Aus der Datenflut das Beste machen – Zertifikatskurs „Data Science“ in Brandenburg

Die Aufbereitung von Daten, ihre Analyse und Darstellung sind mittlerweile zu einer Wissenschaft für sich geworden – „Data Science“. Unternehmen sehen sich heute unabhängig von ihrer Größe von einer Vielzahl unterschiedlicher Daten herausgefordert: Neben klassischen Transaktionsdaten stehen heute z.B. Daten aus der Logistik (RFID, GIS), aus sozialen Medien, dem Internet der Dinge oder öffentlichen Quellen (Open Data / Public Data) zur Verfügung. Ein neuer Zertifikatskurs Data Science ermöglicht jetzt eine wissenschaftliche Weiterbildung zur Nutzung von Daten als „Rohstoff des 21. Jahrhunderts“.

Die Agentur für wissenschaftliche Weiterbildung und Wissenstransfer (AWW e.V.) bietet in Kooperation mit der Fachhochschule Brandenburg den berufsbegleitenden Zertifikatskurs mit nur wenigen Präsenzphasen ab Oktober an. Die wissenschaftliche Leitung hat Dr. Peter Lauf übernommen, ein erfahrener Praktiker, der zurzeit noch eine Professur für Quantitative Methoden und Data Mining an der Hochschule für Technik und Wirtschaft Berlin vertritt. Zertifiziert wird der Abschluss Data Scientist (FH).

Die Weiterbildung hat nur wenige Präsenzphasen an Freitagen und Samstagen und ist daher für Teilnehmer/innen aus dem ganzen Bundesgebiet geeignet – So kommen einige Teilnehmer auch aus Frankfurt am Main und München.

Wer sich schnell entscheidet, kann bis 16. Juli 2015 vom Frühbucherrabatt profitieren!

Der Inhalt des Kurses orientiert sich an einer bekannten Einteilung des amerikanischen Wirtschaftswissenschaftlers und Google-Chefökonomen Hal Varian: Ihm zufolge setzt sich die spezifische Wertschöpfungskette von Daten aus Zugriff, Verständnis, Verarbeitung, Analyse und Ergebniskommunikation zusammen. Data Science umfasst deshalb die Module Data Engineering (Zugriff, Verständnis, Verarbeitung), Quantitative Methoden und Data Mining (Analyse) sowie Storytelling: Kommunikation und Visualisierung der Ergebnisse (Ergebniskommunikation).

Die Weiterbildung vereinigt damit Fachwissen aus der Informatik mit quantitativen Methoden und Aspekten des Informations- und Kommunikationsdesigns. Wichtige Werkzeuge im Kurs sind die Statistiksprache R und Power Business Intelligence Tools. Auch auf Azure Machine Learning wird mit konkreten Beispielen Bezug genommen. Im Ergebnis sollen die Teilnehmer verschiedene Techniken zur Nutzung von Daten beherrschen und einen Überblick über die Voraussetzungen und möglichen Lösungsansätze im Bereich datengetriebener Projekte erhalten. Lernziel ist die reibungslose Kommunikation zwischen Management, Engineering und Administration.

Weitere Auskünfte erteilt Katja Kersten (Tel. 03381 – 355 754, E-Mail: katja.kersten@fh-brandenburg.de). Nähere Informationen im Internet sind unter www.aww-brandenburg.de erhältlich.

Top 10 der Python Bibliotheken für Data Science

Python gilt unter Data Scientists als Alternative zu R Statistics. Ich bevorzuge Python auf Grund seiner Syntax und Einfachheit gegenüber R, komme hinsichtlich der vielen Module jedoch häufig etwas durcheinander. Aus diesem Grund liste ich hier die – meiner Einschätzung nach – zehn nützlichsten Bibliotheken für Python, um einfache Datenanalysen, aber auch semantische Textanalysen, Predictive Analytics und Machine Learning in die Tat umzusetzen.

NumPy – Numerische Analyse

NumPy ist eine Open Source Erweiterung für Python. Das Modul stellt vorkompilierte Funktionen für die numerische Analyse zur Verfügung. Insbesondere ermöglicht es den einfachen Umgang mit sehr großen, multidimensionalen Arrays (Listen) und Matrizen, bietet jedoch auch viele weitere grundlegende Features (z. B. Funktionen der Zufallszahlenbildung, Fourier Transformation, linearen Algebra). Ferner stellt das NumPy sehr viele Funktionen mathematische Funktionen für das Arbeiten mit den Arrays und Matrizen bereit.

matplotlib – 2D/3D Datenvisualisierung

Die matplotlib erweitert NumPy um grafische Darstellungsmöglichkeiten in 2D und 3D. Das Modul ist in Kombination mit NumPy wohl die am häufigsten eingesetzte Visualisierungsbibliothek für Python.

Die matplotlib bietet eine objektorientierte API, um die dynamischen Grafiken in Pyhton GUI-Toolkits einbinden zu können (z. B. GTL+ oder wxPython).

NumPy und matplotlib werden auch mit den nachfolgenden Bibliotheken kombiniert.

Bokeh – Interaktive Datenvisualisierung

Während die Plot-Funktionen von matplotlib statisch angezeigt werden, kann in den Visualsierungsplots von Bokeh der Anwender interaktiv im Chart klicken und es verändern. Bokeh ist besonders dann geeignet, wenn die Datenvisualisierung als Dashboard im Webbrowser erfolgen soll.

Das Bild über diesen Artikel zeigt Visualiserungen mit dem Python Package Bokeh.

Pandas – Komplexe Datenanalyse

Pandas ist eine Bibliothek für die Datenverarbeitung und Datenanalyse mit Python. Es erweitert Python um Datenstrukturen und Funktionen zur Verarbeitung von Datentabellen. Eine besondere Stärke von Pandas ist die Zeitreihenanalyse. Pandas ist freie Software (BSD License).

Statsmodels – Statistische Datenanalyse

Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of descriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.

Die explorative Datenanalyse, statistische Modellierung und statistische Tests ermöglicht das Modul Statsmodels. Das Modul bringt neben vielen statistischen Funktionen auch eigene Plots (Visualisierungen) mit. Mit dem Modul wird Predictive Analytics möglich. Statsmodels wird häufig mit NumPy, matplotlib und Pandas kombiniert.

SciPy – Lineare Optimierung

SciPy ist ein sehr verbreitetes Mathematik-Modul für Python, welches den Schwerpunkt auf die mathematische Optimierung legt. Funktionen der linearen Algebra, Differenzialrechnung, Interpolation, Signal- und Bildverarbeitung sind in SciPy enthalten.

scikit-learn – Machine Learning

scikit-learn ist eine Framework für Python, das auf NumPy, matplotlob und SciPy aufsetzt, dieses jedoch um Funktionen für das maschinelle Lernen (Machine Learning) erweitert. Das Modul umfasst für das maschinelle Lernen notwendige Algorithmen für Klassifikationen, Regressionen, Clustering und Dimensionsreduktion.

Mlpy – Machine Learning

Alternativ zu scikit-learn, bietet auch Mlpy eine mächtige Bibliothek an Funktionen für Machine Learning. Mlpy setzt ebenfalls auf NumPy und SciPy, auf, erweitert den Funktionsumfang jedoch um Methoden des überwachten und unüberwachten maschinellen Lernens.

NLTK – Text Mining

NLTK steht für Natural Language Toolkit und ermöglicht den effektiven Einstieg ins Text Mining mit Python. Das Modul beinhaltet eigene (eher einfache) Visualisierungsmöglichkeiten zur Darstellung von Textmuster-Zusammenhängen, z. B. in Baumstrukturen. Für Text Mining und semantische Textanalysen mit Python gibt es wohl nichts besseres als NLTK.

Theano – Multidimensionale Berechnungen & GPU-Processing

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently

Für multidimensionale Datenanalysen bzw. die Verarbeitung und Auswertung von multidimensionalen Arrays gibt es wohl nichts schnelleres als die Bibliothek Theano. Theano ist dabei eng mit NumPy verbunden.

Theano ermöglicht die Auslagerung der Berechnung auf die GPU (Grafikprozessor), was bis zu 140 mal schneller als auf der CPU sein soll. Getestet habe ich es zwar nicht, aber grundsätzlich ist es wahr, dass die GPU multidimensionale Arrays schneller verarbeiten kann, als die CPU. Zwar ist die CPU universeller (kann quasi alles berechnen), die GPU ist aber auf die Berechnung von 3D-Grafiken optimiert, die ebenfalls über multidimensionalen Vektoren verarbeitet werden.