Tag Archive for: Data Engineering

Continuous Integration and Continuous Delivery (CI/CD) for Data Pipelines

CI/CD für Datenpipelines – Ein Game-Changer mit AnalyticsCreator

Continuous Integration und Continuous Delivery (CI/CD) für Datenpipelines: Ein Game-Changer mit AnalyticsCreator!

Die Bedeutung effizienter und zuverlässiger Datenpipelines in den Bereichen Data Science und Data Engineering ist enorm. CI/CD, als Teil von DevOps, unterstützt Softwareentwicklungsteams dabei, Codeänderungen häufiger und zuverlässiger bereitzustellen. Dieser Ansatz ermöglicht es Entwicklern, an einem gemeinsamen Code-Repository zu arbeiten, automatisierte Buildprozesse zu nutzen und so einen schnelleren Entwicklungszyklus mit geringerer Fehlerquote zu erreichen.

Einsatz von CI/CD in Datenpipelines

Datenpipelines fördern Konsistenz, reduzieren Fehler und steigern die Effizienz, indem sie Daten in ein nutzbares Format umwandeln. Automatisierung hilft dabei, menschliche Fehler zu vermeiden und ermöglicht es Datenexperten, sich auf das Wesentliche zu konzentrieren: das Gewinnen von Erkenntnissen und die Unterstützung von Unternehmen bei der Entscheidungsfindung.

Die Rolle von AnalyticsCreator

AnalyticsCreator erweist sich als leistungsstarkes Werkzeug zur Steigerung von Effizienz und Zuverlässigkeit in CI/CD-Prozessen. Es bietet vollständige Automatisierung des BI-Stacks und unterstützt ein breites Spektrum an Data Warehouses, analytischen Datenbanken und Frontends.

Hauptmerkmale von AnalyticsCreator:

  • Ganzheitliches Datenmodell: Ermöglicht schnelles Prototyping verschiedener Datenmodelle.
  • Automatisierung: Erstellt SQL-Code, DACPAC-Dateien, SSIS-Pakete, Data Factory-ARM-Vorlagen und XMLA-Dateien.
  • Vielfältige Unterstützung: Kompatibel mit verschiedenen Datenbankmanagementsystemen wie MS SQL Server und Azure Synapse Analytics.
  • Data Lakes: Unterstützt MS Azure Blob Storage.
  • Frontends: Kompatibel mit Tools wie Power BI, Qlik Sense und Tableau.
  • Pipelines/ETL: Unterstützt Technologien wie SQL Server Integration Services und Azure Data Factory.
  • Bereitstellungsoptionen: Bietet verschiedene Methoden zur Bereitstellung und Verwaltung von Datenpipelines.
  • Modellierungsansätze: Unterstützt diverse Modellierungsmethoden, einschließlich Dimensional/Kimball und Data Vault 2.0.

Versionierung: Ermöglicht die Nachverfolgung von Änderungen und die Sicherstellung der Data Governance.

Schlussfolgerung

Die Integration von CI/CD in Datenpipelines, verstärkt durch die Fähigkeiten von AnalyticsCreator, kann die Effizienz und Zuverlässigkeit im Datenmanagement signifikant erhöhen. Dies führt zu schnelleren und verlässlicheren Updates und stellt eine wesentliche Verbesserung im Bereich der Datenwi

Data Unplugged – Event Empfehlung

Mit der Anwesenheit von bis zu 1000 Data and AI Enthusiasts, wird die data:unplugged Veranstaltung eines der größten Data und KI Events des Jahres sein. Mit einer erstklassigen Mischung aus fachlichem Austausch, inspirierenden Reden, Music Acts verschiedener Genres, Comedy und einem kulinarischen Angebot, zelebrieren wir alle gemeinsam KI.

Jetzt noch schnell ein Data Unplugged Ticket kaufen und dabei sein!

Data Unplugged Event in Münster

Data Unplugged Event in Münster

Die Veranstaltung in Münster bietet umfangreiche Themen, ist nicht zu technisch, sondern versucht die Seite des unternehmerischen und gesellschaftlichen Nutzen von Daten und KI zu beleuchten.

Daten-Ethik

Ethische Überlegungen sind entscheidend für die Entwicklung und den Einsatz der KI-Technologie. Deshalb haben wir einen bedeutenden Teil der Veranstaltung der Erforschung der ethischen Auswirkungen von KI gewidmet und wie diese angegangen werden können.

Data Leadership

Unsere Hauptredner:innen und Workshop-Leiter:innen werden anregende Einblicke und praktische Anleitungen bieten, wie man KI-Systeme entwickeln und einsetzen kann, die verantwortungsbewusst, transparent und im Einklang mit menschlichen Werten stehen.

Data Innovation

Data Unplugged wird die neuesten Fortschritte in der KI und ihr potenzielles Auswirkungspotenzial auf Unternehmen, Branchen und die Gesellschaft hervorheben. Die Teilnehmer:innen werden über die neuesten Trends in der KI-Entwicklung erfahren und wie sie diese Trends nutzen können, um Innovationen in ihren eigenen Organisationen voranzutreiben.

Die Raumzeit der Veranstaltung

Die Veranstaltung Data::Unplugged findet am 07.03.2024 im Skaters Palace in Münster statt. Tickets sind über diesen Link (Klick) erhältlich.

Der Organisator

Organisiert wird das Data Unplugged Event von Datenbusiness.de. Mit mehreren 10.000 Data Experts bietet Datenbusiness.de die Deutschlands führende Data & AI Community.

Datenbusiness.de

 

Der bekannteste Kanal dieser Community ist der Datenbusiness Podcast. Jetzt reinhören direkt auf Datenbusiness.de oder via:

Data Literacy Day 2023

Data Literacy Day 2023 by StackFuel

Der Data Literacy Day 2023 findet am 7. November 2023 in Berlin oder bequem von zu Hause aus statt. Eine hybride Veranstaltung zum Thema Datenkompetenz.

Darum geht es bei der hybriden Daten-Konferenz.

Data Literacy ist heutzutage ein Must-have – beruflich wie privat. Seit 2021 wird Datenkompetenz von der Bundesregierung als unverzichtbares Grundwissen eingestuft. Doch der Umgang mit Daten will gelernt sein. Wie man Data Literacy in der deutschen Bevölkerung verankert und wie Bürger:innen zu Data Citizens werden, kannst Du am 7. November 2023 mit den wichtigsten Köpfen der Branche am #DLD23 im Basecamp Berlin oder online von zu Hause aus diskutieren.

Lerne von den Besten der Branche.

Am Data Literacy Day 2023 kommen führende Expert:innen aus den Bereichen Politik, Wirtschaft und Forschung zusammen.
In Diskussionen, Vorträgen und Roundtables sprechen wir über Initiativen, mit dessen Hilfe Datenkompetenzen flächendeckend über alle Berufs- und Gesellschaftsbereiche hinweg in Deutschland verankert werden. 

Data Literacy Day 2023 - Benjamin Aunkofer

Unser Data Science Blog Author, Gründer der DATANOMIQ und AUDAVIS, und Interim Head of Data, Benjamin Aunkofer, nimmt ebenfalls an diesem Event teil.

6 weitere Gründe, warum Du Dir jetzt ein Freiticket schnappen solltest.

  1. Hybrid-Teilnahme: Vor Ort in Berlin-Mitte oder online.
  2. Thematischer Fokus auf Deutschlands Datenzukunft.
  3. Expert:innen aus Politik, Wirtschaft und Wissenschaft sprechen über Data Literacy.
  4. Diskussion über Top-Initiativen in Deutschland, die bereits realisiert werden.
  5. Interaktiver Austausch mit Professionals in Roundtables und Netzwerkveranstaltungen.
  6. Der Eintritt zur Konferenz ist komplett kostenfrei.”

Das volle Programm kann hier direkt abgerufen werden: https://stackfuel.com/de/events/data-literacy-day-2023/

Über den Organisator, StackFuel:

stackfuel_logo

StackFuel garantiert den Schulungserfolg mit bewährtem Trainingskonzept dank der Online-Lernumgebung.  Ob im Data Science Onlinekurs oder Python-Weiterbildung, mit StackFuel lernen Studenten und Arbeitskräfte, wie mit Daten in der Wirklichkeit nutzbringend umgegangen und das volle Potenzial herrausgeholt werden kann.

How to reduce costs for Process Mining

Process mining has emerged as a powerful Business Process Intelligence discipline (BPI) for analyzing and improving business processes. It involves extracting data from source systems to gain insights into process behavior and uncover opportunities for optimization. While there are many approaches to create value with process mining, organizations often face challenges when it comes to the cost of implementing the necessary solution. In this article, we will highlight the key elements when it comes to process mining architectures as well as the most common mistakes, to help organizations leverage the power of process mining while maintain cost control.

Process Mining - Elements of Process Mining and their cost aspects

Process Mining – Elements of Process Mining and their cost aspects

Data Extraction for process mining

Most process mining projects underestimate the complexity of data extraction. Even for well-known sources like SAP-ERP’s, the extraction often consumes 50% of the first pilot’s resources. As a result, the extraction pipelines are often built with the credo of “asap” and this is where the cost-drama begins. Process Mining demands Big Data in 99% of the cases, releasing bad developed extraction jobs will end in big cost chunks down the value stream. Frequently organizations perform full loads of big SAP tables, causing source system performance impact, increasing maintenance, and moving hundred GB’s of data on daily basis without any new value. Other organizations fall for the connectors, provided by some process mining platform tools, promising time-to-value being the best. Against all odds the data is getting extracted then into costly third-party platforms where they can be only consumed by the platforms process mining tool itself. On top of that, these organizations often perform more than one Business Process Intelligence discipline, resulting in extracting the exact same data multiple times.

Process Mining - Data Extraction

Process Mining – Data Extraction

The data extraction for process mining should be well planed and match the data strategy of the organization. By considering lightweighted data preprocessing techniques organizations can save both time and money. When accepting the investment character of big data extractions, the investment should be done properly in the beginning and therefore cost beneficial in the long term.

Cloud-Based infrastructure with process mining?

Depending on the data strategy of one organization, one cost-effective approach to process mining could be to leverage cloud computing resources. Cloud platforms, such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform (GCP), provide scalable and flexible infrastructure options. By using cloud services, organizations can avoid the upfront investment in hardware and maintenance costs associated with on-premises infrastructure. They can pay for resources on a pay-as-you-go basis, scaling up or down as needed, which can significantly reduce costs. When dealing with big data in the cloud, meeting the performance requirements while keeping cost control can be a balancing act, that requires a high skillset in cloud technologies. Depending the organization situation and data strategy, on premises or hybrid approaches should be also considered. But costs won’t decrease only migrating from on-premises to cloud and vice versa. What makes the difference is a smart ETL design capturing the nature of process mining data.

Process Mining Cloud Architecture on "pay as you go" base.

Process Mining Cloud Architecture on “pay as you go” base.

Storage for process mining data

Storing data is a crucial aspect of process mining, as in most cases big data is involved. Instead of investing in expensive data storage solutions, which some process mining solutions offer, organizations can opt for cost-effective alternatives. Cloud storage services like Amazon S3, Azure Blob Storage, or Google Cloud Storage provide highly scalable and durable storage options at a fraction of the cost of process mining storage systems. By utilizing these services, organizations can store large volumes of event data without incurring substantial expenses. Moreover, when big data engineering technics, consider profound process mining logics the storage cost cut down can be tremendous.

Process Mining - Infrastructure Cost Curve - On-Premise vs Cloud

Process Mining – Infrastructure Cost Curve: On-Premise vs Cloud

Process Mining Tools

While some commercial process mining tools can be expensive, there are several powerful more economical alternatives available. Tools like Process Science, ProM, and Disco provide comprehensive process mining capabilities without the hefty price tag. These tools offer functionalities such as event log import, process discovery, conformance checking, and performance analysis. Organizations often mismanage the fact, that there can and should be more then one process mining tool available. As expensive solutions like Celonis have their benefits, not all use cases make up for the price of these tools. As a result, these low ROI-use cases will eat up the margin, or (and that’s even more critical) little promising use cases won’t be investigated on and therefore high hanging fruits never discovered. Leveraging process mining tools can significantly reduce costs while still enabling organizations to achieve valuable process insights.

Process Mining Tool Landscape

Process Mining Tool Landscape (examples shown)

Collaboration

Another cost-saving aspect is to encourage collaboration within the organization itself. Most process mining initiatives require the input from process experts and often involve multiple stakeholders across different departments. By establishing cross-functional teams and supporting collaboration, organizations can share resources and distribute the cost burden. This approach allows for the pooling of expertise, reduces duplication of efforts, and facilitates knowledge exchange, all while keeping costs low.

Process Mining Team Structure

Process Mining Team Structure

Conclusion

Process mining offers tremendous potential for organizations seeking to optimize their business processes. While many organizations start process mining projects euphorically, the costs set an abrupt end to the party. Implementing a low-cost and collaborative architecture can help to create a sustainable value for the organization. By leveraging cloud-based infrastructure, cost-effective storage solutions, big data engineering techniques, process mining tools, well developed data extractions, lightweight data preprocessing techniques, and fostering collaboration, organizations can embark on process mining initiatives without straining their budgets. With the right approach, organizations can unlock the power of process mining and drive operational excellence without losing cost control.

One might argue that implementing process mining is not only about the costs. In the end each organization must consider the long-term benefits and return on investment (ROI). But with a cost controlled and sustainable process mining approach, return on investment is likely higher and less risky.

This article provides general information for process mining cost reduction. Specific strategic decisions should always consider the unique requirements and restrictions of individual organizations.

Data Lakehouse

Was ist ein Data Lakehouse?

tl;dr

Ein Data Lakehouse ist eine moderne Datenarchitektur, die die Vorteile eines Data Lake und eines Data Warehouse kombiniert. Es kann strukturierte, halbstrukturierte und unstrukturierte Daten in einer Vielzahl von Formaten speichern und verarbeiten und bietet eine flexible und skalierbare Möglichkeit zur Speicherung und Analyse großer Datenmengen. In diesem Artikel werden die Geschichte von Data Lakehouses, ihre Vor- und Nachteile sowie einige der am häufigsten verwendeten Tools für ihre Erstellung erörtert, darunter Apache Spark, Delta Lake, Databricks, Apache Hudi und Apache Iceberg. Organisationen können je nach ihren spezifischen Bedürfnissen und Anforderungen zwischen einem Data Warehouse und einem Data Lakehouse wählen.

Einführung

In der Welt der Daten ist der Begriff Data Lakehouse allgegenwärtig und wird als Lösung für alle Datenanforderungen verkauft. Aber Moment mal, was ist eigentlich ein Data Lakehouse? Der Artikel beginnt mit einer Definition, was ein Lakehouse ist, gibt einen kurzen geschichtlichen Abriss, wie das Lakehouse entstanden ist und zeigt, warum und wie man ein Data Lakehouse aufbauen sollte.

Die Definition eines Data Lakehouse

Ein Data Lakehouse ist eine moderne Datenspeicher- und -verarbeitungsarchitektur, die die Vorteile von Data Lakes und Data Warehouses vereint. Es ist darauf ausgelegt, große Mengen an strukturierten, halbstrukturierten und unstrukturierten Daten aus verschiedenen Quellen zu verarbeiten und eine einheitliche Sicht auf die Daten für die Analyse bereitzustellen.

Data Lakehouses werden auf Cloud-basierten Objektspeichern wie Amazon S3, Google Cloud Storage oder Azure Blob Storage aufgebaut. Sie nutzen auch verteilte Computing-Frameworks wie Apache Spark, um skalierbare und effiziente Datenverarbeitungsfunktionen bereitzustellen.

In einem Data Lakehouse werden die Daten in ihrem Rohformat gespeichert, und Transformationen und Datenverarbeitung werden je nach Bedarf durchgeführt. Dies ermöglicht eine flexible und agile Datenexploration und -analyse, ohne dass komplexe Datenaufbereitungs- und Ladeprozesse erforderlich sind. Darüber hinaus können Data Governance- und Sicherheitsrichtlinien auf die Daten in einem Data Lakehouse angewendet werden, um die Datenqualität und die Einhaltung von Vorschriften zu gewährleisten.

Data Lakehouse Architecture by DATANOMIQ

Data Lakehouse Architecture

Eine kurze Geschichte des Data Lakehouse

Das Konzept des Data Lakehouse ist relativ neu und entstand Mitte der 2010er Jahre als Reaktion auf die Einschränkungen des traditionellen Data Warehousing und die wachsende Beliebtheit von Data Lakes.

Data Warehousing ist seit den 1980er Jahren die wichtigste Lösung für die Speicherung und Verarbeitung von Daten für Business Intelligence und Analysen. Data Warehouses wurden entwickelt, um strukturierte Daten aus Transaktionssystemen in einem zentralen Repository zu speichern, wo sie mit SQL-basierten Tools bereinigt, umgewandelt und analysiert werden konnten.

Mit der zunehmenden Datenmenge und -vielfalt wurde die Verwaltung von Data Warehouses jedoch immer schwieriger und teurer. Data Lakes, die Mitte der 2000er Jahre aufkamen, boten einen alternativen Ansatz für die Datenspeicherung und -verarbeitung. Data Lakes wurden entwickelt, um große Mengen an rohen und unstrukturierten Daten auf skalierbare und kostengünstige Weise zu speichern.

Data Lakes boten zwar viele Vorteile, verfügten aber nicht über die Struktur und die Data Governance-Funktionen von Data Warehouses. Dies machte es schwierig, aus den Daten aussagekräftige Erkenntnisse zu gewinnen und die Datenqualität und die Einhaltung von Vorschriften sicherzustellen.

Das Data Lakehouse wurde als Lösung für dieses Problem entwickelt und kombiniert die Vorteile von Data Lakes und Data Warehouses. Bei einem Data Lakehouse werden die Daten in ihrem Rohformat gespeichert, genau wie bei einem Data Lake. Das Data Lakehouse bietet jedoch auch die Struktur und die Governance-Funktionen eines Data Warehouse, was eine einfachere Datenverwaltung und -analyse ermöglicht.

Wann wird ein Data Lakehouse verwendet?

Ein Data Lakehouse kann für eine Vielzahl von Anwendungsfällen der Datenspeicherung und -verarbeitung eingesetzt werden, insbesondere für solche, bei denen große Mengen unterschiedlicher Datentypen aus verschiedenen Quellen anfallen. Einige häufige Anwendungsfälle sind:

  1. Datenexploration und -erkennung: Ein Data Lakehouse ermöglicht es Benutzern, Rohdaten auf flexible und agile Weise zu untersuchen und zu analysieren, ohne dass komplexe Datenaufbereitungsprozesse erforderlich sind. Dies kann Unternehmen dabei helfen, Muster und Erkenntnisse zu erkennen, die sonst nur schwer zu entdecken wären.
  2. Erweiterte Analysen und maschinelles Lernen: Data Lakehouses können erweiterte Analysen und maschinelles Lernen unterstützen, indem sie eine einheitliche Sicht auf die Daten bieten, die zum Trainieren von Modellen und zur Erstellung von Vorhersagen verwendet werden kann.
  3. Datenverarbeitung in Echtzeit: Ein Data Lakehouse kann zum Speichern und Verarbeiten von Echtzeit-Datenströmen von IoT-Geräten, Social-Media-Feeds und anderen Quellen verwendet werden, um Einblicke und Maßnahmen in Echtzeit zu ermöglichen.
  4. Datenintegration und -verwaltung: Data Lakehouses können Unternehmen dabei helfen, Daten aus verschiedenen Quellen zu integrieren und zu verwalten, um Datenqualität, Konsistenz und Compliance zu gewährleisten.
  5. Kunde 360: Ein Data Lakehouse kann zur Konsolidierung von Kundendaten aus verschiedenen Quellen wie Transaktionssystemen, sozialen Medien und Kundensupportsystemen verwendet werden, um eine vollständige Sicht auf den Kunden zu erhalten und personalisierte Erfahrungen zu ermöglichen.

Data Lakehouse vs. Data Warehouse

Data Lakehouse Schema

Data Lakehouse Schema

Das Data Lakehouse ist also eine moderne Alternative zu Data Warehouse und Data Lake. Aber wie entscheidet man, ob man ein Data Lakehouse oder ein Data Warehouse einsetzt? Hier sind einige Faktoren, die bei der Bewertung der Verwendung eines Data Lakehouse gegenüber einem Data Warehouse für Ihr Unternehmen zu berücksichtigen sind:

  1. Datentypen und -quellen: Wenn Ihr Unternehmen strukturierte Daten aus transaktionalen Systemen speichern und analysieren muss, ist ein Data Warehouse möglicherweise die bessere Wahl. Wenn Sie jedoch verschiedene Datentypen und -quellen haben, einschließlich unstrukturierter und halbstrukturierter Daten, ist ein Data Lakehouse die bessere Wahl.
  2. Anforderungen an die Datenverarbeitung: Wenn Ihr Unternehmen komplexe Abfragen und Aggregationen von Daten durchführen muss, ist ein Data Warehouse möglicherweise die bessere Wahl. Wenn Sie jedoch Ad-hoc-Abfragen und explorative Analysen durchführen müssen, ist ein Data Lakehouse besser geeignet.
  3. Datenvolumen: Wenn Sie relativ kleine Datenmengen haben, ist ein Data Warehouse möglicherweise die kostengünstigere Wahl. Wenn Sie jedoch große Datenmengen haben, die schnell wachsen, wäre ein Data Lakehouse die bessere Wahl.
  4. Datenlatenz: Wenn Ihr Unternehmen Daten in Echtzeit verarbeiten und analysieren muss, ist ein Data Lakehouse möglicherweise die bessere Wahl. Wenn Ihre Analyse jedoch eine gewisse Latenzzeit tolerieren kann, könnte ein Data Warehouse die bessere Wahl sein.
  5. Data Governance und Compliance: Wenn Ihr Unternehmen strenge Anforderungen an die Datenverwaltung und -einhaltung hat, ist ein Data Warehouse möglicherweise die bessere Wahl. Ein Data Lakehouse kann jedoch auch Data Governance und Compliance unterstützen, indem es die Datenabfolge, Zugriffskontrollen und Auditing-Funktionen bereitstellt.

Die Entscheidung für das eine oder das andere hängt hauptsächlich von der Menge und Häufigkeit der zu verarbeitenden Daten ab. Aber auch die Art der Daten (strukturiert oder unstrukturiert) spielt eine wichtige Rolle.

Tools zum Aufbau eines Data Lakehouse

Nachfolgend eine Liste an Tools, die für Data Lakehouses infrage kommen, ohne Anspruch auf Vollständigkeit:

  1. Apache Spark: Spark ist eine beliebte Open-Source-Datenverarbeitungs-Engine, die für den Aufbau eines Data Lakehouse verwendet werden kann. Spark unterstützt eine Vielzahl von Datenquellen, einschließlich strukturierter, halbstrukturierter und unstrukturierter Daten, und kann sowohl für die Batch- als auch für die Echtzeit-Datenverarbeitung verwendet werden. Spark ist direkt auf mehreren Cloud-Plattformen verfügbar, darunter AWS, Azure und Google Cloud Platform.Apacke Spark ist jedoch mehr als nur ein Tool, es ist die Grundbasis für die meisten anderen Tools. So basieren z. B. Databricks und Azure Synapse auf Apache Spark, vereinfachen den Umgang mit Spark für den Benutzer dabei gleichzeitig sehr.
  2. Delta Lake: Delta Lake ist eine Open-Source-Speicherschicht, die auf einem Data Lake läuft und Funktionen für die Zuverlässigkeit, Qualität und Leistung von Daten bietet. Delta Lake baut auf Apache Spark auf und ist auf mehreren Cloud-Plattformen verfügbar, darunter AWS, Azure und Google Cloud Platform.
  3. AWS Lake Formation: AWS Lake Formation ist ein verwalteter Service, der den Prozess der Erstellung, Sicherung und Verwaltung eines Data Lakehouse auf AWS vereinfacht. Lake Formation bietet eine Vielzahl von Funktionen, einschließlich Datenaufnahme, Datenkatalogisierung und Datentransformation, und kann mit einer Vielzahl von Datenquellen verwendet werden.
  4. Azure Synapse Analytics: Azure Synapse Analytics ist ein verwalteter Analysedienst, der eine einheitliche Erfahrung für Big Data und Data Warehousing bietet. Synapse Analytics umfasst eine Data Lakehouse-Funktion, die das Beste aus Data Lakes und Data Warehouses kombiniert, um eine flexible und skalierbare Lösung für die Speicherung und Verarbeitung von Daten zu bieten.
  5. Google Cloud Data Fusion: Google Cloud Data Fusion ist ein vollständig verwalteter Datenintegrationsdienst, der zum Aufbau eines Data Lakehouse auf der Google Cloud Platform verwendet werden kann. Data Fusion bietet eine Vielzahl von Funktionen zur Datenaufnahme, -umwandlung und -verarbeitung und kann mit einer Vielzahl von Datenquellen verwendet werden.
  6. Databricks: Databricks ist eine Cloud-basierte Datenverarbeitungs- und Analyseplattform, die auf Apache Spark aufbaut. Sie bietet einen einheitlichen Arbeitsbereich für Data Engineering, Data Science und maschinelles Lernen, der zum Aufbau und Betrieb eines Data Lakehouse verwendet werden kann. Databricks ist auf AWS, Azure und Google Cloud Platform verfügbar.
  7. Apache Hudi: Apache Hudi ist ein Open-Source-Datenmanagement-Framework, das eine effiziente und skalierbare Datenaufnahme, -speicherung und -verarbeitung ermöglicht. Hudi bietet Funktionen wie inkrementelle Verarbeitung, Upserts und Deletes sowie Datenversionierung, um die Datenqualität in einem Data Lakehouse zu erhalten. Apache Hudi ist auf AWS, Azure und Google Cloud Platform verfügbar.
  8. Apache Iceberg: Apache Iceberg ist ein Open-Source-Tabellenformat, das schnelle und effiziente Datenabfragen ermöglicht und gleichzeitig transaktionale und konsistente Ansichten von Daten in einem Data Lakehouse bietet. Es ist so konzipiert, dass es mit einer Vielzahl von Speichersystemen wie dem Hadoop Distributed File System (HDFS), Amazon S3 und Azure Blob Storage zusammenarbeitet. Apache Iceberg ist auf AWS, Azure und Google Cloud Platform verfügbar.

Alle diese Tools haben sich aufgrund ihrer Benutzerfreundlichkeit, Skalierbarkeit und Unterstützung für eine Vielzahl von Datenverarbeitungs- und Analyseanwendungen für den Aufbau von Data Lakehouses durchgesetzt. Die Wahl des Tools hängt von Ihren spezifischen Anforderungen ab, und es ist wichtig, jedes Tool sorgfältig zu bewerten, um festzustellen, welches den Anforderungen Ihres Unternehmens am besten entspricht.

Fazit

In diesem Artikel haben wir das Konzept des Data Lakehouse, seine Geschichte sowie seine Vor- und Nachteile erläutert. Wir haben auch über einige der gängigsten Tools gesprochen, die zum Aufbau eines Data Lakehouse verwendet werden, darunter Apache Spark, Apache Delta Lake, Databricks, Apache Hudi und Apache Iceberg.

Wir haben erörtert, wie Unternehmen zwischen einem Data Warehouse und einem Data Lakehouse wählen können und welche Faktoren bei dieser Entscheidung zu berücksichtigen sind. Zusammenfassend lässt sich sagen, dass es Vor- und Nachteile gibt, die zu berücksichtigen sind und mit den eigenen Anforderungen verglichen werden sollten.

Zusammengefasst bietet ein Data Lakehouse folgende Vor- und Nachteile:

Vorteile eines Data Lakehouse:

  1. Flexibilität: Ein Data Lakehouse bietet eine flexible Datenarchitektur, die strukturierte, halbstrukturierte und unstrukturierte Daten in einer Vielzahl von Formaten speichern und verarbeiten kann, einschließlich Data Lakes und Data Warehouses.
  2. Skalierbarkeit: Ein Data Lakehouse kann skaliert werden, um die Anforderungen großer und komplexer Datenverarbeitungs- und Analyse-Workloads zu erfüllen.
  3. Kosteneffektiv: Ein Data Lakehouse kann zur Kostensenkung beitragen, indem es den Bedarf an mehreren Datensilos beseitigt und die Datenduplizierung reduziert.
  4. Verarbeitung in Echtzeit: Ein Data Lakehouse kann für die Datenverarbeitung in Echtzeit genutzt werden, so dass Unternehmen datengesteuerte Entscheidungen in Echtzeit treffen können.
  5. Datenverwaltung: Ein Data Lakehouse kann zur Verbesserung der Data Governance beitragen, indem es ein zentrales Repository für alle Daten bereitstellt und eine fein abgestufte Zugriffskontrolle ermöglicht.

Nachteile, die vor der Entscheidung für ein Data Lakehouse zu berücksichtigen sind:

  1. Komplexität: Der Aufbau eines Data Lakehouse kann komplex sein und erfordert ein tiefes Verständnis von Datenmanagement- und -verarbeitungstechnologien.
  2. Datenqualität: Die Datenqualität kann in einem Data Lakehouse aufgrund der Vielfalt der Datenquellen und der fehlenden Struktur eine Herausforderung darstellen.
  3. Sicherheit: Die Sicherheit kann in einem Data Lakehouse ein Problem darstellen, da es oft notwendig ist, den Zugriff auf große Datenmengen zu verwalten, die an verschiedenen Orten gespeichert sind.
  4. Qualifikationen: Der Aufbau und die Pflege eines Data Lakehouse erfordern ein spezifisches Skillset, das sich von dem des traditionellen Data Warehousing oder der Big Data-Verarbeitung unterscheiden kann.
  5. Werkzeuge: Es gibt zwar viele Tools für den Aufbau eines Data Lakehouse, aber angesichts des rasanten Innovationstempos kann es eine Herausforderung sein, mit den neuesten Tools und Technologien Schritt zu halten.

Abschließend lässt sich sagen, dass ein Data Lakehouse für Unternehmen, die eine flexible, skalierbare und kosteneffiziente Methode zur Speicherung und Verarbeitung großer Datenmengen benötigen, erhebliche Vorteile bieten. Auch wenn der Aufbau eines Data Lakehouse grundsätzlich komplexer ist, gibt es viele Tools und Technologien, die Unternehmen beim Aufbau und Betrieb einer erfolgreichen Data Lakehouse-Architektur unterstützen und dieses vereinfachen.

Haben Sie bereits ein Data Lakehouse im Einsatz oder überlegen Sie, eines für Ihr Unternehmen zu bauen? Schreiben Sie mich an!

Data Science – Weiterbildungen mit Coursera

Anzeige

Data Science und AI sind aufstrebende Arbeitsfelder, die sich mit der Gewinnung von Wissen aus Daten beschäftigen. Die Nachfrage nach Fähigkeiten im Bereich Data Science, aber auch in angrenzenden Bereichen wie Data Engineering oder Data Analytics, ist in den letzten Jahren explodiert, da Unternehmen versuchen, die Vorteile von Big Data und künstlicher Intelligenz (KI) zu nutzen. Es lohnt sich sehr, sich in diesen Bereich weiter zu entwickeln. Dafür eignen sich die Kurse von Coursera.org.

Online-Kurse lohnen sich dann, wenn eine Karriere im Bereich der Datenanalyse oder des maschinellen Lernens angestrebt oder einfach nur ihr Wissen in diesem Bereich erweitert werden soll.

Spezialisierungskurs – Google Data Analytics

Data Science hilft dabei, Entscheidungen auf Basis von Daten zu treffen, komplexe Probleme effektiver zu lösen und Karrierechancen zu verbessern. Die Tools von Google Cloud und Jupyter Notebook sind dafür geeignet, da sie eine leistungsstarke und skalierbare Infrastruktur sowie eine interaktive Entwicklungsplattform bieten.

Google Data Analytics Zertifikatskurs

Das Google Zertifikat für Datenanalyse behandelt neben dem Handwerkszeug für jeden Data Analyst – wie etwa SQL – auch die notwendige Datenbereinigung und Datenvisualisierung mit den Tools von Google. Es werden weder Erfahrung noch Vorkenntnisse vorausgsetzt.

Spezialisierungskurs – Google Advanced Data Analytics

Der Zertifikatskurs der erweiterten Datenanalyse von Google baut auf dem zuvorgenannten Data Analytics Kurs auf, kann jedoch auch direkt besucht werden. Hier werden grundlegende Fähigkeiten wie SQL vorausgesetzt und vertiefende Fähigkeiten vermittelt, die für einen Data Analysten nützlich sind und auch in die Data Science eintauchen.

Google Advanced Data Analytics
Dieses Kursangebot zum Aufbau erweiterter Datenanalyse-Fähigkeiten von Coursera wird ebenfalls von Google angeboten. Hier werden die Tools der Datenanalyse sowie der statistischen Handwerkzeuge für Data Science eingeführt, bis hin zum ersten Einstieg in Machine Learning.


Spezialisierungskurs – SQL für Data Science (Generalistisch)

SQL ist wichtig für etablierte und angehende Data Scientists, da es eine grundlegende Technologie für die Arbeit mit Datenbanken und relationalen Datenbankmanagementsystemen ist. SQL für Data Science ermöglicht, Daten effektiv zu organisieren und schnell Abfragen zu erstellen, um Antworten auf komplexe Fragen zu finden. Es ist auch relevant für die Arbeit mit nicht-relationalen Datenbanken und hilft Data Scientists, wertvolle Erkenntnisse aus großen Datenmengen zu gewinnen.

Auch wenn Python als Skill für einen Data Scientist ganz vorne steht, ist eine Karriere als Data Scientist ohne SQL-Kenntnisse nicht vorstellbar und dieser Kurs daher der richtige, wenn Nachbolbedarf besteht.

Spezialisierungskurs – Data Analyst Zertifikat (IBM)

Eine Karriere als Data Analyst ist attraktiv, da ihr eine hohe Nachfrage am Arbeitsmarkt gegenüber steht, die Arbeit vielfältig und herausfordernd ist, viele Weiterentwicklungsmöglichkeiten (z. B. zum Data Scientist) bietet und oft flexibel ist.

Der Online-Kurs von IBM bietet die Ausbildung der beruflichen Qualifikation zum Data Analyst. Ein weiterer Vorteil dieses Kurses ist, dass er für alle geeignet ist – unabhängig von ihrem Hintergrund oder der Vorbildung. Es sind keine Abschlüsse oder Vorkenntnisse erforderlich, was bedeutet, dass jeder, der sich für das Thema interessiert, am Kurs teilnehmen und von ihm profitieren kann.

Spezialisierungskurs – Datenverarbeitung mit Python & SQL (IBM)

Dieser Kurs bietet den Teilnehmern die Möglichkeit, ihre Kenntnisse in der Datenverarbeitung zu verbessern, eine Programmiersprache wie Python zu erlernen und grundlegende Kenntnisse in SQL zu erwerben. Diese Fähigkeiten sind für die Arbeit mit Daten unerlässlich und in der heutigen Arbeitswelt sehr gefragt. Darüber hinaus bietet der Kurs für Datenverarbeitung mit Python und SQL auch Schulungen zur Analyse und Visualisierung von Daten sowie zur Erstellung von Modellen für Maschinelles Lernen. Diese Fähigkeiten sind besonders wertvoll für die Entwicklung von Anwendungen und Systemen im Bereich der KI.

Dieser Kurs ist eine großartige Möglichkeit für alle, die ihre Kenntnisse im Bereich der Datenverarbeitung und des maschinellen Lernens verbessern möchten. Zwar werden auch hier keine Vorkenntnisse vorausgesetzt, jedoch geht der Kurs inhaltlich mehr in die Richtung Data Science als der zuvorgenannte Kurs zum Data Analyst und bietet ein umfassendes Training und Schulungen zu grundlegenden Fähigkeiten, die in der heutigen Arbeitswelt gefragt sind, und ist für jeden zugänglich, unabhängig von Hintergrund oder Erfahrung.

Spezialisierungskurs – Maschinelles Lernen (DeepLearning.AI)

Das Erlernen der Grundlagen des maschinellen Lernens (Machine Learning) ist von großer Bedeutung, da es eine der am schnellsten wachsenden und wichtigsten Technologien in der heutigen Zeit ist. Maschinelles Lernen ermöglicht es Computern, aus Erfahrung zu lernen, ohne explizit programmiert zu werden. Die Teilnehmer lernen, dem Computer das lernen zu ermöglichen.

Machinelles Lernen ist der Schlüssel zur Entwicklung von Anwendungen und Systemen im Bereich der künstlichen Intelligenz (KI) und hat Anwendungen in vielen Bereichen, von der Gesundheitsversorgung und der Finanzindustrie bis hin zur Unterhaltungsbranche und der Automobilindustrie.

Der Kurs für Maschinelles Lernen ist nicht nur ein sinnvoller Einstieg in diese Materie, sondern kann darauf aufbauend mit dem Thema Deep Learning in der Qualifikation erweitert werden.

Spezialisierungskurs – Deep Learning (DeepLearning.AI)

Das Verständnis von Deep Learning ist wichtig, da es eine Unterkategorie des maschinellen Lernens ist und viele noch mächtigere Anwendungen in verschiedenen Bereichen hat. Die populäre Applikation ChatGPT ist ein Produkt des Deep Learning. Deep Learning kann mit AI gleichgesetzt werden. Es ist eine gefragte Fähigkeit auf dem Arbeitsmarkt mit Job-Garantie.

Der Spezialisierungskurs für Deep Learning steht unabhängig für sich und erfordert keine speziellen Vorkenntnisse, darf jedoch auch als sinnvolle Ergänzung zum vorgenannten Einführungskurs in Machine Learning betrachtet werden.

Weitere Kursangebote für Data & AI auf Coursera

Die Entscheidung für ein bestimmtes Thema eines Kurses in den Bereichen Data Analytics, Data Science und AI ist eine persönliche und abhängig von den eigenen Vorkenntnissen und Vorlieben, sowie den eigenen Karrierezielen. Für die Karriere des Data Analyst sind SQL sowie allgemeine Kenntnisse rund um Data Analytics bzw. Datenverarbeitung wichtig. Von einem Data Scientist wird ferner erwartet, die theoretischen Grundlagen sowie die praktische Anwendung von Machine Learning und Deep Learning als trainierte Fähigkeit abrufbar zu haben.

Weitere Kurse von Coursera zum Thema Data & AI (link).

Dieser Artikel wurde gesponsored von Coursera.
Process Mining / Process Analytics

Ist Process Mining in Summe zu teuer?

Celonis, Signavio (SAP). UiPath, Microsoft, Software AG, Mehrwerk, process.science und viele weitere Process Mining Tool-Anbieter mehr… der Markt rund um Process Mining ist stark umkämpft. Trotz der hohen Vielfalt an Tools, gilt Process Mining in der Einführung und Durchführung als teuer. Viele Unternehmen verzeichnen zwar erste Erfolge mit dieser Analysemethodik und den dafür geschaffenen Tools, hadern jedoch mit den hohen Kosten für Lizensierung und Betrieb.

Process Mining / Process AnalyticsDabei gibt es viele Hebel für Unternehmen, die Kosten für diese Analysen deutlich zu reduzieren, dabei gesamtheitlicher analysieren zu können und sich von einzelnen Tool-Anbietern unabhängiger zu machen. Denn die Herausforderung beginnt bereits mit denen eigentlichen Zielen von Process Mining für ein Unternehmen, und diese sind oft nicht einmal direkt finanziell messbar.

Process Mining bitte nicht nur auf Prozesskosten reduzieren

Tool-Anbieter werben tendenziell besonders mit der potenziellen Reduktion von Prozesskosten und und mit der Working Capital Optimierung. Bei hohen Lizenzierungskosten für die Tools, insbesondere für die Cloud-Lösungen der Marktführer, ist dies die erfolgversprechendste Marketing-Strategie. Typische Beispiele für die Identifikation von Kostensenkungspotenzialen sind Doppelarbeiten und unnötige Prozessschleifen sowie Wartezeiten in Prozessen. Working Capital- und Cash- Kosten sind in den Standardprozessen Order-to-Cash (z. B. Verspätete Zahlungen) und Procure-to-Pay (z. B. zu späte Zahlungen, nicht realisierte Rabatte) zu finden.

Diese Anwendungsfälle sind jedoch analytisch recht trivial und bereits mit einfacher BI (Business Intelligence) oder dedizierten Analysen ganz ohne Process Mining bereits viel schneller aufzuspüren. Oft bieten bereits ERP-Systeme eine eigene Erkennung hierfür an, die sich mit einfach gestrikter BI leicht erweitern lässt.

Richtige Wirkung, die so eigentlich nur Process Mining mit der visuellen Prozessanalyse erzeugen kann, zeigt sich vor allem bei der qualitativen Verbesserung von Prozessen, denn oft frustrieren eingefahrene Unternehmensprozesse nicht nur Mitarbeiter, Lieferanten und Partner, sondern auch Kunden. Dabei geht es z. B. um die Verbesserung von Prozessen in der Fertigung und Montage, in der Logistik, dem Einkauf, Sales und After Sales. Diese Anwendungszwecke dienen zur zeitlichen Beschleunigung oder Absicherung (Stabilisierung) von Prozessen, und damit zur Erhöhung des Kundennutzens. Jede qualitative Verbesserung wird sich letztendlich auch im quantitativen, finanziellen Maße auswirken, wenn auch nicht so einfach messbar.

Die Absicherung von Prozessen aus der Compliance-Perspektive ist eines der typischen Einsatzgebiete, für die Process Mining prädestiniert ist. Audit Analytics und Betrugserkennung gehören zu den häufigsten Anwendungsgebieten. Das senkt zwar grundsätzlich keine Prozesskosten, ist jedoch in Anbetracht immer komplexerer Prozessketten bittere Notwendigkeit.

Prozess Mining kann ferner auch zur Dokumentation von Geschäftsprozessen genutzt werden, als Vorlage für Sollprozesse. Die Analyse von bestehenden Prozessen kann dann dabei helfen, den aktuellen Zustand eines Prozesses zu dokumentieren und Unternehmen können diese Informationen nutzen, um Prozessdokumentationen zu aktualisieren und zu verbessern. Mit Process Mining können Vor- und Nachher-Vergleiche durchgeführt sowie situative Worst- und Best-Practise herausextrahiert werden. Dies bietet sich insbesondere vor und nach Migrationen von ERP-Systemen an.

Process Mining muss nicht (zu) teuer sein

Bei hohen Kosten für Process Mining ist der Druck einer Organisation sehr hoch, diese Kosten irgendwie mit hohen potenziellen (!) Einsparungen zu rechtfertigen. Die Prozesse mit dem höchsten Kostensenkungsversprechen erhalten dadurch den Vorzug, oft auch dann, obwohl andere Prozesse die nötige Prozesstransparenz eigentlich noch viel nötiger hätten.

Zumindest der Einstieg in Process Mining kann mit den richtigen Tools sehr leichtfüßig und günstig erfolgen, aber auch die Etablierung dieser Analysemethodik im weltweiten Konzern kann mit einigen Stellhebeln erheblich günstiger und (in Anbetracht der hohen Dynamik unter den Tool-Anbietern) nachhaltiger realisiert werden, als wie es von den größeren Anbietern vorgeschlagen wird.

Unabhängiges und Nachhaltiges Data Engineering

Die Arbeit hinter Process Mining kann man sich wie einen Eisberg vorstellen. Die sichtbare Spitze des Eisbergs sind die Reports und Analysen im Process Mining Tool. Das ist der Teil, den die meisten Analysten und sonstigen Benutzer des Tools zu Gesicht bekommen. Der andere Teil des Process Minings ist jedoch noch viel wesentlicher, denn es handelt sich dabei um das Fundament der Analyse: Die Datenmodellierung des Event Logs. Diese Arbeit ist der größere, jedoch unter der Oberfläche verborgene Teil des Eisbergs.

Jedes Process Mining Tool benötigt pro Use Case mindestens ein Event Log. Dabei handelt es sich um ein Prozessprotokoll mit universeller Mindestanforderung: Case, Activity, Timestamp

Diese Event Logs in einem Process Mining Tool zu modellieren und individuell anzupassen, ist langfristig keine gute Idee und erinnert an die Anfänge der Business Intelligence, als BI-Analysten Daten direkt in Tools wie Qlik Sense oder Power BI luden und für sich individuell modellierten.

Wie anfangs erwähnt, haben Unternehmen bei der Einführung von Process Mining die Qual der Wahl. Oft werden langwierige und kostenintensive Auswahlprozesse für die jeweiligen Tools angestoßen, damit die Wahl auf der augenscheinlich richtige Tool fällt.

Eine bessere Idee ist es daher, Event Logs nicht in einzelnen Process Mining Tools aufzubereiten, sondern zentral in einem dafür vorgesehenen Data Warehouse zu erstellen, zu katalogisieren und darüber auch die grundsätzliche Data Governance abzusichern. Die modellierten Daten können dann jedem Process Mining Tool zur Verfügung gestellt werden. Während sich Process Mining Tools über die Jahre stark verändern, bleiben Datenbanktechnologien für Data Warehousing über Jahrzehnte kompatibel und können in ihnen aufbereitete Event Logs allen Tools zur Verfügung stellen. Und übrigens lässt sich mit diesem Ansatz auch sehr gut eine gesamtheitlichere Verknüpfung realisieren und die Perspektive dynamisch verändern, was neuerdings als Object-centric Process Mining beworben wird, mit der richtigen Datenmoedellierung in einem Process Mining Data Warehouse für jedes Tool zu erreichen ist.

Nicht alles um jeden Preis in die Public Cloud

Unter der häufigen Prämisse, dass alle ERP-Rohdaten in eine Cloud geladen werden müssen, entstehen Kosten, die durchaus als überhöht und unnötig angesehen werden können. Daten-Uploads in eine Cloud-Lösung für Process Mining sollten nach Möglichkeit minimal ausfallen und lassen sich durch genaueres Anforderungsmanagement in den meisten Fällen deutlich reduzieren, verbunden mit Einsparungen bei Cloud-Kosten. Idealerweise werden nur fertige Event-Logs bzw. objekt-zentrische Datenmodelle in die Cloud geladen, nicht jedoch die dafür notwendigen Rohdaten.

Für besonders kritische Anwendungsfälle kann es von besonderem Stellenwert sein, einen Hybrid-Cloud-Ansatz anzustreben. Dabei werden besonders kritische Daten in ihrer granularen Form in einer Private Cloud (i.d.R. kundeneigenes Rechenzentrum) gehalten und nur die fertigen Event Logs in die Public Cloud (z. B. Celonis Process Mining) übertragen.

Mit AI ist mehr möglich als oft vermutet

Neben den einfachen Anwendungsfällen, die einige Tool-Anbieter bereits eingebaut haben (z. B. Matching von Zahlungsdaten zur Doppelzahlungserkennung oder die Vorhersage von Prozesszeiten), können mit Machine Learning bzw. Deep Learning auch anspruchsvollere Varianten-Cluster und Anomalien erkannt werden.

Unstrukturierte Daten können dank AI in Process Mining mit einbezogen werden, dazu werden mit Named Entity Recognition (NER, ein Teilgebiet des NLP) Vorgänge und Aktivitäten innerhalb von Dokumenten (z. B. Mails, Jira-Tickets) extrahiert und gemeinsam mit den Meta-Daten (z. B. Zeitstempel aus dem Dokument) in ein strukturiertes Event Log für Process Mining transformiert. Ähnliches lässt sich mit AI für Computer Vision übrigens auch auf Abläufe aus Videoaufnahmen durchführen. Dank AI werden damit noch viel verborgenere Prozesse sichtbar. Diese AI ist in noch keiner Process Mining Software zu finden, kann jedoch bausteinartig dem Process Mining Data Warehouse vorgeschaltet werden.

Fazit

Nicht all zu selten ist Process Mining den anwenden Unternehmen in Summe zu teuer, denn bereits einige Unternehmen sind über die Kosten gestolpert. Andere Unternehmen begrenzen die Kosten mit dem restriktiven Umgang mit Benuter-Lizenzen oder Anwendungsfällen, begrenzen damit jedoch auch den Analyseumfang und schöpfen nicht das volle Potenzial aus. Dies muss jedoch nicht sein, denn Kosten für Data Loads, Cloud-Hosting und Benutzerlizenzen für Process Mining lassen sich deutlich senken, wenn Process Mining als die tatsächliche Analyse-Methode verstanden und nicht auf ein bestimmtes Tool reduziert wird.

Zu Beginn kann es notwendig sein, Process Mining in einer Organisation überhaupt erst an den Start zu bringen und erste Erfolge zu erzielen. Unternehmen, die Process Mining und die damit verbundene Wirkung in Sachen Daten- und Prozesstransparenz, erstmals erlebt haben, werden auf diese Analysemethodik so schnell nicht mehr verzichten wollen. Schnelle erste Erfolge lassen sich mit nahezu jedem Tool erzielen. Nach Pilot-Projekten sollte der konzernweite Rollout jedoch in Sachen Performance, Kosten-Leistungsverhältnis und spätere Unabhängigkeit überdacht werden, damit Process Mining Initiativen langfristig mehr wirken als sie kosten und damit Process Mining auch bedenkenlos und ohne Budget-Engpässe qualitative Faktoren der Unternehmensprozesse verbessern kann.

Mit den richtigen Überlegungen fahren Sie die Kosten für Process Mining runter und den Nutzen hoch.

Interview – Datenstrategie und Data Teams entwickeln!

Das Format Business Talk am Kudamm in Berlin führte ein drittes Interview mit Benjamin Aunkofer zum Thema “Datenstrategie und Data Team Organisation”.

In dem Interview erklärt Benjamin Aunkofer, was Unternehmen Datenstrategien entwickeln, um Ihren Herausforderungen gerecht zu werden. Außerdem gibt er Tipps, wie Unternehmen ein fähiges Data Team aufbauen, qualifizieren und halten.

Nachfolgend das Interview auf Youtube sowie die schriftliche Form zum Nachlesen:


Interview – Datenstrategien und Aufbau von Data Teams

  1. Herr Aunkofer, Sie unterstützen Unternehmen u.a. bei der Entwicklung von Datenstrategien und dem Aufbau von Data Teams. Was genau ist denn eine Datenstrategie?Eine Datenstrategie ist eine Strategie über die Nutzung von Daten zur Geschäftsoptimierung. Man kann auch sagen: Eine Datenstrategie ist ein Business Plan darüber, wie Daten richtig im Unternehmen genutzt werden sollen.Abgesehen vom Aufbau neuer eigener Geschäftsmodelle mit Daten, können grundsätzlich drei Faktoren im Unternehmen mit der Nutzung von Daten optimiert werden.1. Umsätze, also die Erhöhung der Umsätze durch bessere Produkte oder durch besseres Verständnis der Kunden
    2. Die Reduktion von Kosten und
    3. die verbesserte Risikoerkennung und -bewertung, z. B. in der Wirtschaftsprüfung.Eine Datenstrategie ist abgerichtet auf die Unternehmensziele und ist der Masterplan dafür, diese auch zu erreichen.
  2. Und was sind die typischen Ziele mit denen Kunden an Sie herantreten?Das hängt stark von der Branche ab, also Handelsunternehmen wollen vor allem die Kunden besser verstehen, Marketing besser ausrichten oder auch Produkte verbessern. Immobilienunternehmen wollen stets DIE Markttransparenz für sich und industrielle Unternehmen, also Maschinenbau, Zulieferer, Pharma usw. wollen meistens intelligente Produkte, oder mehr noch, schlanke Prozesse zur Kosteneinsparung, aber auch, um mehr Umsatz zu machen, denn Schnelligkeit heißt Wettbewerbsfähigkeit.Am Ende ist das aber auch alles sehr individuell von Unternehmen zu Unternehmen.
  3. Die Entwicklung einer Datenstrategie erfordert sicherlich ein systematisches Vorgehen. Was sind die wichtigsten Schritte?Ja genau, wir haben da eine generelle Vorgehensweise. Verkürzt erläutert, in fünf Schritten, wollen wir zu Anfang erstmal die Unternehmensvision für die nächste Zeit wissen und diese, wenn nicht schon gegeben, in klare Unternehmensziele herunter gebrochen haben. Das ist der erste und wichtigste Schritt.Weil, wenn wir das haben, dann können wir die dafür relevanten Daten und Datenquellen identifizieren. Das sind vielleicht unternehmensinterne Daten aus den IT-Systemen, ERP, CRM usw. und manchmal auch noch Daten aus unternehmensexternen Quellen, z. B. aus dem Social Media, Marktplattformen, Open Data usw. In manchen Fällen dreht sich auch alles nur um interne oder nur um externe Daten. Auch prüfen wir natürlich, ob Daten erst noch generiert oder gesammelt werden müssen und wie es um den rechtlichen Rahmen bzgl. der Nutzung steht. Das war der zweite Schritt.Wenn die relevanten Datenquellen identifiziert sind, sind im dritten Schritt die richtigen Methoden der Datennutzung auszumachen, z. B. der Aufbau einer Datenplattform, vielleicht ein Data Warehouse zur Datenkonsolidierung, Process Mining zur Prozessanalyse oder Predictive Analytics für den Aufbau eines bestimmten Vorhersagesystems, KI zur Anomalieerkennung oder je nach Ziel etwas ganz anderes.Der vierte Schritt ist die Überlegung, wie das ganze organisatorisch gelöst werden soll, also z. B. über eine zentrale verantwortliche Stelle im Unternehmen oder dezentral in bestimmten Fachabteilungen? Stehen die dafür richtigen Mitarbeiter zur Verfügung? Müssen Qualifizierungsmaßnahmen getroffen werden? Im Grunde kennt das wohl jeder, dass Unternehmen einfach z. B. ein Tool eingeführt haben, dass dann aber nicht genutzt wird. Dies müssen wir zu verwenden wissen.Tja und wenn das auch erledigt ist, muss das alles nur nochmal aufgeschrieben und in eine Planung mit Meilensteinen gebracht werden. Budgets, Staffing, Make or Buy usw. kommt da alles rein. Und voila, dann haben wir unsere Datenstrategie.
  4. Unterstützen Sie auch bei der Umsetzung der Datenstrategien?Ja klar, schon viel gemacht, sogar in verschiedensten Branchen. Diese Arbeit macht sogar großen Spaß für alle Beteiligten und es gibt nichts Spannenderes, als diesen Plan in die Zukunft zu gestalten.
  5. Sie arbeiten nicht nur als externer Dienstleister, sondern bietet auch Hilfestellung beim Aufbau und der Ausbildung eigener Data Teams. Welche Weiterbildungsformate bieten Sie an?Also wenn es hier einen Fachkräftemangel gibt, dann definitiv bei den Datenexperten. Übrigens nicht mehr so stark bei den Data Scientists, auch wenn richtig gute Mitarbeiter ebenfalls rar gesät sind, den größten Bedarf haben Unternehmen eher bei den Data Engineers. Das sind die Kollegen, die die Data Warehouses oder Data Lakes aufbauen und pflegen.Es gibt aber viele junge Leute, die da gerne einsteigen wollen. Das Problem auf der anderen Seite ist jedoch, dass Unternehmen natürlich eher erfahrene Leute suchen, die schneller und besser mit den großen Praxisproblemen klarkommen, die in den Datenarchitekturen sich nun mal so einschleichen. Diese erfahrenen Experten sind aber schwer zu finden und Stellen daher meistens sehr lange unbesetzt, oder dann mit Mitarbeitern, die kein Deutsch sprechen können.Wo wir von DATANOMIQ helfen können: Durch uns als Coach können Unternehmen auf ihrer Suche dem DEM Superexperten auch einfach günstigere, unerfahrene, aber motivierte Leute einstellen. Motivation der Mitarbeiter ist nicht zu unterschätzen! Als externer Dienstleister können wir dann unterstützen und schulen zu gleich. Und das machen wir über drei verschiedene Stufen:Trainings, Workshops und Coachings.Beim Training arbeiten wir mit Didaktik. Die Daten sind einfach gehalten und beispielhaft, denn wir möchten nicht zu lange über sie reden, sondern über die richtige Methodik der Datenaufbereitung oder Datenanalyse.Beim Workshop behandeln wir das reale Problem mit den echten Daten, mit denen der Mitarbeiter im Unternehmen konfrontiert ist. Hier schauen wir erstmal gemeinsam blöd aus der Wäsche, aber erarbeiten uns dann gemeinsam zügig die Lösung.

    Und beim Coaching schauen wir dann eigentlich nur zu und geben Ratschläge, wie man besser an die Aufgabenstellung herangehen könnte. Der Mitarbeiter hat also selbst das Zepter in der Hand und das Doing.Wir sind dann nur der Support.

    So können wir Stellen schnell besetzen und niemand muss Sorge haben, dass die Kompetenz nicht ausreicht. Auf diese Weise habe ich schon mehrere Data Teams für Kunden aufgebaut und parallel natürlich auch mein eigenes.

 

Sehen Sie die zwei anderen Video-Interviews von Benjamin Aunkofer:

 

 

 

 

 

 


 

Die 6 Schritte des Process Mining – Infografik

Viele Process Mining Projekte drehen sich vor allem um die Auswahl und die Einführung der richtigen Process Mining Tools. Egal ob mit Celonis, Signavio, UiPath oder einem anderem Software-Anbieten, Process Mining ist nicht irgendein Tool, sondern eine Methodik der Aufbereitung und Analyse der Daten. Im Kern von Process Mining steckt eigentlich eine Graphenanalyse, die Prozessschritte als Knoten (Event) und Kanten (Zeiten) darstellt. Hinzu kommen weitere Darstellungen mit einem fließenden Übergang in die Business Intelligence, so bieten andere Tool-Anbieter auch Plugins für Power BI, Tableau, Qlik Sense und andere BI-Tools, um Process Mining zu visualisieren.

Unternehmen können Event Logs selbst herstellen und in ein Data Warehouse speisen, die dann alle Process Mining Tools mit Prozessdaten versorgen können. Die investierten Aufwände in Process Mining würden somit nachhaltiger (weil länger nutzbar) werden und die Abhängigkeit von bestimmter Software würde sich auf ein Minimum reduzieren, wir riskieren keinen neuen Aufwand für Migration von einem Anbieter zum nächsten. Übrigens können die Event Logs dann auch in andere Tools z. B. für Business Intelligence (BI) geladen und anderweitig analysiert werden.

Jedoch ganz unabhängig von den Tools, gibt es eine ganz generelle Vorgehensweise in dieser datengetriebenen Prozessanalyse, die wir mit der folgenden Infografik beschreiben möchten.

DATANOMIQ Process Mining - 6 Steps of Doing Process Mining Analysis

6 Steps of Process Mining – Infographic PDF Download.

DATANOMIQ ist der herstellerunabhängige Beratungs- und Service-Partner für Business Intelligence, Process Mining und Data Science. Wir erschließen die vielfältigen Möglichkeiten durch Big Data und künstliche Intelligenz erstmalig in allen Bereichen der Wertschöpfungskette. Dabei setzen wir auf die besten Köpfe und das umfassendste Methoden- und Technologieportfolio für die Nutzung von Daten zur Geschäftsoptimierung.

Data Vault 2.0 – Flexible Datenmodellierung

Was ist Data Vault 2.0?

Data Vault 2.0 ist ein im Jahr 2000 von Dan Linstedt veröffentlichtes und seitdem immer weiter entwickeltes Modellierungssystem für Enterprise Data Warehouses.

Im Unterschied zum normalisierten Data Warehouse – Definition von Inmon [1] ist ein Data Vault Modell funktionsorientiert über alle Geschäftsbereiche hinweg und nicht themenorientiert (subject-oriented)[2]. Ein und dasselbe Produkt beispielsweise ist mit demselben Business Key sichtbar für Vertrieb, Marketing, Buchhaltung und Produktion.

Data Vault ist eine Kombination aus Sternschema und dritter Normalform[3] mit dem Ziel, Geschäftsprozesse als Datenmodell abzubilden. Dies erfordert eine enge Zusammenarbeit mit den jeweiligen Fachbereichen und ein gutes Verständnis für die Geschäftsvorgänge.

Die Schichten des Data Warehouses:

Data Warehouse mit Data Vault und Data Marts

Data Warehouse mit Data Vault und Data Marts

Die Daten werden zunächst über eine Staging – Area in den Raw Vault geladen.

Bis hierher werden sie nur strukturell verändert, das heißt, von ihrer ursprünglichen Form in die Data Vault Struktur gebracht. Inhaltliche Veränderungen finden erst im Business Vault statt; wo die Geschäftslogiken auf den Daten angewandt werden.

Die Information Marts bilden die Basis für die Reporting-Schicht. Hier müssen nicht unbedingt Tabellen erstellt werden, Views können hier auch ausreichend sein. Hier werden Hubs zu Dimensionen und Links zu Faktentabellen, jeweils angereichert mit Informationen aus den zugehörigen Satelliten.

Die Grundelemente des Data Vault Modells:

Daten werden aus den Quellsystemen in sogenannte Hubs, Links und Satelliten im Raw Vault geladen:

Data Vault 2.0 Schema

Data Vault 2.0 Schema

Hub:

Hub-Tabellen beschreiben ein Geschäftsobjekt, beispielsweise einen Kunden, ein Produkt oder eine Rechnung. Sie enthalten einen Business Key (eine oder mehrere Spalten, die einen Eintrag eindeutig identifizieren), einen Hashkey – eine Verschlüsselung der Business Keys – sowie Datenquelle und Ladezeitstempel.

Link:

Ein Link beschreibt eine Interaktion oder Transaktion zwischen zwei Hubs. Beispielsweise eine Rechnungszeile als Kombination aus Rechnung, Kunde und Produkt. Auch ein Eintrag einer Linktabelle ist über einen Hashkey eindeutig identifizierbar.

Satellit:

Ein Satellit enthält zusätzliche Informationen über einen Hub oder einen Link. Ein Kundensatellit enthält beispielsweise Name und Anschrift des Kunden sowie Hashdiff (Verschlüsselung der Attribute zur eindeutigen Identifikation eines Eintrags) und Ladezeitstempel.

Herausforderungen bei der Modellierung

Die Erstellung des vollständigen Data Vault Modells erfordert nicht nur eine enge Zusammenarbeit mit den Fachbereichen, sondern auch eine gute Planung im Vorfeld. Es stehen oftmals mehrere zulässige Modellierungsoptionen zur Auswahl, aus denen die für das jeweilige Unternehmen am besten passende Option gewählt werden muss.

Es ist zudem wichtig, sich im Vorfeld Gedanken um die Handhabbarkeit des Modells zu machen, da die Zahl der Tabellen leicht explodieren kann und viele eventuell vermeidbare Joins notwendig werden.

Obwohl Data Vault als Konzept schon viele Jahre besteht, sind online nicht viele Informationen frei verfügbar – gerade für komplexere Modellierungs- und Performanceprobleme.

Zusätzliche Elemente:

Über die Kernelemente hinaus sind weitere Tabellen notwendig, um die volle Funktionalität des Data Vault Konzeptes auszuschöpfen:

PIT Tabelle

Point-in-Time Tabellen zeigen einen Snapshot der Daten zu einem bestimmten Zeitpunkt. Sie enthalten die Hashkeys und Hashdiffs der Hubs bzw. Links und deren zugehörigen Satelliten. So kann man schnell den jeweils aktuellsten Satelliteneintrag zu einem Hashkey herausfinden.

Referenztabellen

Zusätzliche, weitgehend feststehende Tabellen, beispielsweise Kalendertabellen.

Effektivitätssatellit

Diese Satelliten verfolgen die Gültigkeit von Satelliteneinträgen und markieren gelöschte Datensätze mit einem Zeitstempel. Sie können in den PIT Tabellen verarbeitet werden, um ungültige Datensätze herauszufiltern.

Bridge Tabelle

Bridge Tabellen sind Teil des Business Vaults und enthalten nur Hub- und Linkhashkeys. Sie ähneln Faktentabellen und dienen dazu, von Endanwender*innen benötigte Schlüsselkombinationen vorzubereiten.

Vorteile und Nachteile von Data Vault 2.0

Vorteile:

  • Da Hubs, Links und Satelliten jeweils unabhängig voneinander sind, können sie schnell parallel geladen werden.
  • Durch die Modularität des Systems können erste Projekte schnell umgesetzt werden.
  • Vollständige Historisierung aller Daten, denn es werden niemals Daten gelöscht.
  • Nachverfolgbarkeit der Daten
  • Handling personenbezogener Daten in speziellen Satelliten
  • Einfache Erweiterung des Datenmodells möglich
  • Zusammenführung von Daten aus unterschiedlichen Quellen grundsätzlich möglich
  • Eine fast vollständige Automatisierung der Raw Vault Ladeprozesse ist möglich, da das Grundkonzept immer gleich ist.

Nachteile:

  • Es sind verhältnismäßig wenige Informationen, Hilfestellungen und Praxisbeispiele online zu finden und das Handbuch von Dan Linstedt ist unübersichtlich gestaltet.
    • Zusammenführung unterschiedlicher Quellsysteme kaum in der verfügbaren Literatur dokumentiert und in der Praxis aufwendig.
  • Hoher Rechercheaufwand im Vorfeld und eine gewisse Anlauf- und Experimentierphase auch was die Toolauswahl angeht sind empfehlenswert.
  • Es wird mit PIT- und Bridge Tabellen und Effektivitätssatelliten noch viel zusätzlicher Overhead geschaffen, der verwaltet werden muss.
  • Business Logiken können die Komplexität des Datemodells stark erhöhen.
  • Eine Automatisierung des Business Vaults ist nur begrenzt möglich.

Praxisbeispiel Raw Vault Bestellung:

Das Design eines Raw Vault Modells funktioniert in mehreren Schritten:

  1. Business Keys identifizieren und Hubs definieren
  2. Verbindungen (Links) zwischen den Hubs identifizieren
  3. Zusätzliche Informationen zu den Hubs in Satelliten hinzufügen

Angenommen, man möchte eine Bestellung inklusive Rechnung und Versand als Data Vault modellieren.

Hubs sind alle Entitäten, die sich mit einer eindeutigen ID – einem Business Key – identifizieren lassen. So erstellt man beispielsweise einen Hub für den Kunden, das Produkt, den Kanal, über den die Bestellung hereinkommt (online / telefonisch), die Bestellung an sich, die dazugehörige Rechnung, eine zu bebuchende Kostenstelle, Zahlungen und Lieferung. Diese Liste ließe sich beliebig ergänzen.

Jeder Eintrag in einem dieser Hubs ist durch einen Schlüssel eindeutig identifizierbar. Die Rechnung durch die Rechnungsnummer, das Produkt durch eine SKU, der Kunde durch die Kundennummer etc.

Eine Zeile einer Bestellung kann nun modelliert werden als ein Link aus Bestellung (im Sinne von Bestellkopf), Kunde, Rechnung, Kanal, Produkt, Lieferung, Kostenstelle und Bestellzeilennummer.

Analog dazu können Rechnung und Lieferung ebenso als Kombination aus mehreren Hubs modelliert werden.

Allen Hubs werden anschließend ein oder mehrere Satelliten zugeordnet, die zusätzliche Informationen zu ihrem jeweiligen Hub enthalten.

Personenbezogene Daten, beispielsweise Namen und Adressen von Kunden, werden in separaten Satelliten gespeichert. Dies ermöglicht einen einfachen Umgang mit der DSGVO.

Data Vault 2.0 Beispiel Bestelldatenmodell

Data Vault 2.0 Beispiel Bestelldatenmodell

Fazit

Data Vault ist ein Modellierungsansatz, der vor allem für Organisationen mit vielen Quellsystemen und sich häufig ändernden Daten sinnvoll ist. Hier lohnt sich der nötige Aufwand für Design und Einrichtung eines Data Vaults und die Benefits in Form von Flexibilität, Historisierung und Nachverfolgbarkeit der Daten kommen wirklich zum Tragen.

Quellen

[1] W. H. Inmon, What is a Data Warehouse?. Volume 1, Number 1, 1995

[2] Dan Linstedt, Super Charge Your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault. CreateSpace Independent Publishing Platform 2011

[3] Vgl. Linstedt 2011

Weiterführende Links und

Blogartikel von Analytics Today

Häufig gestellte Fragen

Einführung in Data Vault von Kent Graziano: pdf

Website von Dan Linstedt mit vielen Informationen und Artikeln

„Building a Scalable Data Warehouse with Data Vault 2.0“ von Dan Linstedt (Amazon Link)