet werden, für manche Unternehmen mögen das besondere Prozesse der Logistik sein, der Wareneinkauf bzw. die Materialbereitstellung, bei anderen Unternehmen vielleicht bestimmte Verwaltungs- oder Genehmigungsprozesse. Es sind meistens Prozesse, die entweder eine besondere Kostenbedeutung für das Unternehmen haben oder für die Kundenbindung wichtig sind. Da ist es verständlich, dass erste Projekte sich exakt diesen Prozessen widmen.

Konkretes Beispiel: Ein Unternehmen der Werkzeugmaschinen-Branche plant einen erstmaligen Einsatz von Process Mining. Der für das Unternehmen besonders kritische Prozess ist die Fertigung und Montage von Maschinen, denn hier liegen die größten Potenziale verborgen. Das Vorhaben gerät jedoch schnell ins Stocken, denn die Erhebung der Daten nicht nur aus ERP- und MES-Systemen, sondern auch von Machinen und Arbeitsplätzen erweist sich als zeitaufwändig.

Das Unternehmen startet eine zweite Kampagne zur Untersuchung eines Einkaufsprozesses, das zwar geringere Potenziale bietet, jedoch schneller und reibungsloser durchführbar ist. Das Projekt wird zum Erfolg und motiviert die Geschäftsführung, mehr Aufwände für Process Mining auch für schwieriger zu untersuchende Prozesse freizugeben.

Sofern Process Mining noch nicht im Unternehmen etabliert ist, sollten Sie die “low hanging Fruits” finden, damit Ihre Initiative zu einem nachhaltigen Erfolg für das ganze Unternehmen werden kann, beginnen Sie möglichst nicht gleich mit der größten “Baustelle”.

5. Datenanforderung und Datenrestriktionen frühzeitig klären

Dass der Erfolg Ihrer Process Mining Initiative auch vom zu analysierenden Prozess abhängt und damit auch die Datenverfügbarkeit vorab untersucht worden sein sollte, hatten wir schon erörtert. Aber selbst für gängigere Prozesse verzögern sich Process Mining Vorhaben auf eigentlich vermeidbarer Weise, weil die Anforderung an die Daten nicht vorab festgelegt worden sind. In der Tat ist die Definition der Datenanforderung, also welche Datentabellen mit Filterung auf Spalten und Zeilen für das Event Log benötigt werden, vorab manchmal gar nicht so einfach, besonders bei exotischeren Quellsystemen. Es sollte zumindest jedoch die grobe Anforderung beschrieben werden, unter Nennung der Datenbanken und einer Metabeschreibung, um welche Daten es geht. Auch deswegen, um den Datenschutzbeauftragten und sonstige Genehmiger frühzeitig einbinden zu können. Bei gängigen Quellsystemen und Standardprozessen (z. B. Procure to Pay oder Order to Cash eines SAP ERPs) kann die Anforderung bereits früh auf hohem Detaillevel vorab geschehen.

Konkretes Beispiel: Ein Unternehmen hat gerade sein Process Mining Projekt gestartet, steckt jedoch seit Tagen in der Datenbeschaffung fest. Die IT-Systemintegratoren weigern sich, Daten ohne genaue Anforderung aus den Quellsystemen zu exportieren oder einen API-Zugang bereit zu stellen und die Freigabe des Datenschutzbeauftragten sowie der IT-Sicherheit fehlen.

Neben der Anforderungsdefinition sollte also auch die Kommunikation mit den Administratoren der Quellsysteme frühzeitig erfolgen.

6. Das Big Picture vor Augen haben

Insbesondere wenn Process Mining nicht nur eine einmalige Ad-Hoc Analyse bleiben, sondern unternehmensweit eingeführt werden soll, sollte eine verlässliche, integrative und nachhaltige Architektur überlegt werden. Process Mining ist – wir wiederholen uns – eine Methodik, die mit Business Intelligence, Data Science (Machine Learning) und RPA in Verbindung gebracht werden kann.

Konkretes Beispiel: Eine Fachabteilung eines Unternehmens führte ein Process Mining Tool als eigenständige Lösung ein, um Prozesse hinsichtlich ihrer Automatisierbarkeit zu untersuchen. Dabei werden NLP-Algorithmen aus dem Machine Learning bei der Datenextraktion aus Texten eine Rolle spielen. Das ausgewählte Process Mining Tool wurde auch auf Grund seiner inhouse-Lösung für Machine Learning ausgesucht. In einer benachbarten Abteilung ist bereits ein RPA-Tool im Einsatz und auf der globalen Unternehmensebene ist ein bestimmtes BI-Tool der Standard für Reporting und Datenanalysen.

Statt vieler Einzellösungen, könnte die Fachabteilung das konzernweite BI-Tool mit Process Mining Erweiterung (Plugin zum BI-Tool, z. B. für Qlik Sense oder Power BI erhältlich) nutzen und dabei auch die RPA-Lösung mit dieser verbinden. Ein Data Warehouse für BI ist ebenfalls vorhanden und könnte ggf. zu einem für Process Mining erweitert werden. Für den Einsatz von Machine Learning können Data Scientists die Daten im Process Mining Data Warehouse zum Training verwenden und Prädiktionsergebnisse direkt in dieses zurückspielen.

Achten Sie auf die Gesamtarchitektur. Process Mining kann für sich alleine stehen, es kann jedoch auch sinnvoll sein, eine Datenstrategie zu entwickeln, die das Projekt im Kontext vorhandener Daten-Initiativen betrachtet und einen integrativen Ansatz erlaubt.

Wie kann man sich zum/r Data Scientist ausbilden lassen?

Anzeige

Das allgegenwärtige Internet und die Digitalisierung haben heutzutage viele Veränderungen in den Geschäften überall auf der Welt mit sich gebracht. Aus diesem Grund wird Data Science immer wichtiger.

In der Data Science werden große Datenmengen an Informationen aus allen Arten von Quellen gesammelt, sowohl aus strukturierten als auch aus unstrukturierten Daten. Dazu werden Techniken und Theorien aus verschiedenen Bereichen der Statistik, der Informationswissenschaft, der Mathematik und der Informatik verwendet.

Datenexperten und -expertinnen, d. h. Data Scientists, beschäftigen sich genau mit dieser Arbeit. Wenn Du Data Scientist werden möchten, kannst Du eine große Karriere in der Data Science beginnen, indem Du Dich für eine beliebige geeignete Weiterbildung einschreibst, der Deinem Talent, Deinen Interessen und Deinen Fähigkeiten in einigen der wichtigsten Data-Science-Kurse entspricht.

Was machen Data Scientists?

Zunächst einmal ist es wichtig zu verstehen, was man eigentlich unter dem Begriff „Data Scientist” versteht. Data Scientist ist lediglich ein neuer Beruf, der in vielen Artikeln häufig zusammen mit dem der Data Analysts beschrieben wird, weil die erforderlichen Grundfertigkeiten recht ähnlich sind. Vor allem müssen Data Scientists die Fähigkeit haben, Daten aus MySQL-Datenbanken zu extrahieren, Pivot-Tabellen in Excel zu verwalten, Datenbankansichten zu erstellen und Analytics zu verwalten.

Data Scientists werden viele Stellen in Unternehmen angeboten, die mit der zunehmenden Verfügbarkeit von Daten konfrontiert sind und Personen brauchen, die ihnen bei der Entwicklung der Infrastruktur helfen, die sie zur Verwaltung der Daten benötigen. Oft handelt es sich um Unternehmen, die ihre ersten Schritte in diesem Bereich machen. Dafür benötigen sie eine Person mit grundlegenden Fähigkeiten in der Softwaretechnik, um den gesamten Prozess voranzutreiben.

Dann gibt es stark datenorientierte Unternehmen, für diejenigen Daten sozusagen Rohprodukt und Rohstoff darstellen. In diesen Unternehmen werden Datenanalyse und maschinelles Lernen recht intensiv betrieben, wodurch Personen mit guten mathematischen, statistischen oder sogar physikalischen Fähigkeiten benötigt werden.

Es gibt auch Unternehmen, die keine Daten als Produkt haben, aber ihre Zukunft auf sie und ihre Sinne planen und abstimmen. Diese Unternehmen werden immer mehr und brauchen sowohl Data Scientists mit grundlegenden Fähigkeiten als auch Data Scientists mit speziellen Kenntnissen, von Visualisierung bis hin zu Machine Learning.

Kompetenzen der Data Scientists

Die Grundlagen sind zunächst für alle, die im Bereich der Data Science arbeiten, dieselben. Unabhängig von den Aufgaben, die Data Scientists zu erfüllen haben, muss man grundlegende Softwaretechnik beherrschen.

Selbstverständlich müssen Data Scientists mit Programmiersprachen wie R oder Python und mit Datenbanksprachen wie SQL umgehen können. Sie bedienen sich dann statistischer, grundlegender Fähigkeiten um zu bestimmen, welche Techniken für die zu erreichenden Ziele am besten geeignet sind.

Ebenso sind beim Umgang mit großen Datenmengen und in sogenannten „datengetriebenen” Kontexten Techniken und Methoden des maschinellen Lernens wichtig: KNN-Algorithmen (Nächste-Nachbarn-Klassifikation für Mustererkennung), Random Forests oder Ensemble Techniken kommen hier zum Einsatz.

Entscheidend ist, die für den jeweiligen Kontext am besten geeignete Technik unterscheiden zu können, und dies bevor man die verschiedenen Werkzeuge beherrscht.

Die lineare Algebra und die multivariate Berechnung sind auch unerlässlich. Sie bilden die Grundlage für viele der oben beschriebenen Fähigkeiten und können sich als nützlich erweisen, wenn das mit den Daten arbeitende Team beschließt, intern eigene Implementierungen zu entwickeln.

Eins ist noch entscheidend. In einer idealen Welt werden die Daten korrekt identifiziert, da sie vollständig und kohärent sind. In der realen Welt muss sich der Data Scientist mit unvollkommenen Daten auseinandersetzen, d. h. mit fehlenden Werten, Inkonsistenzen und unterschiedlichen Formatierungen. Hier kann man von Munging sprechen, d. h. von der Tätigkeit, die sogenannten Rohdaten in Daten umzuwandeln, die ein einheitliches Format haben und somit in den Prozess der Aufnahme und Analyse einbezogen werden können.

Wenn Daten als wesentlich für Geschäftsentscheidungen sind, reicht es nicht aus, eine Person zu haben, die sie verarbeiten, analysieren und aufnehmen kann. Die Visualisierung und Kommunikation von Daten ist ebenso zentral. Daten zu visualisieren und zu kommunizieren bedeutet, anderen die angewandten Techniken und die erzielten Ergebnisse zu beschreiben. Daher ist es wichtig zu wissen, wie man Visualisierungswerkzeuge wie ggplot oder D3.js verwendet.

Ausbildungsmöglichkeiten und Bootcamps, um Data Scientist zu werden

Kurz gesagt gibt es zwei gängige Wege, um Data Scientist zu werden.

  • Auf der einen Seite kann man einen Universitätslehrgang absolvieren. Diese Art von Studiengang führt zu einem spezialisierten Abschluss, der nach einem dreijährigen Bachelorabschluss in Informatik, Mathematik oder Statistik absolviert werden kann. In den letzten Jahren wurden diese neuen Studiengänge an den europäischen Universitäten immer häufiger angeboten.
  • Auf der anderen Seite kann man sich für eine Weiterbildung zum/r Data Scientist anmelden, zum Beispiel eine Weiterbildung von DataScientest. Als national und international anerkannte Ausbildungsorganisation bietet DataScientest eine Weiterbildung zum/r Data Scientist an, die sich an Personen mit einem Bachelorabschluss und Kenntnissen in Kommunikation wendet. Ihr großer Vorteil ist die persönliche Betreuung, die allen Teilnehmer und Teilnehmerinnen angeboten wird, sowie ein Fernstudium, das 85% individuelles Coaching und 15% Masterclasses umfasst. Alles läuft über eine sichere Plattform, damit jeder Teilnehmer und jede Teilnehmerin codieren, Daten erforschen usw. können.

Bei dieser DataScientest-Weiterbildung haben die Lernenden die Wahl zwischen einer weitgehenden Ausbildung (10 Stunden pro Woche) oder einer Bootcamp-Ausbildung (35 Stunden pro Woche). 

Das am Ende des Kurses erworbene Zertifikat wird von der Pariser Universität La Sorbonne anerkannt.