7 Gründe, warum es sich jetzt lohnt, Python zu lernen

Hot Skill: Python

7 Gründe, warum es sich jetzt lohnt, Python zu lernen

Die digitale Transformation nimmt Fahrt auf und stellt sowohl Arbeitgeber:innen als auch Arbeitnehmer:innen vor neue Herausforderungen. Um mit dieser Entwicklung Schritt zu halten, lohnt es sich, auf den Zug aufzuspringen und das eigene Portfolio um wichtige Schlüsselkompetenzen zu erweitern. Doch in der heutigen Zeit, wo täglich mehr Lernoptionen und -angebote auf den Markt drängen, ist es besonders wichtig, die eigene, knappe Zeit in die richtigen, zukunftsträchtigen Fähigkeiten zu investieren.

Infolge des rasanten, digitalen Wandels haben sich neue, wichtige Qualifikationen herauskristallisiert, die sich langfristig für Lernwillige auszahlen. Insbesondere technische Fähigkeiten werden von Unternehmen dringend benötigt, um den eigenen Marktanteil zu verteidigen. Unter allen möglichen Qualifikationen hat sich eine bestimmte Fähigkeit in den letzten Jahren von vielversprechend zu unverzichtbar gemausert: Die Programmiersprache Python. Denn Python ist insbesondere in den vergangenen fünf Jahren dem Image des Underdogs entwachsen und hat sich zum Champion unter den Tech-Skills entwickelt.

Wer jetzt denkt, dass Python als Programmiersprache nur für ITler und Tech Nerds lohnenswert ist: Weit gefehlt! Viele Unternehmen beginnen gerade erst die wahren Möglichkeiten von Big Data und künstlicher Intelligenz zu erschließen und Führungskräfte suchen aktiv nach Mitarbeiter:innen, die in der Lage sind, diese Transformation durch technische Fähigkeiten zu unterstützen. Wenn Sie sich in diesem Jahr weiterentwickeln möchten und nach einer Fähigkeit Ausschau halten, die Ihre Karriere weiter voranbringt und langfristig sichert, dann ist dies der ideale Zeitpunkt für Sie, sich mit Python weiterzuqualifizieren.

Nicht nur für Schlangenbeschwörer: Warum es sich jetzt lohnt, Python zu lernen

Falls Sie bei dem Wort Python eher an glänzende Schuppen denken als an Programmcode, dann lassen Sie uns Ihnen etwas Kontext geben: Python ist eine Programmiersprache, die für die Entwicklung von Software genutzt wird. Als serverseitige Sprache ist sie die Logik und das Fundament hinter Benutzereingaben und der Interaktion von Datenbanken mit dem Server. Python ist Open-Source, kostenlos und kann von jedem benutzt und verändert werden, weshalb ihre Verwendung besonders in der Datenwissenschaft sehr beliebt ist. Nicht zuletzt lebt Python von seiner Community, einer engagierten Gemeinschaft rund um die Themen künstliche Intelligenz, maschinelles Lernen, Datenanalyse und -modellierung, mit umfangreichen Ressourcen und über 137.000 Bibliotheken wie TensorFlow, Scikit-learn und Keras.

In der Data Science wird Python verwendet, um große Mengen komplexer Daten zu analysieren und aus ihnen relevante Informationen abzuleiten. Lohnt es sich also, Python zu lernen? Absolut! Laut der Stack Overflow Developer Survey wurde Python 2020 als die drittbeliebteste Technologie des Jahres eingestuft. Sie gilt als eine der angesagtesten Fähigkeiten und als beliebteste Programmiersprache in der Welt nach Angaben des PYPL Popularität der Programmiersprache Index. Wir haben 7 Gründe zusammengefasst, warum es sich jetzt lohnt, Python zu lernen:.

1. An Vielseitigkeit kaum zu übertreffen

Python ist ein wahrer Allrounder unter den Hard Skills! Ein wesentlicher Vorteil von Python ist, dass es in einer Vielzahl von Fachbereichen eingesetzt werden kann. Die häufigsten Bereiche, in denen Python Verwendung findet, sind u. a.:

  • Data Analytics & Data Science
  • Mathematik
  • Web-Entwicklung
  • Finanzen und Handel
  • Automatisierung und künstliche Intelligenz
  • Spieleentwicklung

2. Zahlt sich mehrfach aus

Diejenigen, für die sich eine neue Fähigkeit doppelt lohnen soll, liegen mit Python goldrichtig. Python-Entwickler:innen zählen seit Jahren zu den Bestbezahltesten der Branche. Und auch Data Scientists, für deren Job Python unerlässlich ist, liegen im weltweiten Gehaltsrennen ganz weit vorn. Die Nachfrage nach Python-Entwickler:innen ist hoch – und wächst. Und auch für andere Abteilungen wird die Fähigkeit immer wertvoller. Wer Python beherrscht, wird nicht lange nach einem guten Job Ausschau halten müssen. Unter den Top 10 der gefragtesten Programmier-Skills nach denen Arbeitgeber:innen suchen, liegt Python auf Platz 7. Die Arbeitsmarktaussichten sind also hervorragend.

3. Schnelle Erfolge auch für Neulinge

2016 war das schillernde Jahr, in dem Python Java als beliebteste Sprache an US-Universitäten ablöste und seitdem ist die Programmiersprache besonders unter Anfänger:innen sehr beliebt. In den letzten Jahren konnte Python seine Pole Position immer weiter ausbauen. Und das mit gutem Grund: Python ist leicht zu erlernen und befähigt seine Nutzer:innen dazu, eigene Webanwendungen zu erstellen oder simple Arbeitsabläufe zu automatisieren. Dazu bringt Python eine aufgeräumte und gut lesbare Syntax mit, was sie besonders einsteigerfreundlich macht. Wer mit dem Programmieren anfängt, will nicht mit einer komplizierten Sprache mit allerhand seltsamen Ausnahmen starten. Mit Python machen Sie es sich einfach und sind dennoch effektiv. Ein Doppelsieg!

4. Ideal für Zeitsparfüchse

Mit der Python-Programmierung erwarten Sie nicht nur schnelle Lernerfolge, auch Ihre Arbeit wird effektiver und damit schneller. Im Gegensatz zu anderen Programmiersprachen, braucht die Entwicklung mit Python weniger Code und damit weniger Zeit. Für alle Fans von Effizienz ist Python wie gemacht. Und sie bietet einen weiteren großen Zeitbonus. Unliebsame, sich wiederholende Aufgaben können mithilfe von Python automatisiert werden. Wer schon einmal Stunden damit verbracht hat, Dateien umzubenennen oder Hunderte von Tabellenzeilen zu aktualisieren, der weiß, wie mühsam solche Aufgaben sein können. Umso schöner, dass diese Aufgaben von jetzt an von Ihrem Computer erledigt werden könnten.

5. Über den IT-Tellerrand hinaus

Ob im Marketing, Sales oder im Business Development, Python hat sich längst aus seiner reinen IT-Ecke heraus und in andere Unternehmensbereiche vorgewagt. Denn auch diese Abteilungen stehen vor einer Reihe an Herausforderungen, bei denen Python helfen kann: Reporting, Content-Optimierung, A/B-Tests, Kundensegmentierung, automatisierte Kampagnen, Feedback-Analyse und vieles mehr. Mit Python können Erkenntnisse aus vorliegenden Daten gewonnen werden, besser informierte, datengetriebene Entscheidungen getroffen werden, viele Routineaktivitäten automatisiert und der ROI von Kampagnen erhöht werden.

6. Programmieren für Big Player

Wollten Sie schon immer für einen Tech-Giganten wie Google oder Facebook arbeiten? Dann könnte Python Ihre goldene Eintrittskarte sein, denn viele große und vor allem technologieaffine Unternehmen wie YouTube, IBM, Dropbox oder Instagram nutzen Python für eine Vielzahl von Zwecken und sind immer auf der Suche nach Nachwuchstalenten. Dropbox verwendet Python fast für ihr gesamtes Code-Fundament, einschließlich der Analysen, der Server- und API-Backends und des Desktop-Clients. Wenn Sie Ihrem Lebenslauf einen großen Namen hinzufügen wollen, sollte Python auf demselben Blatt zu finden sein.

7. Ein Must-Have für Datenprofis

Besonders Pythons Anwendung in der Datenwissenschaft und im Data Engineering treibt seine Popularität in ungeahnte Höhen. Aber was macht Python so wichtig für Data Science und Machine Learning? Lange Zeit wurde R als die beste Sprache in diesem Spezialgebiet angesehen, doch Python bietet für die Data Science zahlreiche Vorteile. Bibliotheken und Frameworks wie PyBrain, NumPy und PyMySQL für KI sind wichtige Argumente. Außerdem können Skripte erstellt werden, um einfache Prozesse zu automatisieren. Das macht den Arbeitsalltag von Datenprofis besonders effizient.

Investieren Sie in Ihre berufliche Zukunft und starten Sie jetzt Ihre Python-Weiterbildung! Egal, ob Programmier-Neuling oder Data Nerd: Die Haufe Akademie bietet die passende Weiterbildung für Sie: spannende Online-Kurse für Vollberufstätige und Schnelldurchläufer:innen im Bereich Python, Daten und künstliche Intelligenz.

In Kooperation mit stackfuel.

Quellen:

Get in IT: “WELCHE PROGRAMMIERSPRACHE SOLLTEST DU LERNEN?” [11.06.2021]

Coding Nomads: “Why Learn Python? 6 Reasons Why it’s So Hot Right Now.” [11.06.2021]

Kubernetes – der Steuermann für dein Big Data Projekt!

Kubernetes ist ein Container-Orchestrierungssystem. Damit lassen sich also Anwendungen auf verschiedene Container aufteilen, wodurch sie effizient und ausfallsicher ausgeführt werden können. Kubernetes ist ein Open-Source-Projekt und wurde erstmals im Jahr 2014 veröffentlicht. Es ist sehr leistungsfähig und kann verteilte Systeme, die über Tausende von Rechnern verstreut sind, verwalten.

In diesem und in vielen anderen Beiträgen zum Thema Kubernetes wird die Abkürzung k8s genutzt. Sie kommt daher, dass das Wort Kubernetes mit k beginnt, mit s endet und dazwischen 8 Buchstaben stehen. Bevor wir beginnen, noch eine kleine Anmerkung, woher der Name Kubernetes eigentlich stammt: Das griechische Wort „Kubernetes“ bedeutet Steuermann und beschreibt genau das, was Kubernetes macht, es steuert. Es steuert verschiedene sogenannte Container und koordiniert deren Ausführung.

Was sind Container und warum brauchen wir sie?

Eines der bestimmenden Merkmale von Big Data oder Machine Learning Projekte ist, dass ein einzelner Computer in vielen Fällen nicht ausreicht, um die gewaltigen Rechenlasten bewältigen zu können. Deshalb ist es notwendig, mehrere Computer zu verwenden, die sich die Arbeit teilen können. Zusätzlich können durch ein solches System auch Ausfälle von einzelnen Computern kompensiert werden, wodurch wiederum sichergestellt ist, dass die Anwendung durchgehend erreichbar ist. Wir bezeichnen eine solche Anordnung von Computern als Computing-Cluster oder verteiltes System für paralleles Rechnen.

Im Mittelpunkt des Open Source Projektes Docker stehen die sogenannten Container. Container sind alleinstehende Einheiten, die unabhängig voneinander ausgeführt werden und immer gleich ablaufen. Docker-Container können wir uns tatsächlich relativ praktisch wie einen Frachtcontainer vorstellen. Angenommen, in diesem Container arbeiten drei Menschen an einer bestimmten Aufgabe (Ich weiß, dass dies wahrscheinlich gegen jedes geltende Arbeitsschutzgesetz verstößt, aber es passt nun mal sehr gut in unser Beispiel).

In ihrem Container finden sie alle Ressourcen und Maschinen, die sie für ihre Aufgabe benötigen. Über eine bestimmte Lucke im Container bekommen sie die Rohstoffe geliefert, die sie benötigen, und über eine andere Lucke geben sie das fertige Produkt heraus. Unser Schiffscontainer kann dadurch ungestört und weitestgehend autark arbeiten. Den Menschen darin wird es nicht auffallen, ob sich das Schiff inklusive Container gerade im Hamburger Hafen, in Brasilien oder irgendwo bei ruhigem Seegang auf offenem Meer befindet. Solange sie kontinuierlich Rohstoffe geliefert bekommen, führen sie ihre Aufgabe aus, egal wo sie sind.

Kubernetes Containers - Foto von Ian Taylor auf Unsplash

Foto von Ian Taylor auf Unsplash

Genauso verhält es sich mit Docker Containern im Softwareumfeld. Es handelt sich dabei um genau definierte, abgeschlossene Applikationen, die auf verschiedenen Maschinen/Rechnern laufen können. Solange sie die festgelegten Inputs kontinuierlich erhalten, können sie auch kontinuierlich weiterarbeiten, unabhängig von ihrer Umgebung.

Was macht Kubernetes?

Wir nutzen Computing-Cluster, um rechenintensive Projekte, wie Machine Learning Modelle, auf mehreren Rechnern zuverlässig und effizient laufen lassen zu können. In Containern wiederum programmieren wir Unteraufgaben, die in sich abgeschlossen sein können und die immer gleich ablaufen, egal ob auf Rechner 1 oder Rechner 2. Das klingt doch eigentlich ausreichend, oder?

Verteilte Systeme bieten gegenüber Einzelrechnern neben Vorteilen auch zusätzliche Herausforderungen, beispielsweise bei der gemeinsamen Nutzung von Daten oder der Kommunikation zwischen den Rechnern innerhalb des Clusters. Kubernetes übernimmt die Arbeit die Container auf das Cluster zu verteilen und sorgt für den reibungslosen Ablauf des Programmes. Dadurch können wir uns auf das eigentliche Problem, also unseren konkreten Anwendungsfall, konzentrieren.

Kubernetes ist also wie der Kapitän, oder Steuermann, auf dem großen Containerschiff, der die einzelnen Container auf seinem Schiff richtig platziert und koordiniert.

Aufbau eines Kubernetes Clusters

Kubernetes wird normalerweise auf einem Cluster von Computern installiert. Jeder Computer in diesem Cluster wird als Node bezeichnet. Auf einem Computer bzw. Node wiederum laufen mehrere sogenannte Pods. Auf den Pods sind die schlussendlichen Container mit den kleineren Applikationen installiert und können in einem lokalen System kommunizieren.

Damit die Pods und die Container darin ohne Komplikationen laufen können, gibt es einige Hilfsfunktionen und -komponenten im Kubernetes Cluster, die dafür sorgen, dass alle Systeme reibungslos funktionieren:

Aufbau Kubernetes Cluster | Abbildung: Kubernetes

Aufbau Kubernetes Cluster | Abbildung: Kubernetes

  • Control Plane: Das ist der Rechner, welcher das komplette Cluster überwacht. Auf diesem laufen keine Pods für die Anwendung. Stattdessen werden den einzelnen Pods die Container zugewiesen, die auf ihnen laufen sollen.
  • Sched: Der Scheduler hält innerhalb des Clusters Ausschau nach neu erstellen Pods und teilt diese zu bestehenden Nodes zu.
  • ETCD: Ein Speicher für alle Informationen, die im Cluster anfallen und aufbewahrt werden müssen, bspw. Metadaten zur Konfiguration.
  • Cloud Controller Manager (CCM): Wenn ein Teil des Systems auf Cloud Ressourcen läuft, kommt diese Komponente zum Einsatz und übernimmt die Kommunikation und Koordination mit der Cloud.
  • Controller Manager (CM): Die wichtigste Komponente im Kubernetes Cluster überwacht das Cluster und sucht nach ausgefallenen Nodes, um dann die Container und Pods neu zu verteilen.
  • API: Diese Schnittstelle ermöglicht die Kommunikation zwischen den Nodes und dem Control Plane.

 

Die Nodes sind deutlich schlanker aufgebaut als das Control Plane und enthalten neben den Pods zwei wesentliche Komponenten zur Überwachung:

  • Kubelet: Es ist das Control Plane innerhalb eines Nodes und sorgt dafür, dass alle Pods einwandfrei laufen.
  • Kube-Proxy (k-proxy): Diese Komponente verteilt den eingehenden Node Traffic an die Pods, indem es das Netzwerk innerhalb des Nodes erstellt.

Fazit

Ein Netzwerk aus verschiedenen Computern wird als Cluster bezeichnet und wird genutzt, um große Rechenlasten auf mehrere Computer aufteilen und dadurch effizienter gestalten zu können. Die kleinste Einheit, in die man eine Applikation aufteilen kann, ist der Docker Container. Dieser beinhaltet eine Unteraufgabe des Programms, die autark, also unabhängig vom System, ausgeführt wird.

Da es in einem Computing-Cluster sehr viele dieser Container geben kann, übernimmt Kubernetes für uns das Management der Container, also unter anderem deren Kommunikation und Koordinierung. Das Kubernetes Cluster hat dazu verschiedene Komponenten die dafür sorgen, dass alle Container laufen und das System einwandfrei funktioniert.