Interview – Mit Data Science Kundenverhalten vorhersagen

Frau Dr. Eva-Marie Müller-Stüler ist Associate Director in Decision Science der KPMG LLP in London. Sie absolvierte zur Diplom-Mathematikerin an der Technischen Universität München, mit einem einjährigen Auslandssemester in Tokyo, und promovierte an der Philipp Universität in Marburg.

linkedin-button xing-button

english-flagRead this article in English:
“Interview – Using Decision Science to forecast customer behaviour”

Data Science Blog: Frau Dr. Müller-Stüler, welcher Weg hat Sie bis an die Analytics-Spitze der KPMG geführt?

Ich hatte schon immer viel Spaß an analytischen Fragestellungen, aber auch ein großes Interesse an Menschen und Finance. Die Frage wie Menschen ticken und Entscheidungen treffen finde ich unglaublich spannend. Im Mathematikstudium und auch bei der Doktorarbeit kamen dann das Auswerten von großen Datenmengen und das Programmieren von Algorithmen hinzu. Die solide mathematische Ausbildung kombiniert mit dem spezifischen Branchen- und Finanzverständnis ermöglicht es mir das Geschäftsmodell meiner Kunden zu verstehen und Methoden zu entwickeln, die den Markt verändern und neue Wege finden.

Data Science Blog: Welche Analysen führen Sie für Ihre Kundenaufträge durch? Welche Vorteile generieren Sie für Ihre Kunden?

Unser Team beschäftigt sich hauptsächlich mit Behaviour und Customer Science. Daher auch der Slogan „We understand human behaviour and we change it“. Unser Focus ist der Mensch (z.B. Kunde oder der Mitarbeiter) und die Frage, wie wir ihn durch das Verständnis seiner Datenartefakte im Verhalten ändern bzw. zukünftiges Verhalten vorhersagen können. Auf dieser Basis entwickeln wir Always-on forecasting Modelle, die es dem Mandanten ermöglichen, bereits im Vorfeld zu agieren. Das kann z.B. bedeuten, durch ortgenaue Informationen spezifische Kundennachfrage an einem bestimmten Standort vorherzusagen, wie sie verbessert oder in die gewünschte Richtung beeinflusst werden kann oder durch welche Maßnahmen bzw. Promotions welcher Kundentyp optimal erreicht wird. Oder auch die Frage wo und mit welcher Produktmischung am besten ein neues Geschäft eröffnet werden soll, ist mit Predictive Analytics viel genauer vorherzusagen als durch herkömmliche Methoden.

Data Science Blog: Welche Voraussetzungen müssen erfüllt sein, damit prädiktive Analysen für Kundenverhalten adäquat funktionieren?

Die Daten müssen natürlich eine gewisse Qualität und Historie haben um z. B. auch Trends und Zyklen zu erkennen. Oft kann man sich aber auch über die Einbindung neuer Datenquellen einen Vorteil erschaffen. Dabei ist Erfahrung und Kreativität enorm wichtig, um zu verstehen was möglich ist und die Qualität verbessert oder ob etwas nur für mehr Rauschen sorgt.

Data Science Blog: Welche externen Datenquellen müssen Sie dafür einbinden? Wie behandeln Sie unstrukturierte Daten?

Hier in England ist man – was externe Datenquellen angeht – schon sehr verwöhnt. Wir benutzen im Schnitt an die 10.000 verschiedene Signale, die je nach Fragestellung unterschiedlich seien können: z. B. die Zusammensetzung der Bevölkerung, Nahverkehrsinformationen, die Nähe von Sehenswürdigkeiten, Krankenhäusern, Schulen, Kriminalitätsraten und vieles mehr. Der Einfluss eines Signals ist bei jedem Problem unterschiedlich. So kann eine hohe Anzahl an Taschendiebstählen ein Zeichen dafür sein, dass in der Gegend viel los ist und die Menschen im Schnitt viel Bargeld bei sich tragen. Das kann z. B. für einen Fast Food-Retailer in der Innenstadt durchaus einen positiven Einfluss auf sein Geschäft haben in einer anderen Gegend aber das Gegenteil bedeuten.

Data Science Blog: Welche Möglichkeiten bietet Data Science für die Forensik bzw. zur Betrugserkennung?

Da jeden Kunden tausende Datensignale umgeben und er durch sein Verhalten weitere produziert und aussendet, kann man gerade beim Online-Geschäft schon ein ziemlich gutes Bild über die Person bekommen. Jede Art von Mensch hat ein gewisses Verhaltensmuster und das gilt auch für Betrüger. Diese Muster muss man nur rechtzeitig erkennen oder vorherzusagen lernen.

Data Science Blog: Welche Tools verwenden Sie bei Ihrer Arbeit? In welchen Fällen setzten Sie auf proprietäre Software, wann hingegen auf Open Source?

Das hängt vom Arbeitsschritt und dem definierten Ziel ab. Wir unterscheiden unser Team in unterschiedliche Gruppen: Unsere Data Wrangler (die für das Extrahieren, Erzeugen und Aufbereiten der Daten zuständig sind) arbeiten mit anderen Tools als z. B. unsere Data Modeller. Im Grunde umfasst es die gesamte Palette von SQL Server, R, Python, manchmal aber auch Matlab oder SAS. Immer häufiger arbeiten wir auch mit auf Cloud-Technologie basierenden Lösungen. Data Visualisation und Dashboards in Qlik, Tableau oder Alteryx geben wir in der Regel jedoch an andere Teams weiter.

Data Science Blog: Wie sieht Ihrer Erfahrung nach der Arbeitsalltag als Data Scientist nach dem morgendlichen Café bis zum Feierabend aus?

Meine Rolle ist vielleicht am besten zu beschreiben als der Player-Coach. Da läuft von allem etwas mit ein. Am Anfang eines Projektes geht es vor Allem darum, mit den Mandaten die Fragestellung zu erarbeiten und das Projekt zu gewinnen. Teil dessen ist auch neue Ideen und Methoden zu entwickeln.  Während eines Projektes sind das Team Management, der Wissenstransfer im Team, der Review und das Hinterfragen der Modelle meine Hauptaufgaben. Am Schluss kommt dann der endgültige Sign-off des Projektes. Da ich oft mehrere Projekte in unterschiedlichen Stadien gleichzeitig leite, wird es garantiert nie langweilig.

Data Science Blog: Sind gute Data Scientists Ihrer Erfahrung nach tendenziell eher Beratertypen oder introvertierte Nerds?

Das hängt so ein bisschen davon ab wo man seinen Schwerpunkt sieht. Als Data Visualizer oder Data Artist geht es darum die Informationen auf das wesentlich zu reduzieren und toll und verständlich darzustellen. Dafür braucht man Kreativität und ein gutes Verständnis für das Geschäft und einen sicheren Umgang mit den Tools.

Der Data Analyst beschäftigt sich vor Allem mit dem „Slice and Dice“ von Data. Ziel ist es, die Vergangenheit zu analysieren und Zusammenhänge zu erkennen. Es ist wichtig zusätzlich zu dem finanziellen Wissen auch gute mathematische Fähigkeiten zu haben.

Der Data Scientist ist der mathematischste von allen. Er beschäftigt sich damit aus den Daten tiefere Zusammenhänge zu erkennen und Vorhersagen zu treffen. Dabei geht es um die Entwicklung von komplizierten Modellen oder auch Machine Learning Algorithmen. Ohne eine gute mathematische Ausbildung und Programmierkenntnisse ist es leider nicht möglich die Sachen in voller Tiefe zu verstehen. Die Gefahr falsche Schlüsse zu ziehen oder Korrelationen zu interpretieren, die sich aber nicht bedingen ist sehr groß. Ein einfaches Beispiel hierfür ist, dass im Sommer, wenn das Wetter schön ist, mehr Menschen Eis essen und in Seen baden gehen. Daher lässt sich eine eindeutige Korrelation zwischen Eis essen und der Anzahl an Ertrunkenen zeigen, obwohl nicht das Eis essen zum Ertrinken führt sondern die beeinflussende Variable die Temperatur ist. Daher ist ein Doktor in einem mathematiknahen Fach schon wichtig.

Genauso ist aber für den Data Scientist auch das entsprechende Finanz- und Branchenwissen wichtig, denn seine Erkenntnisse und Lösung müssen relevant für den Kunden sein und deren Probleme lösen oder Prozesse verbessern. Die tollste AI Maschine bringt keiner Bank einen Wettbewerbsvorteil, wenn sie den Eisverkauf auf Basis des Wetters vorhersagt. Das kann zwar rechnerisch 100% richtig sein, hat aber keine Relevanz für den Kunden.

Es ist im Grunde wie in anderen Bereichen (z. B. der Medizin) auch. Es gibt viele verschiedene Schwerpunkte und für ernsthafte Probleme wendet man sich am besten an einen Spezialisten, damit man keine falschen Schlüsse zieht.

Data Science Blog: Für alle Studenten, die demnächst ihren Bachelor, beispielsweise in Informatik, Mathematik oder Wirtschaftslehre, abgeschlossen haben, was würden sie diesen jungen Damen und Herren raten, wie sie gute Data Scientists werden können?

Nie aufhören mit dem Lernen!  Der Markt entwickelt sich derzeit unglaublich schnell und hat so viele tolle Seiten. Man sollte einfach mit Leidenschaft, Begeisterung und Kreativität dabei sein und Spaß an der Erkennung von Mustern und Zusammenhängen haben. Wenn man sich dann noch mit interessanten und inspirierenden Menschen umgibt, von denen man noch mehr lernen kann, bin ich zuversichtlich, dass man eine tolle Arbeitszeit haben wird.

ABC-XYZ-Analyse

Die ABC-XYZ-Analyse ist eine aussagekräftige Analyse für die Strategiefindung in der Warenwirtschaft und Logistik bzw. im Supply Chain Management. Die Analyse basiert auf der Vorstellung einer Pareto-Verteilung, die darauf hindeutet, dass oftmals eine kleine Menge eines großen Ganzen einen unverhältnismäßig großen Einfluss auf eben dieses große Ganze hat.

Die ABC-XYZ-Analyse beinhaltet im ersten Schritt eine ABC- und im zweiten Schritt eine XYZ-Analyse. Im dritten Schritt werden die Ergebnisse in einer Matrix zusammengeführt. In diesem Artikel erläutere ich nicht, wofür eine ABC-XYZ-Analyse dient und wie die Ergebnisse zu interpretieren sind, hier kann ich jedoch auf einen älteren Artikel “ABC-XYZ-Analyse” – www.der-wirtschaftsingenieur.de vom 3. Mai 2011 von mir verweisen, der vorher lesenswert ist, wenn kein Vorwissen zur ABC-XYZ-Analyse vorhanden ist.

Die Vorarbeit

Für die ABC- und XYZ-Analyse benötigen wir folgende Python-Bibliotheken:

import pandas as pd
import numpy as np
import random as random
import matplotlib.pyplot as pyplot

Wir laden die EKPO-Tabelle in ein DataFrame (Datenstruktur der Pandas-Bibliothek):

EKPO = pd.read_csv("[PFAD]EKPO.csv", delimiter=';', thousands='.', decimal=',')

Die Datei stammt aus einem SAP-Testsystem und steht hier zum Download bereit:

csv-icon

SAP.EKPO

Wir benötigen daraus nur folgende Zeilen:

EKPO_X = EKPO[['MATNR', 'MATKL', 'MENGE', 'PEINH', 'NETPR', 'NETWR']].copy()

Jetzt kommt der erste Kniff: Das Feld “MENGE” im SAP beschreibt die Menge in der jeweiligen Mengeneinheit (z. B. Stück, Meter oder Liter). Da wir hier jedoch nicht den genauen Verbrauch vorliegen haben, sondern nur die Einkaufsmenge (indirekt gemessener Verbrauch), sollten wir die Menge pro Preiseinheit “PEINH” berücksichtigen, denn nach dieser Preiseinheitsmenge erfolgt der Einkauf.

EKPO_X['Preiseinheitsmenge'] = EKPO_X['MENGE'] / EKPO_X['PEINH']

Für die Preiseinheitsmenge ein Beispiel:
Sie kaufen sicherlich pro Einkauf keine 3 Rollen Toilettenpapier, sondern eine oder mehrere Packungen Toilettenpapier. Wenn Sie zwei Packung Toilettenpapier für jeweils 2 Euro kaufen, die jeweils 10 Rollen beinhalten, ist die Preiseinheit = 10 und die Preiseinheitsmenge => 20 gekaufte Toilettenrollen / 10 Rollen pro Packung = 2 Packungen Toilettenpapier.

Nun haben wir also unsere für den Einkauf relevante Mengeneinheit. Jetzt sortieren wir diese Materialeinkäufe primär nach dem Umsatzvolumen “NETWR” absteigend (und sekundär nach der Preiseinheitsmenge aufsteigend, allerdings spielt das keine große Rolle):

EKPO_X = EKPO_X.sort_values(by = ['NETWR', 'Preiseinheitsmenge'], ascending=[False, True]) # Sortierung nach Umsatzvolumen pro Bestellung absteigend

Einige Störfaktoren müssen noch bereinigt werden. Erstens sollen Einträge mit Preisen oder Umsätzen in Höhe von 0,00 Euro nicht mehr auftauchen:

EKPO_X = EKPO_X[(EKPO_X.NETPR != 0) & (EKPO_X.NETWR != 0)]

Zweitens gibt es Einkäufe, die ein Material ohne Materialnummer und/oder ohne Materialklasse haben. Bei einer Zusammenfassung (Aggregation) über die Materialnummer oder die Materialklasse würden sich diese “leeren” Einträge als NULL-Eintrag bündeln. Das wollen wir vermeiden, indem wir alle NULL-Einträge mit jeweils unterschiedlichen Zufallszahlen auffüllen.

EKPO_X.MATNR[EKPO_X.MATNR.isnull() == True] = EKPO_X.MATNR[EKPO_X.MATNR.isnull() == True].apply(lambda x: random.random()) # Manche MATNR fehlen (NULL), diese füllen wir mit zufälligen Werten auf. Dabei ist es natürlich wichtig, dass die Zufallszahl für jede Zeile neu generiert wird! EKPO_X.MATNR.fillna(random.random()) funktioniert nicht, denn hier würde ein gleicher Wert alle NaN-Werte ersetzen

ABC – Analyse:

Nun geht es an die eigentliche ABC-Analyse, dafür müssen wir die Gruppierung der Materialien vornehmen. Gleich vorweg: Dies sollte man eigentlich über die einzelnen Materialnummern machen, da dies jedoch in der Visualisierung (auf Grund der hohen Anzahl und Vielfältigkeit) etwas aufwändiger ist, machen wir es über die Materialklassen. Wir gehen dabei einfach davon aus, dass die Materialklassen relativ homogene Materialien zusammenfassen und somit auch das Verbrauchs-/Einkaufverhalten innerhalb einer Gruppe nicht sonderlich viel Abweichung aufweist.

# Aggregation über die Materialklasse, Aufsummierung der Umsätze, Mengen und Volumen 
MATKL_MENGEN = (EKPO_X.MENGE.groupby(EKPO_X.MATKL).sum()).to_frame()
MATKL_PREISEINHEIT_MENGE = (EKPO_X.Preiseinheitsmenge.groupby(EKPO_X.MATKL).sum()).to_frame()
MATKL_VOLUMEN = (EKPO_X.NETWR.groupby(EKPO_X.MATKL).sum()).to_frame()

# Aggregation über die Materialklasse, Berechnung des Durchschnittpreises (ist bei einer Materialklasse, allerdings wenig sinnvoll!)
MATKL_Preise = (EKPO_X.NETPR.groupby(EKPO_X.MATKL).mean()).to_frame()EKPO_G = MATKL_MENGEN.join(MATKL_PREISEINHEIT_MENGE, how='left')

# Zusammenfügen der Ergebnisse (Left-Join)
EKPO_G = EKPO_G.join(MATKL_Preise, how='left')
EKPO_G = EKPO_G.join(MATKL_VOLUMEN, how='left')
EKPO_G = EKPO_G.sort_values(['NETWR'], ascending=False)

# Berechnung der kumulierten Umsätze und Mengen (Beachte: Vorher muss nach Umsätzen absteigend sortiert worden sein! (siehe oben)
EKPO_G['Volumen_kumuliert'] = EKPO_G.NETWR.cumsum()
EKPO_G['Menge_kumuliert'] = EKPO_G.MENGE.cumsum()

Nun können wir uns ganz im Sinne der ABC-Analyse die typische Pareto-Verteilung der kumulierten Umsätze (Umsatzgrößen absteigend sortiert) ansehen:

EKPO_G[['Menge_kumuliert','Volumen_kumuliert']].plot([EKPO_G.Menge_kumuliert, EKPO_G.Volumen_kumuliert], color=['red','pink'], figsize=[20,10], fontsize=8, title='Kumulierte Werte - Sortierung nach Materialklassen-Volumen')

abc_analyse_sap_netwr_menge_kumulierte_kurve_pareto

Die X-Achse zeigt die Materialklassen von links nach rechts in der Sortierung nach dem Umsatzvolumen (größester Umsatz links, kleinster Umsatz rechts). Die Y-Achse zeigt den Betrag der Umsatzhöhe (Euro) bzw. der Menge (Preiseinheitsmenge). Die Kurve der Menge ist mit Vorsicht zu bewerten, da primär nach dem Umsatz und nicht nach der Menge sortiert wurde.

Klassifikation:

Nun kommen wir zur Klassifikation. Hier machen wir es uns sehr einfach: Wir gehen einfach davon aus, dass 80% des Wertbeitrages aller Umsätze von etwa 20% der Materialien (hier: Materialklassen) umfassen und klassifizieren daher über feste relative Größen:

EKPO_G['ABC_Gruppe'] = "C" # Erstmal sind alle Materialien der C-Gruppe zugeordnet
EKPO_G['ABC_Gruppe'][EKPO_G.Volumen_kumuliert <= EKPO_G.NETWR.sum() / 100 * 95] = 'B' # Materialien, deren kumuliertes Volumen maximal 95% des Gesamtvolumens umfassen, sind Gruppe B
EKPO_G['ABC_Gruppe'][EKPO_G.Volumen_kumuliert <= EKPO_G.NETWR.sum() / 100 * 80] = 'A' # Materialien, deren kumuliertes Volumen maximal 80% des Gesamtvolumens umfassen, sind Gruppe A

Hinweis:
Intelligenter wird so eine Klassifikation, wenn wir den steilsten Anstieg innerhalb der kumulierten Volumen (die zuvor gezeigte Kurve) ermitteln und danach die Grenzen für die A-, B-, C-Klassen festlegen.

Optional: Farben für die Klassen festlegen (für die nachfolgende Visualisierung)

EKPO_G['Color'] = 'red'
EKPO_G['Color'][EKPO_G['ABC_Gruppe'] == 'B'] = 'orange'
EKPO_G['Color'][EKPO_G['ABC_Gruppe'] == 'C'] = 'green'

Jetzt Aggregieren wir über die ABC-Gruppe:

GruppenWerte = EKPO_G.groupby(['ABC_Gruppe'])
GruppenVolumen = (GruppenWerte.NETWR.sum()).to_frame()
GruppenMengen = (GruppenWerte.Preiseinheitsmenge.sum()).to_frame()

# Wieder zusammenfügen
GruppenVolumenMengen = GruppenVolumen.join(GruppenMengen)

Das Ergebnis:

GruppenVolumenMengen

Out:
NETWR Preiseinheitsmenge
ABC_Gruppe
A 6190725.01 175748.29
B 1231070.86 199599.24
C 408128.45 99745.63

Schauen wir uns nun die Verteilung der Werte und Mengen zwischen den Klassen A, B und C an:

GruppenVolumenMengen.plot(kind='bar', width=0.90, xlim=[0,1000], figsize=[10,5], yticks=GruppenVolumenMengen.NETWR)

 

abc_analyse_gruppen_vergleich

Es ist recht gut erkennbar, dass die Gruppe A deutlich mehr Umsatzvolumen (also Wertbeitrag) als die Gruppen B und C hat. Allerdings hat sie auch eine höhere Bestellmenge, wie jedoch nicht proportional von C über B zu A ansteigt wie das Umsatzvolumen.

Nachfolgend sehen wir die Klassifikation nochmal nicht kumuliert über die Umsatzvolumen der Materialien (Materialklassen):

EKPO_G[['NETWR']].plot(kind='bar', figsize=[20,10], legend = True, color=EKPO_G.Color, alpha=0.65, title='ABC - Analyse')

abc_analyse_sap_netwr

XYZ – Analyse

Für die XYZ-Analyse berechnen wir den arithmetischen Mittelwert, die Standardabweichung und die Summe aller Mengen pro Materialklasse [‘MATKL’] (oder alternativ, der einzelnen Materialnummern [‘MATNR’]) über eine Aggregation: 

Material_Menge = EKPO_X.Preiseinheitsmenge.groupby(EKPO_X.MATKL).agg({'mean', 'std', 'sum'})
#Oder mit dem Material: Material_Menge = EKPO_X.Preiseinheitsmenge.groupby(EKPO_X.MATNR) .agg({'mean', 'std', 'sum'})

#Leider ergeben sich einige NaNs bei der Standardabweichung, da ein Material oder eine Materialklasse nur eine einzige Buchung haben kann, diese müssen wir bereinigen (hier: mit Nullen auffüllen):
Material_Menge = Material_Menge.fillna(0)

Die XYZ-Analyse soll aufzeigen, welche Materialien (hier: Materialklassen) in stabilen Mengen verbraucht (hier: eingekauft) werden und welche größere Schwankungen hinsichtlich der Verbrauchsmenge (hier: Einkaufsmenge) aufweisen. Dazu berechnen wir den Variationskoeffizienten:

Variationskoeffizient = frac{Standardabweichung}{Mittelwert}

Wir berechnen diesen Variationskoeffizienten und sortieren das DataFrame nach diesem aufsteigend:

Material_Menge['Variationskoeffizient'] = Material_Menge['std'] / Material_Menge['mean']
Material_Menge = Material_Menge.sort_values(['Variationskoeffizient'], ascending = True)

Klassifikation:

Nun klassifizieren wir die Materialien (Materialklassen) über den Variationskoeffizienten in XYZ-Klassen. Dabei gehen wir davon aus, dass Materialien/Materialklassen, die einen Variationskoeffizienten von bis zu 70% des Maximalwertes aufweisen, in die Y-Klasse fallen. Solche, die nur maximal 20% des Maximalwertes aufweisen, fallen in die X-Klasse:

Material_Menge['XYZ_Gruppe'] = 'Z'
Material_Menge['XYZ_Gruppe'][Material_Menge.Variationskoeffizient <= Material_Menge.Variationskoeffizient.max() / 100 * 70] = 'Y'
Material_Menge['XYZ_Gruppe'][Material_Menge.Variationskoeffizient <= Material_Menge.Variationskoeffizient.max() / 100 * 20] = 'X'

Auch hier gilt analog zur ABC-Analyse: Intelligente Klassifikation erfolgt über die Analyse der Kurve der kumulierten Variationskoeffizienten. Die Grenzen der Klassen sollten idealerweise zwischen den steilsten Anstiegen (bzw. die größten Wertedifferenzen) zwischen den Werten der kumulierten Variationskoeffizienten-Liste gezogen werden.

Optional: Farben fürs Plotten setzen.

Material_Menge['Color'] = 'red'
Material_Menge['Color'][Material_Menge.XYZ_Gruppe == 'Y'] = 'orange'
Material_Menge['Color'][Material_Menge.XYZ_Gruppe == 'X'] = 'green'

Jetzt schauen wir uns mal die Verteilung der Materialien hinsichtlich des Variationskoeffizienten an:

Material_Menge.Variationskoeffizient.plot(kind='bar', width=0.90, xlim=[0,1000], figsize=[20,5], rot=90, color=Material_Menge.Color, title='XYZ - Analyse')

xyz_analyse_sap_matkl_menge

Die meisten Materialklassen haben einen recht niedrigen Variationskoeffizienten, sind im Einkauf (und daher vermutlich auch im Verbrauch) recht stabil. Die Materialklasse 0004 hingegen ist einigen Mengenschwankungen unterworfen. In der ABC-Analyse ist diese Materialklasse 0004 als B-Gruppe klassifiziert.

ABC-XYZ-Analyse

Nun möchten wir also die zuvor erstellte ABC-Klassifikation mit der XYZ-Klassifikation zusammen bringen.

Dafür fügen wir die beiden Pandas.DataFrame über den Index (hier die Materialklasse ‘MATKL’, im anderen Fall das Material ‘MATNR’) zusammen:

XYZ_ABC = pd.merge(EKPO_G, Material_Menge, left_index = True, right_index = True, how='left')

Die Zusammenfassung als Kreuztabelle:

pd.crosstab(XYZ_ABC.ABC_Gruppe, XYZ_ABC.XYZ_Gruppe, margins=True)

Out:

  X Y Z All

A 17 1 0 18

B 19 1 1 21

C 69 2 0 71

All 105 4 1 110

Für die Interpretation dieser Ergebnisse verweise ich erneut auf den Artikel bei der-wirtschaftsingenieur.de.

Warenkorbanalyse in R

Was ist die Warenkorbanalyse?

Die Warenkorbanalyse ist eine Sammlung von Methoden, die die beim Einkauf gemeinsam gekauften Produkte oder Produktkategorien aus einem Handelssortiment untersucht. Ziel der explorativen Warenkorbanalyse ist es, Strukturen in den Daten zu finden, so genannte Regeln, die beschreiben, welche Produkte oder Produktkategorien gemeinsam oder eben nicht gemeinsam gekauft werden.

Beispiel: Wenn ein Kunde Windeln und Bier kauft, kauft er auch Chips.

Werden solche Regeln gefunden, kann das Ergebnis beispielsweise für Verbundplatzierungen im Verkaufsraum oder in der Werbung verwendet werden.

Datenaufbau

Die Daten, die für diese Analyse untersucht werden, sind Transaktionsdaten des Einzelhandels. Meist sind diese sehr umfangreich und formal folgendermaßen aufgebaut:

data-bsp

Ausschnitt eines Beispieldatensatzes: Jede Transaktion (= Warenkorb = Einkauf) hat mehrere Zeilen, die mit der selben Transaktionsnummer (Spalte Transaction) gekennzeichnet sind. In den einzelnen Zeilen der Transaktion stehen dann alle Produkte, die sich in dem Warenkorb befanden. In dem Beispiel sind zudem noch zwei Ebenen von Produktkategorien als zusätzliche Informationen enthalten.

Es gibt mindestens 2 Spalten: Spalte 1 enthält die Transaktionsnummer (oder die Nummer des Kassenbons, im Beispielbild Spalte Transaction), Spalte 2 enthält den Produktnamen. Zusätzlich kann es weitere Spalten mit Infos wie Produktkategorie, eventuell in verschiedenen Ebenen, Preis usw. geben. Sind Kundeninformationen vorhanden, z.B. über Kundenkarten, so können auch diese Informationen enthalten sein und mit ausgewertet werden.

Beschreibende Datenanalyse

Die Daten werden zunächst deskriptiv, also beschreibend, analysiert. Dazu werden z.B. die Anzahl der Transaktionen und die Anzahl der Produkte im Datensatz berechnet. Zudem wird die Länge der Transaktionen, also die Anzahl der Produkte in den einzelnen Transaktionen untersucht. Dies wird mit deskriptiven Maßzahlen wie Minimum, Maximum, Median und Mittelwert in Zahlen berichtet sowie als Histogramm grafisch dargestellt, siehe folgende Abbildung.

hist-sizes
Histogramm der Längenverteilung der Transaktionen.

Die häufigsten Produkte werden ermittelt und können gesondert betrachtet werden. Als Visualisierung kann hier ein Balkendiagramm mit den relativen Häufigkeiten der häufigsten Produkte verwendet werden, wie im folgenden Beispiel.

relfreq-items
Relative Häufigkeiten der häufigsten Produkte, hier nach relativer Häufigkeit größer 0,1 gefiltert.

Ähnliche Analysen können bei Bedarf auch auf Kategorien-Ebene oder nach weiteren erhobenen Merkmalen selektiert durchgeführt werden, je nachdem, welche Informationen in den Daten stecken und welche Fragestellungen für den Anwender interessant sind.

Verbundanalyse

Im nächsten Schritt wird mit statistischen Methoden nach Strukturen in den Daten gesucht, auch Verbundanalyse genannt. Als Grundlage werden Ähnlichkeitsmatrizen erstellt, die für jedes Produktpaar die Häufigkeit des gemeinsamen Vorkommens in Transaktionen bestimmen. Solch eine Ähnlichkeitsmatrix ist zum Beispiel eine Kreuztabelle in der es für jedes Produkt eine Spalte und eine Zeile gobt. In den Zellen in der Tabelle steht jeweils die Häufigkeit, wie oft dieses Produktpaar gemeinsam in Transaktionen in den Daten vorkommt, siehe auch folgendes Beispiel.

screenshot-crosstable-ausschnitt

Ähnlichkeitsmatrix oder Kreuztabelle der Produkte: Frankfurter und Zitrusfrüchte werden in 64 Transaktionen zusammen gekauft, Frankfurter und Berries in 22 usw.

Auf Basis solch einer Ähnlichkeitsmatrix wird dann z.B. mit Mehrdimensionaler Skalierung oder hierarchischen Clusteranalysen nach Strukturen in den Daten gesucht und Gemeinsamkeiten und Gruppierungen gefunden. Die hierarchische Clusteranalyse liefert dann ein Dendrogram, siehe folgende Abbildung, in der ähnliche Produkte miteinander gruppiert werden.

dendrogram

Dendrogram als Visualisierung des Ergebnisses der hierarchischen Clusterananlyse. Ähnliche Produkte (also Produkte, die zusammen gekauft werden) werden zusammen in Gruppen geclustert. Je länger die vertikale Verbindungslinie ist, die zwei Gruppen oder Produkte zusammen fasst, um so unterschiedlicher sind diese Produkte bzw. Gruppen.

Assoziationsregeln

Schließlich sollen neben den Verbundanalysen am Ende in den Daten Assoziationsregeln gefunden werden. Es werden also Regeln gesucht und an den Daten geprüft, die das Kaufverhalten der Kunden beschreiben. Solch eine Regel ist zum Beispiel „Wenn ein Kunde Windeln und Bier kauft, kauft er auch Chips.“ Formal: {Windeln, Bier} → {Chips}

Für diese Regeln lassen sich statistische Maßzahlen berechnen, die die Güte und Bedeutung der Regeln beschreiben. Die wichtigsten Maßzahlen sind Support, Confidence und Lift:

Support ist das Signifikanzmaß der Regel. Es gibt an, wie oft die gefundene Regel in den Daten anzuwenden ist. Wie oft also die in der Regel enthaltenen Produkte gemeinsam in einer Transaktion vorkommen. In dem Beispiel oben: Wie oft kommen Windeln, Bier und Chips in einer Transaktion gemeinsam vor?

Confidence ist das Qualitätsmaß der Regel. Es beschreibt, wie oft die Regel richtig ist. In dem oben genanten Beispiel: Wie oft ist in einer Transaktion Chips enthalten, wenn auch Windeln und Bier enthalten sind?

Lift ist das Maß der Bedeutung der Regel. Es sagt aus wie oft die Confidence den Erwartungswert übersteigt. Wie ist die Häufigkeit des gemeinsamen Vorkommens von Windeln, Bier und Chips im Verhältlnis zur erwarteten Häufigkeit des Vorkommens, wenn die Ereignisse stochastisch unabhängig sind?

Algorithmen

In den Daten werden zunächst alle möglichen Regeln gesammelt, die einen Mindestwert an Support und Confidence haben. Die Mindestwerte werden dabei vom Nutzer vorgegeben. Da es sich bei Transaktionsdaten um große Datenmengen handelt und häufig große Anzahlen von Produkten enthalten sind, wird die Suche nach Regeln zu einem komplexen Problem. Es wurden verschiedene effiziente Algorithmen als Suchstrategien entwickelt, z.B. der APRIORI-Algorithmus von Agrawal und Srikant (1994), der auch im weiter unten vorgestellten Paket arules von R verwendet wird.

Sind die Assoziationsregeln gefunden, können Sie vom Nutzer genauer untersucht werden und z.B. nach den oben genannten Kennzahlen sortiert betrachtet werden, oder es werden die Regeln für spezielle Warenkategorien genauer betrachtet, siehe folgendes Beispiel.

screenshot-rules

Beispielausgabe von Regeln, hier die drei Regeln mit dem besten Lift. In der ersten Regel sieht man: Wenn Bier und Wein gekauft wird, wird auch Likör gekauft. Diese Regel hat einen Support von 0,002. Diese drei Produkte kommen also in 0,2 % der Transaktionen vor. Die Confidence von 0,396 zeigt, dass in 39,6 % der Transaktionen auch Likör gekauft wird, wenn Bier und Wein gekauft wird.

Umsetzung mit R

Die hier vorgestellten Methoden zur Warenkorbanalyse lassen sich mit dem Paket arules der Software R gut umsetzen. Im Folgenden gebe ich eine Liste von nützlichen Befehlen für diese Analysen mit dieser Software. Dabei wird mit data hier durchgehend der Datensatz der Transaktionsdaten bezeichnet.

summary(data)

Zusammenfassung des Datensatzes:

  • Anzahl der Transaktionen und Anzahl der Warengruppen
  • die häufigsten Produkte werden genannt mit Angabe der Häufigkeiten
  • Längenverteilung der Transaktionen (Anzahl der Produkte pro Transaktion): Häufigkeiten, deskriptive Maße wie Quartile
  • Beispiel für die Datenstruktur (Levels)
size(data)

Längen der Transaktionen (Anzahl der Produkte pro Transaktion)

hist(size(data))

Histogramm als grafische Darstellung der Transaktionslängen

itemFrequencyPlot(data, support=0.1)

rel. Häufigkeiten der einzelnen Produkte, hier nur die mit mindestens 10 % Vorkommen

crossTable(data)

Äquivalenzmatrix: Häufigkeiten der gemeinsamen Käufe für Produktpaare

dissJacc <- dissimilarity(data[, itemFrequency(data) > 0.05], method = "Jaccard", which = "items")

Unähnlichkeitsmatrix für die hierarchische Clusteranalyse

hcWard <- hclust(dissJacc, method = "ward.D")

Hierarchische Clusteranalyse

plot(hcWard)

Dendrogram der hierarchischen Clusteranalyse

rules <- apriori(data, parameter = list(support = 0.001, confidence = 0.2), control = list(verbose = FALSE))

Assoziationsregeln finden mit APRIORI-Algorithmus, hier Regeln mit mindestens 1% Support und 20 % Confidence

summary(rules)

Zusammenfassung der oben gefundenen Regeln (Anzahl, Eigenschaften Support, Confidence, Lift)

inspect(SORT(rules,by=“lift“)[1:5])

Einzelne Regeln betrachten, hier die laut Lift besten 5 Regeln

Referenzen:

  • Michael Hahsler, Kurt Hornik, Thomas Reutterer: Warenkorbanalyse mit Hilfe der Statistik-Software R, Innovationen in Marketing, S.144-163, 2006.
  • Michael Hahsler, Bettina Grün, Kurt Hornik, Christian Buchta, Introduciton to arules – A computational environment for mining association rules and frequent item sets. (Link zum PDF)
  • Rakesh Agrawal, Ramakrishnan Srikant, Fast algorithms for mining association rules, Proceedings of the 20th VLDB Conference Santiago, Chile, 1994
  • Software R:  R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Link: R-Project.org.
  • Paket: arules: Mining Association Rules using R.

Beispieldatensatz: Groceries aus dem Paket arules

Benford-Analyse

Das Benfordsche Gesetz beschreibt eine Verteilung der Ziffernstrukturen von Zahlen in empirischen Datensätzen. Dieses Gesetz, welches kein striktes Naturgesetz ist, sondern eher ein Erklärungsversuch in der Natur und in der Gesellschaft vorkommende Zahlenmuster vorherzusagen.

Das Benfordsche Gesetz beruht auf der Tatsache, dass die Ziffern in einem Zahlensystem hierarchisch aufeinander aufbauen: Es beginnt mit der 1, dann folgt die 2, dann die 3 usw. In Kombination mit bestimmten Gesetzen der Natur (der natürliche Wachstumsprozess, dabei möglichst energiesparend wachsen/überleben) oder Ökonomie (so günstig wie möglich einkaufen) ist gemäß des Benfordschen Gesetz zu erwarten, dass die Ziffer 1 häufiger vorkommt als die 2, die wiederum häufiger vorkommt als die 3. Die Ziffer 9 braucht demnach den längsten Weg und kommt entsprechend verhältnismäßig seltener vor.

Dieses Phönomen hilft uns bei echten Zufallszahlen nicht weiter, denn dann sind alle Ziffern nicht aufeinander aufbauend, sondern mehr oder weniger gleichberechtigt in ihrem Auftrauen. Bei der klassischen und axiomatischen Wahrscheinlichkeit kommen wir damit also nicht ans Ziel.

Die Benford-Analyse ist im Grunde eine Ausreißeranalyse: Wir vergleichen Ziffernmuster in Datenbeständen mit der Erwartungshaltung des Benfordschen Gesetzes. Weicht das Muster von dieser Erwartung ab, haben wir Diskussionsbedarf.

Moderne Zahlensysteme sind Stellenwert-Zahlensysteme. Neben den Dual-, Oktal- und Hexadezimalzahlensystemen, mit denen sich eigentlich nur Informatiker befassen, wird unser Alltag vom Dezimalzahlensystem geprägt. In diesem Zahlensystem hat jede Stelle die Basis 10 (“dezi”) und einen Exponenten entsprechend des Stellenwertes, multipliziert mit der Ziffer d. Es ist eine Exponentialfunktion, die den Wert der Ziffern in bestimmter Reihenfolge ermittelt:

Z =sum_{i=-n}^{m}d_{i}cdot10^{i}

Die Benford-Analyse wird meistens nur für die erste Ziffer (also höchster Stellenwert!) durchgeführt. Dies werden wir gleich einmal beispielhaft umsetzen.

Die Wahrscheinlichkeit des Auftretens der ersten “anführenden” Ziffer d ist ein Logarithmus zur Basis B. Da wir im alltäglichen Leben – wie gesagt – nur im Dezimalzahlensystem arbeiten, ist für uns B = 10.

p(d)=log_{B}left( 1 +frac{1}{d} right)

Im Standard-Python lässt sich diese Formel leicht mit einer Schleife umsetzen:

import math

[round(math.log10(1+1/float(i))*100.0, 2) for i in range(1,10)]
Out: [30.1, 17.61, 12.49, 9.69, 7.92, 6.69, 5.8, 5.12, 4.58]

Benford-Algorithmus in Python mit NumPy und Pandas

Nachfolgend setzen wir eine Benford-Analyse als Minimalbeispiel in NumPy und Pandas um.

import numpy as np

x = np.arange(1,10) # NumPy-Array erstellen
x
Out: array([ 1,  2,  3,  4,  5,  6,  7,  8,  9])

benford = np.round(np.log10(1+1/x) * 100.0, decimals=2) # Den Logarithmus auf das NumPy-Array anwenden und runden
Out: array([ 30.1 ,  17.61,  12.49,   9.69,   7.92,   6.69,   5.8 ,   5.12,
         4.58])

Nun möchten wir eine Tabelle erstellen, mit zwei Spalten, eine für die Ziffer (Digit), die andere für die relative Häufigkeit der Ziffer (Benford Law). Dazu nutzen wir das DataFrame aus dem Pandas-Paket. Das DataFrame erstellen wir aus den zwei zuvor erstellten NumPy-Arrays.

import pandas as pd

benfordFrame = pd.DataFrame({'Digit': x, 'Benford Law': benford})

benfordFrame
Out: 
   Benford Law  Digit
0        30.10      1
1        17.61      2
2        12.49      3
3         9.69      4
4         7.92      5
5         6.69      6
6         5.80      7
7         5.12      8
8         4.58      9

Man könnte sicherlich auch den natürlichen Index des DataFrames nutzen, indem wir diesen nur um jeweils 1 erhöhen, aber das verwirrt später nur und tun wir uns jetzt daher lieber nicht an…

benfordFrame.plot('Digit', 'Benford Law', kind='bar', title='Benford', legend=False)

Das Dataframe-Objekt kann direkt plotten (das läuft über die matplotlib, die wir aber nicht direkt einbinden müssen):benfordsches_gesetz_dezimalzahlen_ziffern

Diese neun Balken zeigen die Verteilung der Ziffernhäufigkeit nach dem Benfordschen Gesetz, diese Verteilung ist unsere Erwartungshaltung an andere nummerische Datenbestände, wenn diese einem natürlichen Wachstum unterliegen.

Analyse der Verteilung der ersten Ziffer in Zahlungsdaten

Jetzt brauchen wir Daten mit nummerischen Beträgen, die wir nach Benford testen möchten. Für dieses Beispiel nehme ich aus einem ein SAP-Testdatensatz die Spalte ‘DMBTR’ der Tabelle ‘BSEG’ (SAP FI). Die Spalte ‘DMBTR’ steht für “Betrag in Hauswährung’, die ‘BSEG’ ist die Tabelle für die buchhalterischen Belegsegmente.
Die Datei mit den Testdaten ist über diesen Link zum Download verfügbar (Klick) und enthält 40.000 Beträge.

Wir laden den Inhalt der Datei via NumPy.LoadTxt() und machen aus dem resultierenden NumPy-Array wieder ein Pandas.DataFrame und holen uns die jeweils erste Ziffer für alle Einträge als Liste zurück.

financialTransactions = np.loadtxt("[DEIN LOKALER PFAD]\BSEG_DMBTR.csv", skiprows=1)

financialTransactionsFrame = pd.DataFrame({'Zahlungen':financialTransactions})

firstDigits = [str(value)[0:1] for value in financialTransactionsFrame['Zahlungen']]

Die Einträge der ersten Ziffer in firstDigits nehmen wir uns dann vor und gruppieren diese über die Ziffer und ihrer Anzahl relativ zur Gesamtanzahl an Einträgen.

percentDigits = np.asarray([[i, firstDigits.count(str(i))/float(len(financialTransactionsFrame['Zahlungen']))*100] for i in range(1, 10)])

percentDigits.T[1].sum()
Out: 94.0

Wenn wir die Werte der relativen Anzahl aufsummieren, landen wir bei 94% statt 100%. Dies liegt daran, dass wir die Ziffer 0 ausgelassen haben, diese jedoch tatsächlich vorkommt, jedoch nur bei Beträgen kleiner 1.00. Daher lassen wir die Ziffer 0 außenvor. Wer jedoch mehr als nur die erste Ziffer prüfen möchte, wird die Ziffer 0 wieder mit in die Betrachtung nehmen wollen. Nur zur Probe nocheinmal mit der Ziffer 0, so kommen wir auf die 100% der aufsummierten relativen Häufigkeiten:

percentDigits = np.asarray([[i, firstDigits.count(str(i))/float(len(financialTransactionsFrame['Zahlungen']))*100] for i in range(0, 10)])
percentDigits.T[1].sum()
Out: 100.0

Nun erstellen wir ein weiteres Pandas.DataFrame, mit zwei Spalten: Die Ziffern (Digit) und die tatsächliche Häufigkeit in der Gesamtpopulation (Real Distribution):

percentDigitsFrame = pd.DataFrame({'Digit':percentDigits[:,0], 'Real Distribution':percentDigits[:,1]})

Abgleich der Ziffernhäufigkeit mit der Erwartung

Nun bringen wir die theoretische Verteilung der Ziffern, also nach dem zuvor genannten Logarithmus, und die tatsächliche Verteilung der ersten Ziffern in unseren Zahlungsdaten in einem Plot zusammen:

import matplotlib.pyplot as pyplot 

fig = pyplot.figure()

ax = fig.add_subplot(111)
ax2 = ax.twinx()

percentDigitsFrame.plot('Digit', 'Real Distribution', kind='bar', ax=ax2, width = 0.4, color="green", position=0, legend=False)
benfordFrame.plot('Digit', 'Benford Law', kind='bar', ax=ax, width = 0.4, color="blue", position=1, legend=False)

lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc=0)

ax.set_ylim(1,35)
ax2.set_ylim(1,35)

pyplot.show()

In dem Plot wird deutlich, dass die Verteilung der führenden Ziffer in unseren Zahlungsdaten in ziemlich genau unserer Erwartung nach dem Benfordschen Gesetz entspricht. Es sind keine außerordentlichen Ausreißer erkennbar. Das wäre auch absolut nicht zu erwarten gewesen, denn der Datensatz ist mit 40.000 Einträgen umfassend genug, um dieses Muster gut abbilden zu können und von einer Manipulation dieser Beträge im SAP ist ebenfalls nicht auszugehen.

benford-analyse-python-fuer-sap-bseg-dmbtr

Gegenüberstellung: Computer-generierte Zufallszahlen

Jetzt wollen wir nochmal kurz darauf zurück kommen, dass das Benfordsche Gesetz für Zufallszahlen nicht unwendbar ist. Bei echten Zufallszahlen bin ich mir da auch sehr sicher. Echte Zufallszahlen ergeben sich beispielweise beim Lotto, wenn die Bälle mit Einzel-Ziffern durch eine Drehkugel hüpfen. Die Lottozahl-Ermittlung erfolgt durch die Zusammenstellung von jeweils gleichberechtigt erzeugten Ziffern.
Doch wie ist dies bei vom Computer generierten Zufallszahlen? Immerhin heißt es in der Informatik, dass ein Computer im Grunde keine Zufallszahlen erzeugen kann, sondern diese via Takt und Zeit erzeugt und dann durchmischt. Wir “faken” unsere Zahlungsdaten nun einfach mal via Zufallszahlen. Hierzu erstellen wir in NumPy ein Array mit 2000 Einträgen einer Zufallszahl (NumPy.Random.rand(), erzeugt floats 0.xxxxxxxx) und multiplizieren diese mit einem zufälligen Integer (Random.randint()) zwischen 0 und 1000.

from random import randint

financialTransactions = np.round(np.random.rand(2000) * randint(0,1000),decimals=2) # Zufallszahlen erzeugen, die auf dem ersten Blick als Zahlungsdaten durchgehen :-)

Erzeugen wir die obigen Datenstrukturen erneut, zeigt sich, dass die Verteilung der Zufallszahlen ganz anders aussieht: (vier unterschiedliche Durchläufe)

benford-analyse-python-numpy-pseudo-zufallszahlen

Anwendung in der Praxis

Data Scientists machen sich das Benfordsche Gesetz zu Nutze, um Auffälligkeiten in Zahlen aufzuspüren. In der Wirtschaftsprüfung und Forensik ist diese Analyse-Methode recht beliebt, um sich einen Eindruck von nummerischen Daten zu verschaffen, insbesondere von Finanztransaktionen. Die Auffälligkeit durch Abweichung vom Benfordchen Gesetz entsteht z. B. dadurch, dass Menschen eine unbewusste Vorliebe für bestimmte Ziffern oder Zahlen haben. Greifen Menschen also in “natürliche” Daten massenhaft (z. B. durch Copy&Paste) ein, ist es wahrscheinlich, dass sie damit auch vom Muster des Benfordschen Gesetzes abweichen. Weicht das Muster in Zahlungsströmen vom Bendfordsche Erwartungsmuster für bestimmte Ziffern signifikant ab, könnte dies auf Fälle von unnatürlichen Eingriffen hindeuten.

Die Benford-Analyse wird auch gerne eingesetzt, um Datenfälschungen in wissenschaftlichen Arbeiten oder Bilanzfälschungen aufzudecken. Die Benford-Analyse ist dabei jedoch kein Beweis, sondern liefert nur die Indizien, die Detailanalysen nach sich ziehen können/müssen.

Einführung in WEKA

Waikato Environment for Knowledge Analysis, kurz WEKA, ist ein quelloffenes, umfangreiches, plattformunabhängiges Data Mining Softwarepaket. WEKA ist in Java geschrieben und wurde an der WAIKATO Iniversität entwickelt. In WEKA sind viele wichtige Data Mining/Machine Learning Algorithmen implementiert und es gibt extra Pakete, wie z. B. LibSVM für Support Vector Machines, welches nicht in WEKA direkt implementiert wurde. Alle Einzelheiten zum Installieren und entsprechende Download-Links findet man unter auf der Webseite der Waikato Universität. Zusammen mit der Software wird ein Manual und ein Ordner mit Beispiel-Datensätzen ausgeliefert. WEKA arbeitet mit Datensätzen im sogenannten attribute-relation file format, abgekürzt arff. Das CSV-Format wird aber ebenfalls unterstützt. Eine Datei im arff-Format ist eine ASCI-Textdatei, welche aus einem Header- und einem Datateil besteht. Im Header muss der Name der Relation und der Attribute zusammen mit dem Typ stehen, der Datenteil beginnt mit einem @data-Schlüsselwort. Als Beispiel sei hier ein Datensatz mit zwei Attributen und nur zwei Instanzen gegeben.

@relation my_relation
@attribute first_attribute numeric
@attribute second_attribute numeric
@attribute class {-1,1}
@data
2.5 3.8 1
1.2 1.5 -1

WEKA unterstützt auch direktes Einlesen von Daten aus einer Datenbank (mit JDBC) oder URL. Sobald das Tool installiert und gestartet ist, landet man im Hauptmenü von WEKA – WEKA GUI Chooser 1.

Abbildung 1: WEKA GUI Chooser

Abbildung 1: WEKA GUI Chooser

Der GUI Chooser bietet den Einstieg in WEKA Interfaces Explorer, Experimenter, KnowledgeFlow und simple CLI an. Der Explorer ist ein graphisches Interface zum Bearbeiten von Datensätzen, Ausführen von Algorithmen und Visualisieren von den Resultaten. Es ist ratsam, dieses Interface als Erstes zu betrachten, wenn man in WEKA einsteigen möchte. Beispielhaft führen wir jetzt ein paar Algorithmen im Explorer durch.

Der Explorer bietet mehrere Tabs an: Preprocess, Classify, Cluster, Associate, Select attributes und Visualize. Im Preprocess Tab hat man die Möglichkeit Datensätze vorzubereiten. Hier sind zahlreiche Filter zum Präprozessieren von Datensätzen enthalten. Alle Filter sind in supervised und unsupervised unterteilt, je nachdem, ob das Klassenattribut mitbetrachtet werden soll oder nicht. Außerdem kann man entweder Attribute oder Instanzen betrachten, mit Attributen lässt man Filter spaltenweise arbeiten und bei Instanzen reihenweise. Die Auswahl der Filter ist groß, man kann den ausgewählten Datensatz diskretisieren, normalisieren, Rauschen hinzufügen etc. Unter Visualize können z. B. die geladenen Datensätze visualisert werden. Mit Select attributes kann man mithilfe von Attribut Evaluator und Search Method ein genaueres Ergebnis erzielen. Wenn man im Preprocess den Datensatz lädt, erhält man einen Überblick über den Datensatz und dessen Visualisierung. Als Beispiel wird hier der Datensatz diabetes.arff genommen, welcher mit WEKA zusammen ausgeliefert wird. Dieser Datensatz enthält 768 Instanzen mit je 9 Attributen, wobei ein Attribut das Klassenattribut ist. Die Attribute enthalten z. B. Informationen über die Anzahl der Schwangerschaften, diastolischer Blutdruck, BMI usw. Alle Attribute, außer dem Klassenattribut, sind numerisch. Es gibt zwei Klassen tested negativ und tested positiv, welche das Resultat des Testens auf diabetes mellitus darstellen. über Preprocess -> Open File lädt man den Datensatz in WEKA und sieht alle relevanten Informationen wie z. B. Anzahl und Name der Attribute. Nach dem Laden kann der Datensatz klassifiziert werden.

Abbildung 2: Diabetes.arff Datensatz geladen in WEKA

Abbildung 2: Diabetes.arff Datensatz geladen in WEKA

Hierzu einfach auf Classify klicken und unter Choose den gewünschten Algorithmus auswählen. Für diesen Datensatz wählen wir jetzt den Algorithmus kNN (k-Nearest Neighbour). Der Algorithmus klassifiziert das Testobjekt anhand der Klassenzugehörigkeit von den k Nachbarobjekten, die am nähsten zu dem Testobjekt liegen. Die Distanz zwischen den Objekten und dem Testobjekt wird mit einer Ähnlichkeitsmetrik bestimmt, meistens als euklidische oder Manhattan-Distanz. In WEKA ist der Algorithmus unter lazy iBk zu finden. Wenn man auf das Feld neben dem Algorithmusnamen in WEKA mit rechter Maustaste klickt, kann man unter show properties die Werte für den ausgewählten Algorithmus ändern, bei iBk kann man u.A. den Wert für k ändern. Für den ausgewählten Datensatz diabetes.arff stellen wir beispielsweise k = 3 ein und führen die 10-fache Kreuzvalidierung durch, indem wir unter Test Options die Cross Validation auswählen. Nach der Klassifikation werden die Ergebnisse in einer Warhheitsmatrix präsentiert. In unserem Fall sieht diese wie folgt aus:

a b <-- classified as
410 90 | a = tested_negative
120 148 | b = tested_positive

Die Anzahl der richtig klassifizierten Instanzen beträgt 72.6563 %. Wenn man in der Result list auf den entsprechenden Algorithmus einen Rechtsklick macht, kann man z. B. noch den Fehler der Klassifizierung visualisieren. Entsprechend lassen sich im Explorer unter Cluster Clustering-Algorithmen und unter Associate Assoziationsalgorithmen auf einen ausgewählten Datensatz anwenden. Die restlichen Interfaces von WEKA bieten z. T. die gleiche Funktionalität oder erweitern die Möglichkeiten des Experimentierens, fordern aber mehr Erfahrung und Wissen von dem User. Das Experimenter Interface dient dazu, mehrere Datensätze mit mehreren Algorithmen zu analysieren. Mit diesem Interface kann man groß-skalierte Experimente durchführen. Simple CLI bietet dem User eine Kommandozeile, statt einem graphischen Interface, an.

Toolkits & Services für Semantische Textanalysen

Named Entity Recognition ist ein Teilgebiet von Information Extraction. Ziel von Information Extraction ist die Gewinnung semantischer Informationen aus Texten (im Gegensatz zum verwandten Gebiet des Information Retrieval, bei dem es um das möglichst intelligente Finden von Informationen, die u.U. vorab mit Information Extraction gewonnen wurden, geht). Named Entity Recognition (kurz NER) bezeichnet die Erkennung von Entitäten wie z.B. Personen, Organisationen oder Orten in Texten.

[box]Beispiel:
Albert Einstein war ein theoretischer Physiker, der am 14. März 1879 in Ulm geboren wurde. Er erhielt 1921 den Nobelpreis für Physik. Isaac Newton, Einstein und Stephen Hawking werden oft als die größten Physiker seit der Antike bezeichnet.”[/box]

Die Disambiguierung von Entitäten ist ein weiterer wichtiger Schritt auf dem Weg zu einem semantischen Verständnis von Texten. Wenn man so in obigem Text erkennen kann, dass “Albert Einstein“, “Er” und “Einstein” die gleiche Person bezeichnen, so kann ein Analyseverfahren z.B. daraus schließen, dass in diesem Text Einstein eine wichtigere Rolle spielt, als Newton, der nur einmal erwähnt wurde. Die Hyperlinks hinter den jeweiligen Entitäten zeigen eine Möglichkeit der semantischen Anreicherung von Texten an – in diesem Fall wurden die Entitäten mit entsprechenden Einträgen bei DBpedia automatisch verlinkt.

Named Entity Recognition dient vorrangig zwei Zwecken:

  • Anreicherung von Texten mit Metadaten
  • Abstraktion von Texten zur besseren Erkennung von Mustern

Punkt 1 dient direkt dem Information Retrieval. Anwender können so z.B. gezielt nach bestimmten Personen suchen, ohne alle möglichen Schreibweisen oder Berufsbezeichnungen auflisten zu müssen.

Punkt 2 dient der Vorverarbeitung von Texten als Input für Machine Learning Verfahren. So ist es (je nach Anwendung!) oft nicht von Bedeutung, welche Person, welcher Ort oder auch welche Uhrzeit in einem Text steht sondern nur die Tatsache, dass Personen, Orte oder Zeiten erwähnt wurden.

Sirrus Shakeri veranschaulicht die zentrale Bedeutung semantischer Analyse in seinem Beitrag From Big Data to Intelligent Applications:

intelligent-applications-cirrus-shakeri

Abbildung 1: Von Big Data zu Intelligent Applications von Cirrus Shakeri

Sein “Semantic Graph” setzt voraus, dass Entitäten mittels “Natural Language Processing” erkannt und zueinander in Beziehung gesetzt wurden.

Es ist interessant zu vermerken, dass Natural Language Processing und Data Mining / Machine Learning über viele Jahre als Alternativen zueinander und nicht als Ergänzungen voneinander gesehen wurden. In der Tat springen die meisten Vorgehensmodelle heutzutage von “Data Preparation” zu “Machine Reasoning”. Wir argumentieren, dass sich in vielen Anwendungen, die auf unstrukturierten Daten basieren, signifikante Qualitätsverbesserungen erzielen lassen, wenn man zumindest NER (inklusive Disambiguierung) in die Pipeline mit einbezieht.

Toolkits und Services für NER

Es existiert eine Vielzahl von Toolkits für Natural Language Processing, die Sie mehr oder weniger direkt in Ihre Programme einbinden können. Exemplarisch seien drei Toolkits für Java, Python und R erwähnt:

Diese Toolkits enthalten Modelle, die auf Korpora für die jeweils unterstützten Sprachen trainiert wurden. Sie haben den Vorteil, dass sie auch vollkommen neue Entitäten erkennen können (wie z.B. neue Politiker oder Fernsehstars, die zur Trainingszeit noch unbekannt waren). Je nach Einstellung haben diese Systeme aber auch eine relativ hohe Falsch-Positiv-Rate.

Wer NER nur ausprobieren möchte oder lediglich gelegentlich kleinere Texte zu annotieren hat, sei auf die folgenden Web Services verwiesen, die auch jeweils eine REST-Schnittstelle anbieten.

DBpedia

Das DBpedia Projekt nutzt die strukturierten Informationen der verschieden-sprachigen Wikipedia Sites für den Spotlight Service. Im Unterschied zu den reinen Toolkits nutzen die nun genannten Werkzeuge zusätzlich zu den trainierten Modellen eine Wissensbasis zur Verringerung der Falsch-Positiv-Rate. Die mehrsprachige Version unter http://dbpedia-spotlight.github.io/demo zeigt die Möglichkeiten des Systems auf. Wählen Sie unter “Language” “German“) und dann über “SELECT TYPES…” die zu annotierenden Entitätstypen. Ein Beispieltext wird automatisch eingefügt. Sie können ihn natürlich durch beliebige andere Texte ersetzen. Im folgenden Beispiel wurden “Organisation”, “Person”, und “Place“ ausgewählt:

DBprediaSpotlight

Abbildung 2: DBpedia Demo (de.dbpedia.org)

Die erkannten Entitäten werden direkt mit ihren DBpedia Datenbankeinträgen verlinkt. Im Beispiel wurden die Orte Berlin, Brandenburg und Preußen sowie die Organisationen Deutsches Reich, Deutsche Demokratische Republik, Deutscher Bundestag und Bundesrat erkannt. Personen wurden in dem Beispieltext nicht erkannt. Die Frage, ob man “Sitz des Bundespräsidenten” als Ort (Sitz), Organisation (das Amt des Bundespräsidenten) und / oder Person (der Bundespräsident) bezeichnen sollte, hängt durchaus vom Anwendungsszenario ab.

OpeNER

Das OpeNER Projekt ist das Ergebnis eines europäischen Forschungsprojekts und erweitert die Funktionalität von DBpedia Spotlight mit weiteren semantischen Analysen. Die Demo unter http://demo2-opener.rhcloud.com/welcome.action (Tab “Live Analysis Demo“, “Named Entity Recognition and Classification” und “Named Entity Linking” auswählen und “Analyse” drücken, dann auf der rechten Seite das Tab “NERC” anwählen) ergibt für den gleichen Beispieltext:

opeNER-projekt

Abbildung 3: OpeNER Projekt (opener-project.eu)

Organisationen sind blau hinterlegt, während Orte orange markiert werden. Auch hier werden erkannte Entitäten mit ihren DBpedia Datenbankeinträgen verknüpft. Die Bedeutung dieser Verknüpfung erkennt man wenn man auf das Tab “Map” wechselt. Berlin wurde als Ort erkannt und über die Geo-Koordinaten (geo:long = 13.4083, geo.lat = 52.5186) im DBpedia Eintrag von Berlin konnte das Wort “Berlin” aus obigem Text automatisch auf der Weltkarte referenziert werden.

Es gibt eine Vielzahl weiterer Services für NLP wie z.B. OpenCalais. Einige dieser Services bieten bestimmte Funktionalitäten (wie z.B. Sentiment Analysis) oder andere Sprachen neben Englisch nur gegen eine Gebühr an.

Listen Tagger

Der Vollständigkeit halber sei noch erwähnt, dass in den meisten Anwendungsszenarien die oben genannten Werkzeuge durch sogenannte Listen-Tagger (englisch Dictionary Tagger) ergänzt werden. Diese Tagger verwenden Listen von Personen, Organisationen oder auch Marken, Bauteilen, Produktbezeichnern oder beliebigen anderen Gruppen von Entitäten. Listen-Tagger arbeiten entweder unabhängig von den oben genannten statistischen Taggern (wie z.B. dem Standford Tagger) oder nachgeschaltet. Im ersten Fall markieren diese Tagger alle Vorkommen bestimmter Worte im Text (z.B. „Zalando“ kann so direkt als Modemarke erkannt werden). Im zweiten Fall werden die Listen genutzt, um die statistisch erkannten Entitäten zu verifizieren. So könnte z.B. der Vorschlag des statistischen Taggers automatisch akzeptiert werden wenn die vorgeschlagene Person auch in der Liste gefunden wird. Ist die Person jedoch noch nicht in der Liste enthalten, dann könnte ein Mitarbeiter gebeten werden, diesen Vorschlag zu bestätigen oder zu verwerfen. Im Falle einer Bestätigung wird die neu erkannte Person dann in die Personenliste aufgenommen während sie im Falle einer Ablehnung in eine Negativliste übernommen werden könnte damit dieser Vorschlag in Zukunft automatisch unterdrückt wird.

Regular Expression Tagger

Manche Entitätstypen folgen klaren Mustern und können mit hoher Zuverlässigkeit durch reguläre Ausdrücke erkannt werden. Hierzu zählen z.B. Kreditkarten- oder Telefon- oder Versicherungsnummern aber auch in vielen Fällen Bauteilbezeichner oder andere firmeninterne Identifikatoren.

Fazit

Natural Language Processing und insbesondere Named Entity Recognition und Disambiguierung sollte Teil der Werkzeugkiste eines jeden Anwenders bei der Analyse von unstrukturierten Daten sein. Es existieren mehrere mächtige Toolkits und Services, die allerdings je nach Anwendungsgebiet kombiniert und verfeinert werden müssen. So erkennt DBpedia Spotlight nur Entitäten, die auch einen Wikipedia Eintrag haben, kann für diese aber reichhaltige Metadaten liefern. Der Stanford Tagger hingegen kann auch vollkommen unbekannte Personennamen aus dem textuellen Kontext erkennen, hat aber bei manchen Texten eine relativ hohe Falsch-Positiv-Rate. Eine Kombination der beiden Technologien und anwendungsspezifischen Listen von Entitäten kann daher zu qualitativ sehr hochwertigen Ergebnissen führen.

Wie lernen Maschinen?

Im dritten Teil meiner Reihe Wie lernen Maschinen? wollen wir die bisher kennengelernten Methoden anhand eines der bekanntesten Verfahren des Maschinellen Lernens – der Linearen Regression – einmal gegenüberstellen. Die Lineare Regression dient uns hier als Prototyp eines Verfahrens aus dem Gebiet der Regression, in weiteren Artikeln werden die Logistische Regression als Prototyp eines Verfahrens aus dem Gebiet der Klassifikation und eine Collaborative-Filtering- bzw. Matrix-Faktorisierungs-Methode als Prototyp eines Recommender-Systems behandelt.

Read more

Daten für eine schlanke, globale F&E bereitstellen

Globale F&E-Prozesse sind oft komplex und verschwendend. Gerade deshalb kann sich ein Unternehmen einen Wettbewerbsvorteil verschaffen, wenn es die Daten über den verschwendungsfreien Leistungsanteil seiner globalen F&E-Prozesse bereitstellt, das volle Potential ausschöpft und so die Spielregeln seiner Branche verändert. Das erfordert eine standardisierte F&E-Datenbasis, geeignete Methoden und passende Tools.

 

Die F&E-Prozessleistung besteht aus

  • F&E-Nutzleistung
  • F&E-Stützleistung
  • F&E-Blindleistung
  • F&E-Fehlleistung

nutzleistung

Die F&E-Nutzleistung ist die verschwendungsfreie Leistung für den Kunden. Beispiele sind Konstruktion und Berechnung, ohne jegliche Rekursionen. Die F&E-Nutzleistung beträgt geschätzt durchschnittlich 5% bis 25% der gesamten F&E-Leistung.

Die F&E-Stützleistung ist erforderlich, jedoch keine Kundenleistung und somit Verschwendung. Beispiele sind Wissensgenerierung, Musterbau, Verifikation, Validierung, Transporte, Kommunikation und anteilige Strukturen.

Die F&E-Blindleistung ist nicht erforderlich, somit Verschwendung, schadet jedoch nicht unmittelbar. Beispiele sind Task Forces, Nacharbeit, Warten und Lagerung.

Die F&E-Fehlleistung ist nicht erforderlich, somit Verschwendung und schadet unmittelbar. Beispiele sind Doppelarbeit, Rekursionen, Gewährleistung und Garantie.

Ist die Verteilung der F&E-Prozessleistung global transparent, kann durch Hebelwirkung ein erhebliches F&E-Effizienzpotential ausgeschöpft werden. Wird beispielsweise der F&E-Verschwendungsanteil von 75% auf 60% verringert (-20%), dann springt der Anteil an F&E-Nutzleistung von 25% auf 40% (+60%). Dieser F&E-Leistungssprung verändert Branchenspielregeln, wenn er für mehr Wachstum und Deckungsbeitrag eingesetzt wird.

Die Daten der F&E-Nutzleistung werden in drei Schritten top-down bereitgestellt. Jeder Schritt hat sofort einen greifbaren Nutzen:

  • Valide Projektklassen werden aufgedeckt und standardisiert. Das ermöglicht die direkte Messung vergleichbaren F&E-Aufwands.
  • Für die Projektklassen wird der F&E-Standardaufwand empirisch definiert. Das macht die Entwicklungsproduktivität messbar und einfach planbar.
  • Die Grundursachenanalyse des Auftragsaufwands deckt die F&E-Nutzleistung der Arbeitspakete auf. Daraus wird das Potential abgeleitet. Verschwendungsfreie Arbeitspakete machen den Plan schlank und die Entwicklungsproduktivität steuerbar. So wird das Potential ausgeschöpft.

IT und F&E können so zusammen Daten für eine schlanke, globale F&E bereitstellen.

 

Text Mining mit R

R ist nicht nur ein mächtiges Werkzeug zur Analyse strukturierter Daten, sondern eignet sich durchaus auch für erste Analysen von Daten, die lediglich in textueller und somit unstrukturierter Form vorliegen. Im Folgenden zeige ich, welche typischen Vorverarbeitungs- und Analyseschritte auf Textdaten leicht durchzuführen sind. Um uns das Leben etwas leichter zu machen, verwenden wir dafür die eine oder andere zusätzliche R-Library.

Die gezeigten Schritte zeigen natürlich nur einen kleinen Ausschnitt dessen, was man mit Textdaten machen kann. Der Link zum kompletten R-Code (.RMD) findet sich am Ende des Artikels.

Sentimentanalyse

Wir verwenden das Anwendungsgebiet der Sentimentanalyse für diese Demonstration. Mittels der Sentimentanalyse versucht man, Stimmungen zu analysieren. Im Prinzip geht es darum, zu erkennen, ob ein Autor mit einer Aussage eine positive oder negative Stimmung oder Meinung ausdrückt. Je nach Anwendung werden auch neutrale Aussagen betrachtet.

Daten einlesen

Datenquelle: ‘From Group to Individual Labels using Deep Features’, Kotzias et. al,. KDD 2015

Die Daten liegen als cvs vor: Die erste Spalte enhält jeweils einen englischen Satz, gefolgt von einem Tab, gefolgt von einer 0 für negatives Sentiment und einer 1 für positives Sentiment. Nicht alle Sätze in den vorgegebenen Daten sind vorklassifiziert.

Wir lesen 3 Dateien ein, fügen eine Spalte mit der Angabe der Quelle hinzu und teilen die Daten dann in zwei Datensätze auf. Der Datensatz labelled enthält alle vorklassifizierten Sätze während alle anderen Sätze in unlabelled gespeichert werden.

## 'readSentiment' liest csv ein, benennt die Spalten und konvertiert die Spalte 'sentiment' zu einem Faktor 
amazon <-readSentiment("amazon_cells_labelled.txt")
amazon$source <- "amazon"
imdb <-readSentiment("imdb_labelled.txt")
imdb$source <- "imdb"
yelp <-readSentiment("yelp_labelled.txt")
yelp$source <- "yelp"

allText <- rbindlist(list(amazon, imdb, yelp), use.names=TRUE)
allText$source <- as.factor(allText$source)

unlabelled <- allText[is.na(allText$sentiment), ]
labelled <- allText[!is.na(allText$sentiment), ]

Wir haben nun 3000 vorklassifizierte Sätze, die entweder ein positives oder ein negatives Sentiment ausdrücken:

text               sentiment 	source    
Length:3000        0:1500    	amazon:1000  
Class :character   1:1500    	imdb  :1000  
Mode  :character             	yelp  :1000

Textkorpus anlegen

Zuerst konvertieren wir den Datensatz in einen Korpus der R-Package tm:

library(tm)
corpus <- Corpus(DataframeSource(data.frame(labelled$text)))
# meta data an Korpus anfügen:
meta(corpus, tag = "sentiment", type="indexed") <- labelled$sentiment
meta(corpus, tag = "source", type="indexed") <- labelled$source

myTDM  <- TermDocumentMatrix(corpus, control = list(minWordLength = 1))

## verschieden Möglichkeiten, den Korpus bzw die TermDocumentMatrix zu inspizieren:
#inspect(corpus[5:10])
#meta(corpus[1:10])
#inspect(myTDM[25:30, 1])
# Indices aller Dokumente, die das Wort "good" enthalten:
idxWithGood <- unlist(lapply(corpus, function(t) {grepl("good", as.character(t))}))
# Indices aller Dokumente mit negativem Sentiment, die das Wort "good" enthalten:
negIdsWithGood <- idxWithGood &  meta(corpus, "sentiment") == '0'

Wir können uns nun einen Eindruck über die Texte verschaffen, bevor wir erste Vorverarbeitungs- und Säuberungsschritte durchführen:

  • Fünf Dokumente mit negativem Sentiment, die das Wort “good” enthalten: Not a good bargain., Not a good item.. It worked for a while then started having problems in my auto reverse tape player., Not good when wearing a hat or sunglasses., If you are looking for a good quality Motorola Headset keep looking, this isn’t it., However, BT headsets are currently not good for real time games like first-person shooters since the audio delay messes me up.
  • Liste der meist verwendeten Worte im Text: all, and, are, but, film, for, from, good, great, had, have, it’s, just, like, movie, not, one, phone, that, the, this, very, was, were, with, you
  • Anzahl der Worte, die nur einmal verwendet werden: 4820, wie z.B.: ‘film’, ‘ive, ’must’, ‘so, ’stagey’, ’titta
  • Histogramm mit Wortfrequenzen:

Plotten wir, wie oft die häufigsten Worte verwendet werden:

Vorverarbeitung

Es ist leicht zu erkennen, dass sogenannte Stoppworte wie z.B. “the”, “that” und “you” die Statistiken dominieren. Der Informationsgehalt solcher Stopp- oder Füllworte ist oft gering und daher werden sie oft vom Korpus entfernt. Allerdings sollte man dabei Vorsicht walten lassen: not ist zwar ein Stoppwort, könnte aber z.B. bei der Sentimentanalyse durchaus von Bedeutung sein.

Ein paar rudimentäre Vorverarbeitungen:

Wir konvertieren den gesamten Text zu Kleinbuchstaben und entfernen die Stoppworte unter Verwendung der mitgelieferten R-Stoppwortliste für Englisch (stopwords(“english”)). Eine weitere Standardoperation ist Stemming, das wir heute auslassen. Zusätzlich entfernen wir alle Sonderzeichen und Zahlen und behalten nur die Buchstaben a bis z:

replaceSpecialChars <- function(d) {
  ## normalerweise würde man nicht alle Sonderzeichen entfernen
  gsub("[^a-z]", " ", d)
}
# tolower ist eine built-in function
corpus <- tm_map(corpus, content_transformer(tolower)) 
# replaceSpecialChars ist eine selbst geschriebene Funktion:
corpus <- tm_map(corpus, content_transformer(replaceSpecialChars))
corpus <- tm_map(corpus, stripWhitespace)
englishStopWordsWithoutNot <- stopwords("en")[ - which(stopwords("en") %in% "not")]
corpus <- tm_map(corpus, removeWords, englishStopWordsWithoutNot)
## corpus <- tm_map(corpus, stemDocument, language="english")

myTDM.without.stop.words <- TermDocumentMatrix(corpus, 
                                      control = list(minWordLength = 1))

 

Schlagwortwolke bzw Tag Cloud

Schließlich erzeugen wir eine Tag-Cloud aller Worte, die mindestens 25 mal im Text verwendet werden. Tag-Clouds eignen sich hervorragend zur visuellen Inspektion von Texten, allerdings lassen sich daraus nur bedingt direkte Handlungsanweisungen ableiten:

wordfreq <- findFreqTerms(myTDM.without.stop.words, lowfreq=25)
termFrequency <- rowSums(as.matrix(myTDM.without.stop.words[wordfreq,])) 
# eine Alternative ist 'tagcloud'
library(wordcloud)
wordcloud(words=names(termFrequency),freq=termFrequency,min.freq=5,max.words=50,random.order=F,colors="red")

schlagwortwolke

Word-Assoziationen

Wir können uns für bestimmte Worte anzeigen lassen, wie oft sie gemeinsam mit anderen Worten im gleichen Text verwendet werden:

  • Worte, die häufig gemeinsam mit movie verwendet werden:
findAssocs(myTDM.without.stop.words, "movie", 0.13)
## $movie
##   beginning        duet fascinating        june       angel   astronaut 
##        0.17        0.15        0.15        0.15        0.14        0.14 
##         bec       coach     columbo   considers     curtain       dodge 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##     edition   endearing    funniest    girolamo         hes         ive 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##     latched         lid      makers     peaking     planned  restrained 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##       scamp     shelves     stratus       titta        ussr      vision 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##       yelps 
##        0.14
  • Worte, die häufig gemeinsam mit product verwendet werden:
findAssocs(myTDM.without.stop.words, "product", 0.12)
## $product
##        allot     avoiding        beats   cellphones       center 
##         0.13         0.13         0.13         0.13         0.13 
##      clearer   contacting       copier       dollar    equipment 
##         0.13         0.13         0.13         0.13         0.13 
##      fingers      greater      humming        ideal      learned 
##         0.13         0.13         0.13         0.13         0.13 
##       lesson        motor        murky   negatively          oem 
##         0.13         0.13         0.13         0.13         0.13 
##     official       online       owning         pens    petroleum 
##         0.13         0.13         0.13         0.13         0.13 
##     planning      related replacementr    sensitive     shipment 
##         0.13         0.13         0.13         0.13         0.13 
##        steer      voltage        waaay        whose    worthless 
##         0.13         0.13         0.13         0.13         0.13

 

Text-Mining

Wir erzeugen einen Entscheidungsbaum zur Vorhersage des Sentiments. Entscheidungsbäume sind nicht unbedingt das Werkzeug der Wahl für Text-Mining aber für einen ersten Eindruck lassen sie sich bei kleinen Datensätzen durchaus gewinnbringend einsetzen:

trainingData <- data.frame(as.matrix(myDTM))
trainingData$sentiment <- labelled$sentiment
trainingData$source <- labelled$source

formula <- sentiment ~ . 

if (rerun) {
  tree <- rpart(formula, data = trainingData)
  save(tree, file=sprintf("%s-tree.RData", prefix))
} else {
  load(file=sprintf("c:/tmp/%s-tree.RData", prefix))
}

myPredictTree(tree)

 

##          isPosSentiment
## sentiment FALSE TRUE
##         0  1393  107
##         1   780  720

Eine Fehlerrate von über 50% auf den Trainingsdaten für positive Sentiments ist natürlich nicht berauschend und daher testen wir zum Schluß noch Support Vector Machines:

library(e1071)
  if (rerun) {
    svmModel <- svm(formula, data = trainingData)
    save(svmModel, file=sprintf("%s-svm.RData", prefix))
  } else {
    load(file=sprintf("c:/tmp/%s-svm.RData", prefix))
  }

myPredictSVM <- function(model) {
  predictions <- predict(model, trainingData)

  trainPerf <- data.frame(trainingData$sentiment, predictions, trainingData$source)
  names(trainPerf) <- c("sentiment", "isPosSentiment", "source")
  
  with(trainPerf, {
    table(sentiment, isPosSentiment, deparse.level = 2)
  })
  
}
myPredictSVM(svmModel)
##          isPosSentiment
## sentiment    FALSE 	TRUE
##         0 	1456   	  44
##         1   	  23 	1477

Die Ergebnisse sehen deutlich besser aus, müssten aber natürlich noch auf unabhängigen Daten verifiziert werden, um z. B. ein Overfittung zu vermeiden.

Download-Link zum kompletten R-Code für dieses Text-Mining-Beispiel: https://www.data-science-blog.com/download/textMiningTeaser.rmd

Wahrscheinlichkeitesrechnung – Grundstein für Predictive Analytics

Die Wahrscheinlichkeitsrechnung behandelt die Gesetzmäßigkeiten  des (von außen betrachtet) zufälligen Vorkommens bestimmter Ereignisse aus einer vorgegebenen Ereignismenge. Die mathematische Statistik fasst diese Wahrscheinlichkeitsrechnung zur Stochastik zusammen, der Mathematik des Zufalls

Mit diesem Artikel – zu der ich eine Serie plane – möchte ich den Einstieg in Predictive Analytics wagen, zugegebenermaßen ein Themengebiet, in dem man sich sehr schnell verlieren und den Wald vor lauter Bäumen nicht mehr findet. Also belassen wir es erstmal bei einem sanften Einstieg…

Klassische Definition der Wahrscheinlichkeit

Das klassische Verständnis der Wahrscheinlichkeit geht von endlich vielen Ausgängen (Ereignisse) aus, bei denen alle Ausgänge gleich wahrscheinlich sind. Die dafür erdachten Zufallsexperimente wurden von dem französischen Mathematiker Pierre Simon Lapplace (1749 – 1827) zum ersten Mal nachvollziehbar beschrieben. Diese Zufallsexperimente werden daher auch Laplace-Experimente genannt.

Bei einem Laplace Experiment gilt:

Ereignismenge Omega = {omega_1,omega_2,omega_3,…omega_s}
Wahrscheinlichkeit p(w_j)=frac{1}{s}=frac{1}{|Omega|}
(j=1,2,3,…s)

Die Ergebnismenge, das ist die Menge aller möglichen Ereignisse, wird in der Regel mit einem Omega (Omega) gekennzeichnet, ein beliebiges Einzelereignis hingegen als omega (kleines Omega).

Eine typische Laplace-Wahrscheinlichkeitsfrage ist ein bevorstehender Würfelwurf. Wie groß ist die Wahrscheinlichkeit, mit einem echten (unverfälschten) Würfel eine gerade Zahl zu würfeln?

Mit Omega={1,2,3,4,5,6} und A={2,4,6} folgt P(A)=frac{|A|}{|Omega|}=frac{3}{6}=0,5.

Axiomatische Definition der Wahrscheinlichkeit

Jeder Wahrscheinlichkeitsbegriff muss auf denselben äußeren Bedingungen beruhenden Zufallsexperimenten beliebig oft wiederholbar sein. Die axiomatische Definition der Wahrscheinlichkeit P(A) eines Ereignisses A berücksichtigt Axiome. Axiome sind nicht beweisbare Grundpostulate, darunter fallen Gegebenheiten, die gewissermaßen unverstanden sind und deren Vorkommen und Bedeutung in der Regel empirisch belegt werden müssen.
Die Definition der axiomatischen Wahrscheinlichkeit stammt vom russischen Mathematiker Andrej Nikollajewitsch Kolmogorov (1903 – 1987).

In der Realität gibt es keine perfekte Zufälligkeit, denn jedes Ergebnis ist von ganz bestimmten Faktoren abhängig. Auf den Würfelwurf bezogen, hängt das gewürfelte Ergebnis von unüberschaubar vielen Faktoren ab. Wären diese alle bekannt, könnte das Ergebnis exakt berechnet und somit mit einer Sicherheit vorhergesagt werden. Da dafür jedoch in der Praxis unbestimmbar viele Faktoren eine Rolle spielen (beispielsweise die genaue Beschaffenheit des Würfels in Form, Gewicht, Materialwiderstand, der genaue Winkel, die Fallgeschwindigkeit, die Ausgangsposition der Hand und des Würfels) können wir das Ergebnis nur schätzen, indem die Beschreibung des Vorgangs vereinfacht wird. Nur diese Vereinfachung macht es uns möglich, Vorhersagen zu treffen, die dann jedoch nur eine Wahrscheinlichkeit darstellen und somit mit einer Unsicherheit verbunden sind.

In der abstrakten Welt des perfekten Zufalls gäbe es die gleiche Chance, eine “4” zu würfeln, wie jeweils alle anderen Ziffern.

Mit Omega={1,2,3,4,5,6} und A={4} folgt P(A)=frac{|A|}{|Omega|}=frac{1}{6}=0,167.

Das Ergebnis eines Wurfes des Würfels ist in der Realität auch von der Beschaffenheit des Würfels abhängig. Angenommen, der Würfel hat auf Seite der Ziffer “4” bei allen vier Kanten eine Abrundung, die ein Umkippen auf eine andere Seite begünstigen, so bedeutet dies:

  • Die Ziffer “4” hat vier abgerundete Kanten, die Wahrscheinlichkeit eine “4” zu würfeln sinkt stark
  • Die Ziffern “1”, “3”, “5”, “6” haben jeweils eine abgerundete Kante (Berühungskante zur “4”) sinkt
  • Die Ziffer “2” liegt der “4” gegenüber, hat somit keine Berührungskante und keine Abrundung, so steigt ihre Chance gewürfelt zu werden

Nun könnte sich nach einer empirischen Untersuchung mit einer ausreichenden Stichprobe folgende Wahrscheinlichkeit ergeben:

  • p(4) = 0,1
  • p(1) = p(3) = p(5) = p(6) = 0,15
  • p(2) = 0,3
  • P(Omega) = 1,0

Durch die Analyse der bisherigen Wurf-Historie und der Betrachtung der Beschaffenheit der Kanten des Würfels können wir uns somit weit realistischere Wahrscheinlichkeiten über die Wurfergebnisse ermitteln. Wie hoch wäre nun die Wahrscheinlichkeit, nach einem Wurf eine gerade Zahl zu würfeln?

Mit Omega={1,2,3,4,5,6} und A={2,4,6} folgt P(A)=p(2)+p(4)+p(6)=0,55.