Industrial IoT erreicht die Fertigungshalle

Lumada Manufacturing Insights nutzt KI, Machine Learning und DataOps, um digitale  Innovationen für Manufacturing 4.0 bereitzustellen

Dreieich/ Santa Clara (Kalifornien), 17. September 2019 Mit Lumada Manufacturing Insights kündigt Hitachi Vantara eine Suite von IIoT-Lösungen (Industrial IoT) an, mit der Fertigungsunternehmen auf ihren Daten basierende Transformationsvorhaben umsetzen können. Die Lösung lässt sich in bestehende Anwendungen integrieren und liefert aussagekräftige Erkenntnisse aus Daten, ohne dass Fertigungsanlagen oder -anwendungen durch einen „Rip-and-Replace”-Wechsel kostspielig ersetzt werden müssen. Lumada Manufacturing Insights optimiert Maschinen, Produktion und Qualität und schafft dadurch die Basis für digitale Innovationen, ohne die Manufacturing 4.0 unmöglich wäre. Die Plattform unterstützt eine Vielzahl von Bereitstellungsoptionen und kann On-Premise oder in der Cloud ausgeführt werden.

„Daten und Analytics können Produktionsprozesse modernisieren und transformieren. Aber für zu viele Hersteller verlangsamen bestehende Legacy-Infrastrukturen und voneinander getrennte Software und Prozesse die Innovation”, kommentiert Brad Surak, Chief Product und Strategy Officer bei Hitachi Vantara. „Mit Lumada Manufacturing Insights können Unternehmen die Basis für digitale Innovationen schaffen und dabei mit den Systemen und der Software arbeiten, die sie bereits im Einsatz haben.” 

Lumada Manufacturing Insights wird weltweit ab dem 30. September verfügbar sein. Weitere Informationen:

Bei der deutschen Version handelt es sich um eine gekürzte Version der internationalen Presseinformation von Hitachi Vantara.

Hitachi Vantara
Hitachi Vantara, eine hundertprozentige Tochtergesellschaft der Hitachi Ltd., hilft datenorientierten Marktführern, den Wert ihrer Daten herauszufinden und zu nutzen, um intelligente Innovationen hervorzubringen und Ergebnisse zu erzielen, die für Wirtschaft und Gesellschaft von Bedeutung sind. Nur Hitachi Vantara vereint über 100 Jahre Erfahrung in Operational Technology (OT) und mehr als 60 Jahre in Information Technology (IT), um das Potential Ihrer Daten, Ihrer Mitarbeitern und Ihren Maschinen zu nutzen. Wir kombinieren Technologie, geistiges Eigentum und Branchenwissen, um Lösungen zum Datenmanagement zu liefern, mit denen Unternehmen das Kundenerlebnis verbessern, sich neue Erlösquellen erschließen und die Betriebskosten senken können. Über 80% der Fortune 100 vertrauen Hitachi Vantara bei Lösungen rund um Daten. Besuchen Sie uns unter www.HitachiVantara.com.

Hitachi Ltd. Corporation
Hitachi, Ltd. (TSE: 6501) mit Hauptsitz in Tokio, Japan, fokussiert sich auf Social Innovation und kombiniert dazu Information Technology, Operational Technology und Produkte. Im Geschäftsjahr 2018 (das am 31. März 2019 endete) betrug der konsolidierte Umsatz des Unternehmens insgesamt 9.480,6 Milliarden Yen (85,4 Milliarden US-Dollar), wobei das Unternehmen weltweit rund 296.000 Mitarbeiter beschäftigt. Hitachi liefert digitale Lösungen mit Lumada in den Bereichen Mobility, Smart Life, Industry, Energy und IT. Weitere Informationen über Hitachi finden Sie unter http://www.hitachi.com.

 

Pressekontakte

Hitachi Vantara
Bastiaan van Amstel 
bastiaan.vanamstel@hitachivantara.com 

 

Public Footprint 
Thomas Schumacher
+49 / (0) 214 8309 7790
schumacher@public-footprint.de

 

 

Die fünf Schritte zur Datenstrategie

Big Data ist allgegenwärtig – die Datenrevolution bietet in nahezu allen Branchen vielfältige Nutzungsmöglichkeiten. Bevor Sie jedoch investieren, sollten Sie sehr sorgfältig analysieren, welche Strategie auf Ihr Unternehmen exakt zugeschnitten ist: Ihre Datenstrategie.

Der Artikel Unternehmen brauchen eine Datenstrategie erläutert, wozu Unternehmen eine Datenstrategie erarbeiten sollten, dieser Artikel skizziert eine erprobte Vorgehensweise dafür. Diese Vorgehensweise basiert auf der  Strategiearbeit  unseres Teams, erhebt jedoch keinen Anspruch auf Vollständigkeit. Das überlegte Ausformulieren einer Datenstrategie ist eine individuelle Arbeit und so fällt es vielen Führungskräften und Mitarbeitern schwer, hierfür eine strukturierte Vorgehensweise zu finden.

Data Driven Thinking spielt bei der Formulierung der Datenstrategie eine wesentliche Rolle: Es ist die, an das Design Thinking angelehnte, Denkweise, Daten zu nutzen, um Fragen zu beantworten und damit verbundene Probleme zu lösen. Geübten Data Thinkern fällt das Durchdenken einer Datenstrategie relativ leicht. Für gedankliche Neueinsteiger in dieses Thema soll die folgende Vorgehensweise eine Hilfe bieten, denn aus meiner Erfahrung zeigten sich bisher folgende fünf Schritte als besonders erfolgskritisch. Diese Schritte sind einer Reihenfolge von der Vision bis zur Datenstrategie vorgegeben, mit dem Ziel, anfänglich ein Bewusstsein dafür zu schaffen, welche Datenquellen zur Verfügung stehen und welche Art von Daten in denen enthalten sind.

Die fünf Schritte zur Datenstrategie

1. Die Vision [Kick-Off]

Jedes Unternehmen benötigt eine individuelle Datenstrategie, die auf die spezielle Ausgangssituation und den gesetzten Unternehmenszielen zugeschnitten ist. Jede Datenstrategie hat eine klare Standortbestimmung und verfolgt oder unterstützt eine bestimmte Vision für das Unternehmen, an der die zu erstellende Datenstrategie auszurichten ist. Der Kick-Off zur Datenstrategie geht u.a. folgenden Fragen nach: Wie sieht die Marktsituation aus? Wie genau funktionieren die Geschäftsmodelle und welche Vision sehen die involvierten Mitarbeiter für ihr Unternehmen?

2. Die Datenquellen

Zum Data Driven Thinking gehört es, Daten zu finden, die Antworten auf Ihre Fragen liefern. Ebenso funktioniert es, vorhandene Daten zu betrachten und daraus Lösungsideen zu entwickeln. Eine Grundvoraussetzung für die Beantwortung von Fragen mit Daten ist es, dass alle verfügbaren Datenquellen gut dokumentiert wurden und die Mitarbeiter Kenntnis sowohl über die Datenquellen als auch über deren Dokumentation haben. Ist das nicht der Fall, ist dies der erste wichtige Schritt zur Erstellung einer Datenstrategie.

Dafür brauchen Sie Ihre IT-Administratoren, einen guten Data Engineer (Was ist ein Data Engineer? Und was ein Data Scientist?) und Ihre, für die Datenstrategie abgestellten Mitarbeiter aus den Fachbereichen.

Das Ergebnis ist die Gewissheit, über welche Daten Sie bereits verfügen und über welche Sie verfügen könnten, würden Sie es wünschen. Zudem werden mit den Datenquellen verbundene Fragen geklärt: Wie sieht es mit der Datensicherheit und dem Datenschutz aus? Nur so betrachten Sie Ihre Datenpotenziale in den weiteren Schritten ganzheitlich und rechtssicher.

3. Die Konzeptionierung der Informationsgewinnung

Sowohl in der Informatik als auch in der Managementlehre ist bekannt, dass aus Daten Informationen werden, wenn die einzelnen Datenpunkte miteinander verknüpft werden. Dennoch hapert es bei den meisten Unternehmen gerade an dieser Stelle. Bisher werden gerade einmal 1% aller Daten genutzt. Daten zu nutzen bedeutet dabei konkret, diese in Informationsflüsse umzuwandeln. Der Schritt der Konzeptionierung der Informationsgewinnung ist ein Ideenprozess darüber, wie – je nach Detailgrad – ganze Datenquellen oder auch nur einzelne Datentabellen innerhalb von Datenbanken miteinander verknüpft werden können – so wie es bisher noch nicht der Fall ist. Es ist ein gedanklicher Prozess des Data Engineering, mit der Fragestellung: Welche Informationsflüsse haben wir bereits und welche Datenquellen erschaffen neue Informationsflüsse (ggf. wenn sie miteinander verknüpft werden)?

Dafür brauchen Sie Ihre Mitarbeiter aus den Fachbereichen, den Data Engineer und idealerweise ab diesen Schritt einen Data Scientist.

Das Ergebnis ist eine Beschreibung der neuen Informationsgewinnung durch Zugriff auf bestimmte Daten.

4. Die Konzeptionierung der Wissensgenerierung

Werden Informationen in einem bestimmten Kontext betrachtet, entsteht Wissen. Im Kontext der Geschäftssitutation Ihres Unternehmens entsteht für Ihr Geschäft relevantes Wissen. In diesem Schritt der Erstellung Ihrer Datenstrategie wird beleuchtet, welche Informationen zur Wissensgenerierung von besonderem Interesse sein könnten und welches Wissen Sie über welche Informationen generieren.

Dafür brauchen Sie Ihren Data Scientist und Ihre Mitarbeiter aus den Fachbereichen

Als Ergebnis werden Analyseverfahren beschrieben, die die Generierung eines gewünschten Wissens (z. B. über Ihre Kunden, Lieferanten, Produkte oder besondere Ereignisse) wahrscheinlich machen (Data Mining) bis hin zur Errichtung eines Assistenzsystems (datengestützte Entscheidungsfindung) oder eines autonomen Systems (datengetriebene Entscheidungsfindung).

Übrigens: Data Driven Thinking ermöglicht Ihnen, bisher als nahezu unlösbar betrachtete Probleme doch noch zu lösen. Diese datengetriebene Denkweise wird für Führungskräfte der Zukunft unverzichtbar und gilt gegenwärtig als Karriere-Turbo in Richtung Führungsetage.

5. Die Planung der Umsetzung

Nachdem nun ein Bewusstsein dafür entstanden ist, welche Daten zur Verfügung stehen, wie aus ihnen Informationen erschaffen und Geschäftswissen zu generieren ist, kommt nun die Frage auf, wie dieses Gedankenkonstrukt in die Realität umzusetzen ist. Für die Umsetzung sind nun eine Menge Fragen zu klären, wie beispielsweise: Welche Tools sollen verwendet werden? Welches Team (Skillset) wird benötigt? Sollen Lösungen eingekauft oder selbst realisiert werden?

Dafür brauchen Sie Ihre Mitarbeiter aus den Fachbereichen, Ihren Data Scientist (Data Mining, Machine Learning) sowie – wenn Sie die Wissensgenerierung automatisieren möchten – erfahrene Software Entwickler.

Als Ergebnis erhalten Sie einen Plan, wie Ihre Datenstrategie technisch realisiert werden soll.

6. Die Datenstrategie [Resultat]

Nachdem Sie alle Fragen von der Vision bis zur konkreten Umsetzungsplanung beantwortet haben, fehlt nur noch die Ausformulierung Ihrer Ideen, Konzepte und der zu erwartenden Ergebnisse für jeden verständlich als ein Dokument namens Datenstrategie. Diese Datenstrategie soll Ihren Plan transparent machen und ist die Grundlage dafür, Ihre Mitarbeiter, Partner und letztendlich auch Ihre Vorgesetzten von Ihrer Strategie zu überzeugen.


Mein Vortrag zur Datenstrategie am Data Leader Day 2017

Am Data Leader Day am 09. November 2017 in Berlin erläutere ich als Keynote “Wie Sie für Ihr Unternehmen die richtige Datenstrategie entwickeln!”
Führungskräfte von Unternehmen wie Otto, Allianz, Deutsche Bahn und  SAP ergänzen mit ihren eigenen Erfahrungen hinsichtlich Big Data Projekten zur Geschäftsoptimierung. Jetzt hier Tickets sichern und dabei sein!

 

R als Tool im Process Mining

Die Open Source Sprache R ermöglicht eine Vielzahl von Analysemöglichkeiten, die von einer einfachen beschreibenden Darstellung eines Prozesses bis zur umfassenden statistischen Analyse reicht. Dabei können Daten aus einem Manufacturing Execution System, kurz MES, als Basis der Prozessanalyse herangezogen werden. R ist ein Open Source Programm, welches sich für die Lösung von statischen Aufgaben im Bereich der Prozessoptimierung sehr gut eignet, erfordert jedoch auf Grund des Bedienungskonzepts als Scriptsprache, grundlegende Kenntnisse der Programmierung. Aber auch eine interaktive Bedienung lässt sich mit einer Einbindung der Statistikfunktionen in ein Dashboard erreichen. Damit können entsprechend den Anforderungen, automatisierte Analysen ohne Programmierkenntnisse realisiert werden.

Der Prozess als Spagetti Diagramm

Um einen Überblick zu erhalten, wird der Prozess in einem „process value flowchart“, ähnlich einem Spagetti‐ Diagramm dargestellt und je nach Anforderung mit Angaben zu den Key Performance Indicators ergänzt. Im konkreten Fall werden die absolute Anzahl und der relative Anteil der bearbeiteten Teile angegeben. Werden Teile wie nachfolgend dargestellt, aufgrund von festgestellten Mängel bei der Qualitätskontrolle automatisiert ausgeschleust, können darüber Kennzahlen für den Ausschuss ermittelt werden.

Der Prozess in Tabellen und Diagrammen

Im folgenden Chart sind grundlegende Angaben zu den ausgeführten Prozessschritten, sowie deren Varianten dargestellt. Die Statistikansicht bietet eine Übersicht zu den Fällen, den sogenannte „Cases“, sowie zur Dauer und Taktzeit der einzelnen Aktivitäten. Dabei handelt es sich um eine Fertigungsline mit hohem Automatisierungsgrad, bei der jeder Fertigungsschritt im MES dokumentiert wird. Die Tabelle enthält statistische Angaben zur Zykluszeit, sowie der Prozessdauer zu den einzelnen Aktivitäten. In diesem Fall waren keine Timestamps für das Ende der Aktivität vorhanden, somit konnte die Prozessdauer nicht berechnet werden.

Die Anwendung von Six Sigma Tools

R verfügt über eine umfangreiche Sammlung von Bibliotheken zur Datendarstellung, sowie der Prozessanalyse. Darin sind auch Tools aus Six Sigma enthalten, die für die weitere Analyse der Prozesse eingesetzt werden können. In den folgenden Darstellungen wird die Möglichkeit aufgezeigt, zwei Produktionszeiträume, welche über eine einfache Datumseingabe im Dashboard abgegrenzt werden, gegenüber zu stellen. Dabei handelt es sich um die Ausbringung der Fertigung in Stundenwerten, die für jeden Prozessschritt errechnet wird. Das xbar und r Chart findet im Bereich der Qualitätssicherung häufig Anwendung zur ersten Beurteilung des Prozessoutputs.

Zwei weitere Six Sigma typische Kennzahlen zur Beurteilung der Prozessfähigkeit sind der Cp und Cpk Wert und deren Ermittlung ein Bestandteil der R Bibliotheken ist. Bei der Berechnung wird von einer Normalverteilung der Daten ausgegangen, wobei das Ergebnis aus der Überprüfung dieser Annahme im Chart durch Zahlen, als auch grafisch dargestellt wird.

Von Interesse ist auch die Antwort auf die Frage, welchem Trend folgt der Prozess? Bereits aus der Darstellung der beiden Produktionszeiträume im Box‐Whiskers‐Plot könnte man anhand der Mediane auf einen Trend zu einer Verschlechterung der Ausbringung schließen, den der Interquartilsabstand nicht widerspiegelt. Eine weitere Absicherung einer Aussage über den Trend, kann über einen statistischen Vergleichs der Mittelwerte erfolgen.

Der Modellvergleich

Besteht die Anforderung einer direkten Gegenüberstellung des geplanten, mit dem vorgefundenen, sogenannten „Discovered Model“, ist aufgrund der Komplexität beim Modellvergleich, dieser in R mit hohem Programmieraufwand verbunden. Besser geeignet sind dafür spezielle Process Miningtools. Diese ermöglichen den direkten Vergleich und unterstützen bei der Analyse der Ursachen zu den dargestellten Abweichungen. Bei Produktionsprozessen handelt es sich meist um sogenannte „Milestone Events“, die bei jedem Fertigungsschritt durch das MES dokumentiert werden und eine einfache Modellierung des Target Process ermöglichen. Weiterführende Analysen der Prozessdaten in R sind durch einen direkten Zugriff über ein API realisierbar oder es wurde vollständig integriert. Damit eröffnen sich wiederum die umfangreichen Möglichkeiten bei der statistischen Prozessanalyse, sowie der Einsatz von Six Sigma Tools aus dem Qualitätsmanagement. Die Analyse kann durch eine, den Kundenanforderungen entsprechende Darstellung in einem Dashboard vereinfacht werden, ermöglicht somit eine zeitnahe, weitgehend automatisierte Prozessanalyse auf Basis der Produktionsdaten.

Resümee

Process Mining in R ermöglicht zeitnahe Ergebnisse, die bis zur automatisierten Analyse in Echtzeit reicht. Der Einsatz beschleunigt erheblich das Process Controlling und hilft den Ressourceneinsatz bei der Datenerhebung, sowie deren Analyse zu reduzieren. Es kann als stand‐alone Lösung zur Untersuchung des „Discovered Process“ oder als Erweiterung für nachfolgende statistische Analysen eingesetzt werden. Als stand‐alone Lösung eignet es sich für Prozesse mit geringer Komplexität, wie in der automatisierten Fertigung. Besteht eine hohe Diversifikation oder sollen standortübergreifende Prozessanalysen durchgeführt werden, übersteigt der Ressourcenaufwand rasch die Kosten für den Einsatz einer Enterprise Software, von denen mittlerweile einige angeboten werden.

 

Data Driven Thinking

Daten gelten als vierter Produktionsfaktor – diese Erkenntnis hat sich mittlerweile in den meisten Führungsetagen durchgesetzt. Während das Buzzword Big Data gerade wieder in der Senke verschwindet, wird nun vor allem von der Data Driven Company gesprochen, oder – im Kontext von I4.0 – von der Smart Factory.
Entsprechend haben die meisten Konzerne in den Aufbau einer Big-Data-Infrastruktur investiert und auch die größeren Mittelständler beginnen allmählich damit, einen Anfang zu setzen. Für den Anfang bedarf es jedoch gar nicht erst eine neue IT-Infrastruktur oder gar eine eigene Data Science Abteilung, ein richtiger Start zum datengetriebenen Unternehmen beginnt mit dem richtigen Mindset – ein Bewusst sein für Datenpotenziale.

Data Driven Thinking

Auch wenn es spezielle Lösungsanbieter anders verkaufen, ist nicht etwa eine bestimmte Datenbank oder eine bestimmte Analysemethodik für die Bewerkstelligung der Digitalisierung notwendig, sondern die datengetriebene Denkweise. In den Datenbeständen der Unternehmen und jenen aus weiteren bisher unerschlossenen Datenquellen stecken große Potenziale, die erkannt werden wollen. Es ist jedoch nicht notwendig, gleich als ersten Schritt jegliche Potenziale in Daten erkennen zu müssen, denn es ist viel hilfreicher, für aktuelle Problemstellungen die richtigen Daten zu suchen, in denen die Antworten für die Lösungen stecken könnten.

Data Driven Thinking oder auch kurz Data Thinking, wie angeblich von einem der ersten Chief Data Officer als solches bezeichnet und auch von meinem Chief Data Scientist Kollegen Klaas Bollhoefer beworben, ist die korrekte Bezeichnung für das richtige Mindset, mit dem sowohl aktuelle Probleme als auch deren Lösungen aus Daten heraus besser identifiziert werden können. Hierfür braucht man auch kein Data Scientist zu sein, es reicht bereits ein in den Grundzügen ausgeprägtes Bewusstsein für die Möglichkeiten der Datenauswertung – Ein Skill, der zeitnah für alle Führungskräfte zum Must-Have werden wird!

Data Scientists als Design Thinker

Was gerade in Europa vordergründig kritisiert wird: Es treffen traditionelle Denkmuster auf ganz neue Produkte und Dienste, mit immer schnelleren Entwicklungsprozessen und tendenziell kürzeren Lebenszyklen – eine zum Scheitern verurteilte Kombination und sicherlich auch einer der Gründe, warum us-amerikanische und auch chinesische Internetunternehmen hier die Nase vorn haben.

Ein zeitgemäßer Ansatz, der im Produktmanagement bereits etabliert ist und genau dort das letzte Quäntchen Innovationskraft freisetzt, ist Design Thinking. Dabei handelt es sich um einen iterativen Ideenfindungs und -validierungsprozess, bei dem die Wünsche und Bedürfnisse der Anwender durchgängig im Fokus stehen, im Hintergrund jedoch steht ein interdisziplinäres Team, dass ein Geschäftsmodell oder einen Geschäftsprozess unter Berücksichtigung des Kundenfeedbacks designed. Nutzer und Entwickler müssen dabei stets im engen Austausch stehen. Erste Ideen und Vorschläge werden bereits möglichst früh vorgestellt, damit bereits lange vor der Fertigstellung das Feedback der Anwender in die weitere Realisierung einfließen kann. Somit orientiert sich die gesamte Entwicklungsphase am Markt – Zu spät erkannte Fehlentwicklungen und Flops lassen sich weitgehend vermeiden. Design Thinker stellen dem Nutzer gezielte Fragen und analysieren dessen Abläufe (und nichts anderes tut ein Data Scientist, er beobachtet seine Welt jedoch viel umfassender, nämlich über jegliche zur Verfügung stehende Daten).

Der Design Thinking Prozess führt crossfunktionale Arbeitsgruppen durch  sechs  Phasen:

In der ersten Phase, dem Verstehen, definiert die Arbeitsgruppe den Problemraum. In der darauffolgenden Phase des Beobachtens ist es entscheidend, die Aktivitäten im Kontext, also vor Ort, durchzuführen und Anwender in ihrem jeweiligen Umfeld zu befragen. In der dritten Phase werden die gewonnenen Erkenntnisse zusammengetragen. In der nachfolgenden Phase der Ideenfindung entwickelt das Team zunächst eine  Vielzahl von Lösungsoptionen. Abschließend werden beim Prototyping, in der fünften Phase, konkrete Lösungen entwickelt, die in der letzten Phase an den Zielgruppen auf ihren Erfolg getestet werden.

Beim Design Thinking mag es zwar eine grundsätzliche Vorgabe für den Ablauf der Ideenfindung und -erprobung geben – der eigentliche Mehrwert steckt jedoch in der dafür nötigen Denkweise und der Einstellung gegenüber dem Experimentieren sowie die Arbeit in einem interdisziplinären Team.

Data Driven Business Cycle

Data Driven Thinking überträgt diesen Ansatz auf die Mehrwert-Generierung unter Einsatz von Datenanalytik und leistet einen Transfer dieser systematischen Herangehensweise an komplexe Problemstellungen im Hinblick auf die Realisierung dafür angesetzter Big Data Projekte. Design Thinking unter Nutzung von Big Data ist überaus mächtig, wenn es darum geht, kundenorientierte Produkte und Prozesse zu entwickeln. Im Data Driven Business Cycle werden für immer neue Ideen und Fragestellungen:

  1. Daten generiert und gesammelt
  2. Daten gesichert, verwaltet und aufbereitet
  3. Daten analysiert
  4. daraus Erkenntnisse gezogen

Aus diesen sich iterativ kreisenden Prozessen der Datennutzung entsteht ein Data Pool (oftmals auch als Data Lake bezeichnet), der immer wieder zum für die Beantwortung von Fragen genutzt werden kann.

Prinzipien des maschinellen Lernen verstehen lernen

Data Driven Thinking entsteht mit dem Bewusstsein für die Potenziale, die in Daten liegen. Noch wirkungsvoller wird diese Denkweise, wenn auch ein Bewusstsein für die Möglichkeiten der Datenauswertung vorhanden ist.

„Kinder, die heute nicht programmieren können, sind die Analphabeten der Zukunft.“ schimpfte Vorzeige-Unternehmer Frank Thelen kürzlich in einer Politik-Talkrunde und bekräftigte damit meine noch davor verkündete Meinung “Karriere ohne Programmier-Erfahrung wird nahezu undenkbar”, denn “Systeme der künstlichen Intelligenz werden in der Zukunft unseren Einkauf und die Warenlieferung übernehmen, unsere Autos fahren, unsere Buchhaltung erledigen, unser Geld optimal auf den Finanzmärkten anlegen und unsere Krankheiten frühzeitig diagnostizieren und die bestmögliche medizinische Behandlung vorgeben.”

Jetzt muss niemand zum Experten für die Entwicklung künstlicher Systeme werden, um hier schritthalten zu können. Ein grundsätzliches Verständnis von den unterschiedlichen Prinzipien des maschinellen Lernen kann jedoch dabei helfen, solche Systeme und die dazugehörigen Chancen und Risiken besser einschätzen zu können, denn diese werden uns in Alltag und Beruf vermehrt begegnen, dabei einen entscheidenden Einfluss auf den Erfolg des Data Driven Business ausüben.

 

Data Leader Guide – Call for Papers

Connected Industry e. V., der Verband für Digitalisierung und Vernetzung, sammelt wegweisende Anwendungsfälle rund um Digitalisierung und Data Science und fasst diese in einem Leitfaden zusammen, dem Data Leader Guide 2016.

data-leader-guide-cover

Welche Inhalte kommen in den Data Leader Guide?

Der Data Leader Guide konzentriert sich auf Anwendungsfälle aus dem deutschsprachigen Wirtschaftsraum D/A/CH. In diesem Data Leader Guide werden vornehmlich die praktisch umgesetzten Use Cases / Business Cases von Anwender-Unternehmen aus den Branchen Industrie/Produktion, Dienstleistungen, Finanzen und Handel praxisorientiert beschrieben.

Was ist das Ziel des Data Leader Guide?

Anhand greifbarer Erfahrungswerte soll Entscheidern, Entwicklern und sonstigen Interessenten eine Orientierung und der Zugang zu dieser komplexen Materie erleichtert werden. Von besonderem Nutzen ist dabei der branchenübergreifende Blickwinkel des Leitfadens, da der Wissenstransfer von anderen Industrien gerade bei Big Data nicht hoch genug eingeschätzt werden kann.

Wann wird der Data Leader Guide 2016 erscheinen?

Pünktlich zum Data Leader Day am 17. November 2016. Die Ausgaben werden als Druckversion sowie als digitale Version erscheinen.

Warum sollte Ihre Anwendungsfall bzw. Projekt nicht fehlen?

Ihr Projekt wird zum Aushängeschild für die Innovationskraft und des Fortschritts Ihres Unternehmens. Darüber hinaus unterstreicht es die Attraktivität Ihres Unternehmens für qualifizierten Nachwuchs aus dem IT- und ingenieurswissenschaftlichen Bereich. Schließlich ist die Aufnahme Ihres Anwendungsfalles in den Data Leader Guide eine der seltenen Möglichkeiten, diesen auch öffentlich zu präsentieren und somit die Leistung des gesamten Projekt-Teams zu würdigen.

Call for Papers

So bringen Sie Ihren Anwendungsfall in den Data Leader Guide:

Sie sind Geschäftsführer, CIO oder ein Mitarbeiter mit Verantwortung für ein Projekt mit starkem Bezug zur Digitalisierung, Big Data, Data Science oder Industrie 4.0? Dann sollten Sie Ihr Projekt für einen Eintrag in den Data Leader Guide von Connected Industry bewerben. Genauere Informationen, wie Sie Ihren Anwendungsfall (Use Case / Business Case) in den Data Leader Guide 2016 bringen, finden Sie über diesen Direktlink zum Connected Industry e.V.

Mobilgeräte-Sicherheit

Safety first! Testen Sie Ihr Wissen rund um Mobile Device Management!

Mobile Device Management (MDM) unterstützt nicht nur der Verwaltung von mobilen Endgeräten und die Software- und Datenverteilung. Es ermöglicht vor allem, die nötige Sicherheit, Transparenz und Kontrolle beim Einsatz von Smartphones und Tablets zu schaffen.

Sicherheit ist das A und O bei der unternehmensinternen Nutzung von Mobilgeräten. Neben der klassischen Geräteverwaltung bilden deshalb Security-Funktionen wie Datenverschlüsselung, Remote-Recovery, App Blacklists und ein Malware-Schutz die Hauptpfeiler von MDM-Lösungen.

Zuverlässige Schutzfunktionen sollen vor allem verhindern, dass interne Daten unkontrolliert das Unternehmen verlassen. Zu diesem Zweck sorgt ein MDM-Client auf dem mobilen Device für die Einhaltung der Corporate-Regeln. Solche Regeln könnten beispielsweise die Nutzung von Kamera oder Bluetooth verbieten oder die Installation bestimmter Apps und Browser. Auch Jailbreak und Rooten stehen oft auf der Verbotsliste.

Neben Unterlassungen lassen sich auch Gebote vorschreiben, etwa, dass die Geräte beim Einschalten durch eine PIN-Eingabe entsperrt werden müssen, dass Daten auf den Devices per Backup vor Verlusten geschützt und gestohlene oder verlorene Geräte bereinigt werden müssen.

Solche Policy-Vorgaben werden per Echtzeitüberwachung kontrolliert – gerade beim Arbeiten mit kritischen Datensätzen wie personenbezogenen Daten, Kontodaten und anderen vertraulichen Informationen eine absolute Notwendigkeit. Verstößt ein Nutzer gegen eine oder mehrere dieser Regeln wird der Zugriff auf die geschäftskritischen Ressourcen blockiert. Als letzte Konsequenz und bei Verlust oder Diebstahl kann das Smartphone oder Tablet auch gesperrt oder dessen Inhalte kontrolliert gelöscht werden. Die Lokalisierung, das Sperren und Löschen der mobilen Devices sollte deshalb auch über die Luftschnittstelle möglich sein.

Herausforderung BYOD

Eine weitere Sicherheitshürde ist zu bewältigen, wenn das Unternehmen seinen Mitarbeitern die berufliche Nutzung ihrer privaten Geräte erlaubt: In solchen BYOD-Szenarien (BYOD = Bring Your Own Device) ist die strikte Trennung privater und geschäftlicher Daten ein Muss. Während Unternehmen stets im Auge behalten müssen, welche geschäftskritischen Daten ihre Mitarbeiter erheben, verarbeiten und nutzen, müssen deren private Daten privat bleiben. Hier haben sich Container-Lösungen etabliert. Diese stellen sicher, dass die Anwendungen und ihre Daten in einem abgeschotteten Umfeld (Container) – sauber getrennt voneinander – laufen.

Mit einer Container-Lösung lässt sich beispielsweise verhindern, dass Firmeninformationen per Copy & Paste auf Facebook oder Twitter landen. Ein Zugriff aus dem Firmenkontext auf die private Facebook- oder Twitter-App wäre damit schlichtweg nicht möglich. Durch Container lassen sich somit viele Schwachstellen eliminieren.

Für einen absolut sicheren, rollenbasierten Datenaustausch hochsensibler Dokumente empfiehlt sich die Einrichtung eines Secure Data Rooms. Dieser ist vollständig isoliert und durch multiple Sicherheitsstandards vor unbefugten Zugriffen gesichert. Dem Secure Data Room sind Rollenrechte hinterlegt, so dass nur bestimmte, authentifizierte Nutzergruppen auf diesen Raum zugreifen können. So lässt sich zum Beispiel für die Vorstandsebene ein Secure Data Room anlegen, in dem Geschäftsberichte und Verträge abgelegt und – je nach erlaubten Bearbeitungsstufen – eingesehen oder auch bearbeitet werden können.

In Zusammenarbeit mit IBM

 

Aus der Datenflut das Beste machen – Zertifikatskurs „Data Science“ in Brandenburg

Die Aufbereitung von Daten, ihre Analyse und Darstellung sind mittlerweile zu einer Wissenschaft für sich geworden – „Data Science“. Unternehmen sehen sich heute unabhängig von ihrer Größe von einer Vielzahl unterschiedlicher Daten herausgefordert: Neben klassischen Transaktionsdaten stehen heute z.B. Daten aus der Logistik (RFID, GIS), aus sozialen Medien, dem Internet der Dinge oder öffentlichen Quellen (Open Data / Public Data) zur Verfügung. Ein neuer Zertifikatskurs Data Science ermöglicht jetzt eine wissenschaftliche Weiterbildung zur Nutzung von Daten als „Rohstoff des 21. Jahrhunderts“.

Die Agentur für wissenschaftliche Weiterbildung und Wissenstransfer (AWW e.V.) bietet in Kooperation mit der Fachhochschule Brandenburg den berufsbegleitenden Zertifikatskurs mit nur wenigen Präsenzphasen ab Oktober an. Die wissenschaftliche Leitung hat Dr. Peter Lauf übernommen, ein erfahrener Praktiker, der zurzeit noch eine Professur für Quantitative Methoden und Data Mining an der Hochschule für Technik und Wirtschaft Berlin vertritt. Zertifiziert wird der Abschluss Data Scientist (FH).

Die Weiterbildung hat nur wenige Präsenzphasen an Freitagen und Samstagen und ist daher für Teilnehmer/innen aus dem ganzen Bundesgebiet geeignet – So kommen einige Teilnehmer auch aus Frankfurt am Main und München.

Wer sich schnell entscheidet, kann bis 16. Juli 2015 vom Frühbucherrabatt profitieren!

Der Inhalt des Kurses orientiert sich an einer bekannten Einteilung des amerikanischen Wirtschaftswissenschaftlers und Google-Chefökonomen Hal Varian: Ihm zufolge setzt sich die spezifische Wertschöpfungskette von Daten aus Zugriff, Verständnis, Verarbeitung, Analyse und Ergebniskommunikation zusammen. Data Science umfasst deshalb die Module Data Engineering (Zugriff, Verständnis, Verarbeitung), Quantitative Methoden und Data Mining (Analyse) sowie Storytelling: Kommunikation und Visualisierung der Ergebnisse (Ergebniskommunikation).

Die Weiterbildung vereinigt damit Fachwissen aus der Informatik mit quantitativen Methoden und Aspekten des Informations- und Kommunikationsdesigns. Wichtige Werkzeuge im Kurs sind die Statistiksprache R und Power Business Intelligence Tools. Auch auf Azure Machine Learning wird mit konkreten Beispielen Bezug genommen. Im Ergebnis sollen die Teilnehmer verschiedene Techniken zur Nutzung von Daten beherrschen und einen Überblick über die Voraussetzungen und möglichen Lösungsansätze im Bereich datengetriebener Projekte erhalten. Lernziel ist die reibungslose Kommunikation zwischen Management, Engineering und Administration.

Weitere Auskünfte erteilt Katja Kersten (Tel. 03381 – 355 754, E-Mail: katja.kersten@fh-brandenburg.de). Nähere Informationen im Internet sind unter www.aww-brandenburg.de erhältlich.

Hadoop und Connected Cars

Wie Automotive Unternehmen mehr aus großen Datenmengen machen

Wussten Sie schon: Für 13% der Autokäufer ist ein Neu-Fahrzeug ohne Internetzugang ein “no-go”! Dreizehn Prozent! Das bedeutet gleichzeitig 13% weniger Umsatz für den OEM. Die Unternehmensberatung Bain erwartet, dass diese sogenannten Connected Cars in nur wenigen Jahren die Regel und nicht mehr die Ausnahme sein werden.  

Dabei sind Connected Cars nur der Anfang: OEMs stehen jetzt vor der Herausforderung, ihr Portfolio noch einmal deutlich zu erweitern. Ziel ist es, eine breite Palette maßgeschneiderter Produkte anzubieten, um die immer unterschiedlicheren Erwartungen an Kundennutzen, Fahrerlebnis, Lebenszyklus und Garantie zu erfüllen.

Um all diese Angebote zu identifizieren, zu entwickeln und auch betriebswirtschaftlich tragbar zu machen, müssen Daten analysiert werden – viele Daten!  Read more