Tag Archive for: Data Mining

Man redet gerne über Daten, genutzt werden sie nicht

Der Big Data Hype ist vorbei und auf dem Anstieg zum „ Plateau of Productivity“. Doch bereits in dieser Phase klafft die Einschätzung von Analysten mit der Verbreitung von Big Data Predictive Analytics/Data Mining noch weit von der Realität in Deutschland auseinander. Dies belegt u.a. eine Studie der T-Systems Multimedia Solutions, zu welcher in der FAZ* der Artikel Man redet gerne über Daten, genutzt werden sie nicht, erschienen ist. Mich überrascht diese Studie nicht,  sondern bestätigt meine langjährige Markterfahrung.

Die Gründe sind vielfältig: keine Zeit, keine Priorität, keine Kompetenz, kein Data Scientist, keine Zuständigkeit, Software zu komplex – Daten und Use-Cases sind aber vorhanden.

Im folgenden Artikel wird die Datenanalyse- und Data-Mining Software der Synop Systems vorgestellt, welche „out-of-the-box“ alle Funktionen bereitstellt, um Daten zu verknüpfen, zu strukturieren, zu verstehen, Zusammenhänge zu entdecken, Muster in Daten zu lernen und Prognose-Modelle zu entwickeln.

Anforderung an „Advanced-Data-Analytics“-Software

Um Advanced-Data-Analytics-Software zu einer hohen Verbreitung zu bringen, sind folgende Aspekte zu beachten:

  1. Einfachheit in der Nutzung der Software
  2. Schnelligkeit in der Bearbeitung von Daten
  3. Analyse von großen Datenmengen
  4. Große Auswahl an vorgefertigten Analyse-Methoden für unterschiedliche Fragestellungen
  5. Nutzung (fast) ohne IT-Projekt
  6. Offene Architektur für Data-Automation und Integration in operative Prozesse

Synop Analyzer – Pionier der In-Memory Analyse

Um diese Anforderungen zu erfüllen, entstand der Synop Analyzer, welcher seit 2013 von der Synop Systems in den Markt eingeführt wird. Im Einsatz ist die Software bei einem DAX-Konzern bereits seit 2010 und zählt somit zum Pionier einer In-Memory-basierenden Data-Mining Software in Deutschland. Synop Analyzer hat besondere Funktionen für technische Daten. Anwender der Software sind aber in vielen Branchen zu finden: Automotive, Elektronik, Maschinenbau, Payment Service Provider, Handel, Versandhandel, Marktforschung.

Die wesentlichen Kernfunktionen des  Synop Analyzer sind:

a. Eigene In-Memory-Datenhaltung:

Optimiert für große Datenmengen und analytische Fragestellungen. Ablauffähig auf jedem Standard-Rechner können Dank der spaltenbasierenden Datenhaltung und der Komprimierung große Datenmengen sehr schnell analysiert werden. Das Einlesen der Daten erfolgt direkt aus Datenbanktabellen der Quellsysteme oder per Excel, CSV, Json oder XML. Unterschiedliche Daten können verknüpf und synchronisiert werden. Hohe Investitionen für Big-Data-Datenbanken entfallen somit. Eine Suche von Mustern von diagnostic error codes (dtc), welche mind. 300 Mal (Muster) innerhalb 100 Mio. Datenzeilen vorkommen, dauert auf einem I5-Proz. ca. 1200 Sek., inkl. Ausgabe der Liste der Muster. Ein Prognosemodel mittels Naive-Bayes für das Produkt „Kreditkarte“ auf 800 Tsd. Datensätzen wird in ca. 3 Sek. berechnet.

b. Vielzahl an Analyse-Methoden

Um eine hohe Anzahl an Fragestellungen zu beantworten, hat der Synop Analyzer eine Vielzahl an vorkonfigurierten Analyse- und Data-Mining-Verfahren (siehe Grafik) implementiert. Daten zu verstehen wird durch Datenvisualisierung stark vereinfacht. Die multivariate Analyse ist quasi interaktives Data-Mining, welches auch von Fachanwendern schnell genutzt wird. Ad hoc Fragen werden unmittelbar beantwortet – es entstehen aber auch neue Fragen dank der interaktiven Visualisierungen. Data-Mining-Modelle errechnen und deren Modellgüte durch eine Testgruppe zu validieren ist in wenigen Minuten möglich. Dank der Performance der In-Memory-Analyse können lange Zeitreihen und alle sinnvollen Datenmerkmale in die Berechnungen einfließen. Dadurch werden mehr Einflussgrößen erkannt und bessere Modelle errechnet. Mustererkennung ist kein Hokuspokus, sondern Dank der exzellenten Trennschärfe werden nachvollziehbare, signifikante Muster gefunden. Dateninkonsistenzen werden quasi per Knopfdruck identifiziert.

synop-systems-module

c. Interaktives User Interface

Sämtliche Analyse-Module sind interaktiv und ohne Programmierung zu nutzen. Direkt nach dem Einlesen werden Grafiken automatisiert, ohne Datenmodellierung, erstellt.  Schulung ist kaum oder minimal notwendig und Anwender können erstmals fundierte statistische Analysen und Data-Mining in wenigen Schritten umsetzen. Data-Miner und Data Scientisten ersparen sich viel Zeit und können sich mehr auf die Interpretation und Ableitung von Handlungsmaßnahmen fokussieren.

d. Einfacher Einstieg – modular und mitwachsend

Der Synop Analyzer ist in unterschiedlichen Versionen verfügbar:

– Desktop-Version: in dieser Version sind alle Kernfunktionen in einer Installation kombiniert. In wenigen Minuten mit den Standard-Betriebssystemen MS-Windows, Apple Mac, Linux installiert. Außer Java-Runtime ist keine weitere Software notwendig. Somit fast, je nach Rechte am PC, ohne IT-Abt. installierbar. Ideal zum Einstieg und Testen, für Data Labs, Abteilungen und für kleine Unternehmen.

– Client/Server-Version: In dieser Version befinden die Analyse-Engines und die Datenhaltung auf dem Server. Das User-Interface ist auf dem Rechner des Anwenders installiert. Eine Cloud-Version ist demnächst verfügbar. Für größere Teams von Analysten mit definierten Zielen.

– Sandbox-Version: entspricht der C/S-Server Version, doch das User-Interface wird spezifisch auf einen Anwenderkreis oder einen Anwendungsfall bereitgestellt. Ein typischer Anwendungsfall ist, dass gewisse Fachbereiche oder Data Science-Teams eine Daten-Sandbox erhalten. In dieser Sandbox werden frei von klassischen BI-Systemen, Ad-hoc Fragen beantwortet und proaktive Analysen erstellt. Die Daten werden per In-Memory-Instanzen bereitgestellt.

Fazit:  Mit dem Synop Analyzer erhalten Unternehmen die Möglichkeit Daten sofort zu analysieren. Aus vorhandenen Daten wird neues Wissen mit bestehenden Ressourcen gewonnen! Der Aufwand für die Einführung ist minimal. Der Preis für die Software liegt ja nach Ausstattung zw. 2.500 Euro und 9.500 Euro. Welche Ausrede soll es jetzt noch geben?

Nur wer früh beginnt, lernt die Hürden und den Nutzen von Datenanalyse und Data-Mining kennen. Zu Beginn wird der Reifegrad klein sein: Datenqualität ist mäßig, Datenzugriffe sind schwierig. Wie in anderen Disziplinen gilt auch hier: Übung macht den Meister und ein Meister ist noch nie von Himmel gefallen.

Text Mining mit R

R ist nicht nur ein mächtiges Werkzeug zur Analyse strukturierter Daten, sondern eignet sich durchaus auch für erste Analysen von Daten, die lediglich in textueller und somit unstrukturierter Form vorliegen. Im Folgenden zeige ich, welche typischen Vorverarbeitungs- und Analyseschritte auf Textdaten leicht durchzuführen sind. Um uns das Leben etwas leichter zu machen, verwenden wir dafür die eine oder andere zusätzliche R-Library.

Die gezeigten Schritte zeigen natürlich nur einen kleinen Ausschnitt dessen, was man mit Textdaten machen kann. Der Link zum kompletten R-Code (.RMD) findet sich am Ende des Artikels.

Sentimentanalyse

Wir verwenden das Anwendungsgebiet der Sentimentanalyse für diese Demonstration. Mittels der Sentimentanalyse versucht man, Stimmungen zu analysieren. Im Prinzip geht es darum, zu erkennen, ob ein Autor mit einer Aussage eine positive oder negative Stimmung oder Meinung ausdrückt. Je nach Anwendung werden auch neutrale Aussagen betrachtet.

Daten einlesen

Datenquelle: ‘From Group to Individual Labels using Deep Features’, Kotzias et. al,. KDD 2015

Die Daten liegen als cvs vor: Die erste Spalte enhält jeweils einen englischen Satz, gefolgt von einem Tab, gefolgt von einer 0 für negatives Sentiment und einer 1 für positives Sentiment. Nicht alle Sätze in den vorgegebenen Daten sind vorklassifiziert.

Wir lesen 3 Dateien ein, fügen eine Spalte mit der Angabe der Quelle hinzu und teilen die Daten dann in zwei Datensätze auf. Der Datensatz labelled enthält alle vorklassifizierten Sätze während alle anderen Sätze in unlabelled gespeichert werden.

## 'readSentiment' liest csv ein, benennt die Spalten und konvertiert die Spalte 'sentiment' zu einem Faktor 
amazon <-readSentiment("amazon_cells_labelled.txt")
amazon$source <- "amazon"
imdb <-readSentiment("imdb_labelled.txt")
imdb$source <- "imdb"
yelp <-readSentiment("yelp_labelled.txt")
yelp$source <- "yelp"

allText <- rbindlist(list(amazon, imdb, yelp), use.names=TRUE)
allText$source <- as.factor(allText$source)

unlabelled <- allText[is.na(allText$sentiment), ]
labelled <- allText[!is.na(allText$sentiment), ]

Wir haben nun 3000 vorklassifizierte Sätze, die entweder ein positives oder ein negatives Sentiment ausdrücken:

text               sentiment 	source    
Length:3000        0:1500    	amazon:1000  
Class :character   1:1500    	imdb  :1000  
Mode  :character             	yelp  :1000

Textkorpus anlegen

Zuerst konvertieren wir den Datensatz in einen Korpus der R-Package tm:

library(tm)
corpus <- Corpus(DataframeSource(data.frame(labelled$text)))
# meta data an Korpus anfügen:
meta(corpus, tag = "sentiment", type="indexed") <- labelled$sentiment
meta(corpus, tag = "source", type="indexed") <- labelled$source

myTDM  <- TermDocumentMatrix(corpus, control = list(minWordLength = 1))

## verschieden Möglichkeiten, den Korpus bzw die TermDocumentMatrix zu inspizieren:
#inspect(corpus[5:10])
#meta(corpus[1:10])
#inspect(myTDM[25:30, 1])
# Indices aller Dokumente, die das Wort "good" enthalten:
idxWithGood <- unlist(lapply(corpus, function(t) {grepl("good", as.character(t))}))
# Indices aller Dokumente mit negativem Sentiment, die das Wort "good" enthalten:
negIdsWithGood <- idxWithGood &  meta(corpus, "sentiment") == '0'

Wir können uns nun einen Eindruck über die Texte verschaffen, bevor wir erste Vorverarbeitungs- und Säuberungsschritte durchführen:

  • Fünf Dokumente mit negativem Sentiment, die das Wort “good” enthalten: Not a good bargain., Not a good item.. It worked for a while then started having problems in my auto reverse tape player., Not good when wearing a hat or sunglasses., If you are looking for a good quality Motorola Headset keep looking, this isn’t it., However, BT headsets are currently not good for real time games like first-person shooters since the audio delay messes me up.
  • Liste der meist verwendeten Worte im Text: all, and, are, but, film, for, from, good, great, had, have, it’s, just, like, movie, not, one, phone, that, the, this, very, was, were, with, you
  • Anzahl der Worte, die nur einmal verwendet werden: 4820, wie z.B.: ‘film’, ‘ive, ’must’, ‘so, ’stagey’, ’titta
  • Histogramm mit Wortfrequenzen:

Plotten wir, wie oft die häufigsten Worte verwendet werden:

Vorverarbeitung

Es ist leicht zu erkennen, dass sogenannte Stoppworte wie z.B. “the”, “that” und “you” die Statistiken dominieren. Der Informationsgehalt solcher Stopp- oder Füllworte ist oft gering und daher werden sie oft vom Korpus entfernt. Allerdings sollte man dabei Vorsicht walten lassen: not ist zwar ein Stoppwort, könnte aber z.B. bei der Sentimentanalyse durchaus von Bedeutung sein.

Ein paar rudimentäre Vorverarbeitungen:

Wir konvertieren den gesamten Text zu Kleinbuchstaben und entfernen die Stoppworte unter Verwendung der mitgelieferten R-Stoppwortliste für Englisch (stopwords(“english”)). Eine weitere Standardoperation ist Stemming, das wir heute auslassen. Zusätzlich entfernen wir alle Sonderzeichen und Zahlen und behalten nur die Buchstaben a bis z:

replaceSpecialChars <- function(d) {
  ## normalerweise würde man nicht alle Sonderzeichen entfernen
  gsub("[^a-z]", " ", d)
}
# tolower ist eine built-in function
corpus <- tm_map(corpus, content_transformer(tolower)) 
# replaceSpecialChars ist eine selbst geschriebene Funktion:
corpus <- tm_map(corpus, content_transformer(replaceSpecialChars))
corpus <- tm_map(corpus, stripWhitespace)
englishStopWordsWithoutNot <- stopwords("en")[ - which(stopwords("en") %in% "not")]
corpus <- tm_map(corpus, removeWords, englishStopWordsWithoutNot)
## corpus <- tm_map(corpus, stemDocument, language="english")

myTDM.without.stop.words <- TermDocumentMatrix(corpus, 
                                      control = list(minWordLength = 1))

 

Schlagwortwolke bzw Tag Cloud

Schließlich erzeugen wir eine Tag-Cloud aller Worte, die mindestens 25 mal im Text verwendet werden. Tag-Clouds eignen sich hervorragend zur visuellen Inspektion von Texten, allerdings lassen sich daraus nur bedingt direkte Handlungsanweisungen ableiten:

wordfreq <- findFreqTerms(myTDM.without.stop.words, lowfreq=25)
termFrequency <- rowSums(as.matrix(myTDM.without.stop.words[wordfreq,])) 
# eine Alternative ist 'tagcloud'
library(wordcloud)
wordcloud(words=names(termFrequency),freq=termFrequency,min.freq=5,max.words=50,random.order=F,colors="red")

schlagwortwolke

Word-Assoziationen

Wir können uns für bestimmte Worte anzeigen lassen, wie oft sie gemeinsam mit anderen Worten im gleichen Text verwendet werden:

  • Worte, die häufig gemeinsam mit movie verwendet werden:
findAssocs(myTDM.without.stop.words, "movie", 0.13)
## $movie
##   beginning        duet fascinating        june       angel   astronaut 
##        0.17        0.15        0.15        0.15        0.14        0.14 
##         bec       coach     columbo   considers     curtain       dodge 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##     edition   endearing    funniest    girolamo         hes         ive 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##     latched         lid      makers     peaking     planned  restrained 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##       scamp     shelves     stratus       titta        ussr      vision 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##       yelps 
##        0.14
  • Worte, die häufig gemeinsam mit product verwendet werden:
findAssocs(myTDM.without.stop.words, "product", 0.12)
## $product
##        allot     avoiding        beats   cellphones       center 
##         0.13         0.13         0.13         0.13         0.13 
##      clearer   contacting       copier       dollar    equipment 
##         0.13         0.13         0.13         0.13         0.13 
##      fingers      greater      humming        ideal      learned 
##         0.13         0.13         0.13         0.13         0.13 
##       lesson        motor        murky   negatively          oem 
##         0.13         0.13         0.13         0.13         0.13 
##     official       online       owning         pens    petroleum 
##         0.13         0.13         0.13         0.13         0.13 
##     planning      related replacementr    sensitive     shipment 
##         0.13         0.13         0.13         0.13         0.13 
##        steer      voltage        waaay        whose    worthless 
##         0.13         0.13         0.13         0.13         0.13

 

Text-Mining

Wir erzeugen einen Entscheidungsbaum zur Vorhersage des Sentiments. Entscheidungsbäume sind nicht unbedingt das Werkzeug der Wahl für Text-Mining aber für einen ersten Eindruck lassen sie sich bei kleinen Datensätzen durchaus gewinnbringend einsetzen:

trainingData <- data.frame(as.matrix(myDTM))
trainingData$sentiment <- labelled$sentiment
trainingData$source <- labelled$source

formula <- sentiment ~ . 

if (rerun) {
  tree <- rpart(formula, data = trainingData)
  save(tree, file=sprintf("%s-tree.RData", prefix))
} else {
  load(file=sprintf("c:/tmp/%s-tree.RData", prefix))
}

myPredictTree(tree)

 

##          isPosSentiment
## sentiment FALSE TRUE
##         0  1393  107
##         1   780  720

Eine Fehlerrate von über 50% auf den Trainingsdaten für positive Sentiments ist natürlich nicht berauschend und daher testen wir zum Schluß noch Support Vector Machines:

library(e1071)
  if (rerun) {
    svmModel <- svm(formula, data = trainingData)
    save(svmModel, file=sprintf("%s-svm.RData", prefix))
  } else {
    load(file=sprintf("c:/tmp/%s-svm.RData", prefix))
  }

myPredictSVM <- function(model) {
  predictions <- predict(model, trainingData)

  trainPerf <- data.frame(trainingData$sentiment, predictions, trainingData$source)
  names(trainPerf) <- c("sentiment", "isPosSentiment", "source")
  
  with(trainPerf, {
    table(sentiment, isPosSentiment, deparse.level = 2)
  })
  
}
myPredictSVM(svmModel)
##          isPosSentiment
## sentiment    FALSE 	TRUE
##         0 	1456   	  44
##         1   	  23 	1477

Die Ergebnisse sehen deutlich besser aus, müssten aber natürlich noch auf unabhängigen Daten verifiziert werden, um z. B. ein Overfittung zu vermeiden.

Download-Link zum kompletten R-Code für dieses Text-Mining-Beispiel: https://www.data-science-blog.com/download/textMiningTeaser.rmd

Komplexe Abläufe verständlich dargestellt mit Process Mining

Stellen Sie sich vor, dass Ihr Data Science Team dabei helfen soll, die Ursache für eine wachsende Anzahl von Beschwerden im Kundenservice-Prozess zu finden. Sie vertiefen sich in die Daten des Service-Portals und generieren eine Reihe von Charts und Statistiken zur Verteilung der Beschwerden auf die verschiedenen Fachbereiche und Produktgruppen. Aber um das Problem zu lösen, müssen die Schwachstellen im Prozess selbst offengelegt und mit dem Fachbereich kommuniziert werden.

Nach Einbeziehen der CRM-Daten sind Sie mit Process Mining schnell in der Lage etliche unerwünschte Schleifen und Verzögerungen im Prozess zu identifizieren. Und diese Abweichungen werden sogar vollautomatisch als graphische Prozesskarte abgebildet! Der Fachbereichsleiter sieht auf den ersten Blick, wo das Problem liegt, und kann umgehend Verbesserungsmassnahmen einleiten.

Genau hier sehen wir eine zunehmende Begeisterung für Process Mining über alle Branchen hinweg: Der Datenanalyst kann nicht nur schnell Antworten liefern sondern auch die Sprache des Prozessmanagers sprechen und die entdeckten Prozessprobleme eindrücklich visuell machen.

Data Scientists bewegen sich geschickt durch eine ganze Reihe von Technologien. Sie wissen, dass 80% der Arbeit in der Aufbereitung und dem Säubern der Daten besteht. Sie können mit SQL, NoSQL, ETL-Tools, Statistik, Skriptsprachen wie Python, Data-Mining-Werkzeugen und R umgehen. Aber für viele von ihnen ist Process Mining noch nicht Teil der Data-Science-Tool-Box. Read more