Artikelserie: BI Tools im Vergleich – Power BI von Microsoft

 

Den Auftakt dieser Artikelserie zum Vergleich von BI-Tools macht die Softwarelösung Power BI von Microsoft. Solltet ihr gerade erst eingestiegen sein, dann schaut euch ruhig vorher einmal die einführenden Worte und die Ausführungen zur Datenbasis an.

Lizenzmodell

Power BI ist in seinem Kern ein Cloud-Dienst und so ist auch die Ausrichtung des Lizenzmodells. Der Bezug als Stand-Alone SaaS ist genauso gut möglich, wie auch die Nutzung von Power BI im Rahmen des Serviceportfolios Office 365 von Microsoft. Zusätzlich besteht aber auch die Möglichkeit die Software lokal, also on premise laufen zu lassen. Beachten sollten man aber die eingeschränkte Funktionalität gegenüber der cloudbasierten Alternative.

Power BI Desktop, das Kernelement des Produktportfolios, ist eine frei verfügbare Anwendung. Damit schafft Microsoft eine geringe Einstiegsbarriere zur Nutzung der Software. Natürlich gibt es, wie auf dem Markt üblich, Nutzungsbeschränkungen, welche den User zum Kauf animieren. Interessanterweise liegen diese Limitierungen nicht in den wesentlichen Funktionen der Software selbst, also nicht im Aufbau von Visualisierungen, sondern vor allem in der beschränkten Möglichkeit Dashboards in einem Netzwerk zu teilen. Beschränkt auch deshalb, weil in der freien Version ebenfalls die Möglichkeit besteht, die Dashboards teilen zu können, indem eine Datei gespeichert und weiter versendet werden kann. Microsoft rät natürlich davon ab und verweist auf die Vorteile der Power BI Pro Lizenz. Dem ist i.d.R. zuzustimmen, da (wie im ersten Artikel näher erläutert) ein funktionierendes Konzept zur Data Governance die lokale Erstellung von Dashboards und manuelle Verteilung nicht erlauben würde. Sicherlich gibt es Firmen die Lizenzkosten einsparen wollen und funktionierende Prozesse eingeführt haben, um eine Aktualität und Korrektheit der Dashboards zu gewährleisten. Ein Restrisiko bleibt! Demgegenüber stehen relativ geringe Lizenzkosten mit $9,99 pro Monat/User für eine Power BI Pro Lizenz, nutzt man die cloud-basierte Variante mit dem Namen Power BI Service. Das Lizenzmodell ist für den Einstieg mit wenigen Lizenzen transparent gestaltet und zudem besteht keine Verpflichtung zur Abnahme einer Mindestmenge an Lizenzen, also ist der Einstieg auch für kleine Unternehmen gut möglich. Das Lizenzmodell wird komplexer bei intensivierter Nutzung der Cloud (Power BI Service) und dem zeitgleichen Wunsch, leistungsfähige Abfragen durchzuführen und große Datenmengen zu sichern. Mit einer Erweiterung der Pro Lizenz auf die Power BI Premium Lizenz, kann der Bedarf nach höheren Leistungsanforderungen gedeckt werden. Natürlich sind mit diesem Upgrade Kapazitätsgrenzen nicht aufgehoben und die Premium Lizenz kann je nach Leistungsanforderungen unterschiedliche Ausprägungen annehmen und Kosten verursachen. Microsoft hat sogenannte SKU´s definiert, welche hier aufgeführt sind. Ein Kostenrechner steht für eine Kostenschätzung online bereit, wobei je nach Anforderung unterschiedliche Parameter zu SKU`s (Premium P1, P2, P3) und die Anzahl der Pro Lizenzen wesentliche Abweichungen zum kalkulierten Preis verursachen kann. Die Kosten für die Premium P1 Lizenz belaufen sich auf derzeit $4.995 pro Monat und pro Speicherressource (Cloud), also i.d.R. je Kunde. Sollte eine cloud-basierte Lösung aus Kosten, technischen oder sogar Data Governance Gründen nicht möglich sein, kann der Power BI Report Server auf einer selbst gewählten Infrastruktur betrieben werden. Eine Premium Lizenz ermöglicht die lokale Bereitstellung der Software.

Anmerkung: Sowohl die Pro als auch die Premium Lizenz umfassen weitere Leistungen, welche in Einzelfällen ähnlich bedeutend sein können.

Um nur einige wenige zu nennen:

  • Eingebettete Dashboards auf Webseiten oder anderer SaaS Anwendungen
  • Nutzung der Power BI mobile app
  • Inkrementelle Aktualisierung von Datenquellen
  • Erhöhung der Anzahl automatischer Aktualisierungen pro Tag (Pro = 8)
  • u.v.m.

Community & Features von anderen Entwicklern

Power BI Benutzer können sich einer sehr großen Community erfreuen, da diese Software sich laut Gartner unter den führenden BI Tools befindet und Microsoft einen großen Kundenstamm vorzuweisen hat. Dementsprechend gibt es nicht nur auf der Microsoft eigenen Webseite https://community.powerbi.com/ eine Vielzahl von Themen, welche erörtert werden, sondern behandeln auch die einschlägigen Foren Problemstellungen und bieten Infomaterial an. Dieser große Kundenstamm bietet eine attraktive Geschäftsgrundlage für Entwickler von Produkten, welche komplementär oder gar substitutiv zu einzelnen Funktionen von Power BI angeboten werden. Ein gutes Beispiel für einen ersetzenden Service ist das Tool PowerBI Robots, welches mit Power BI verbunden, automatisch generierte E-Mails mit Screenshots von Dashboards an beliebig viele Personen sendet. Da dafür keine Power BI Pro Lizenz benötigt wird, hebelt dieser Service die wichtige Veröffentlichungsfunktion und damit einen der Hauptgründe für die Beschaffung der Pro Lizenz teilweise aus. Weiterhin werden Features ergänzt, welche noch nicht durch Microsoft selbst angeboten werden, wie z.B. die Erweiterung um ein Process Mining Tool namens PAFnow. Dieses und viele weitere Angebote können auf der Marketplace-Plattform heruntergeladen werden, sofern man eine Pro Lizenz besitzt.

Daten laden: Allgemeines

Ein sehr großes Spektrum an Datenquellen wird von Power BI unterstützt und fast jeder Nutzer sollte auf seinen Datenbestand zugreifen können. Unterstützte Datenquellen sind natürlich diverse Textdateien, SaaS verschiedenster Anbieter und Datenbanken jeglicher Art, aber auch Python, R Skripte sowie Blank Queries können eingebunden werden. Ebenfalls besteht die Möglichkeit mit einer ODBC-Schnittstelle eine Verbindung zu diversen, nicht aufgelisteten Datenquellen herstellen zu können. Ein wesentlicher Unterschied zwischen den einzelnen Datenquellen besteht in der Limitierung, eine direkte Verbindung aufsetzen zu können, eine sogenannte DirectQuery. In der Dokumentation zu Datenquellen findet man eine Auflistung mit entsprechender Info zur DirectQuery. Die Alternative dazu ist ein Import der Daten in Kombination mit regelmäßig durchgeführten Aktualisierungen. Mit Dual steht dem Anwender ein Hybrid aus beiden Methoden zur Verfügung, welcher in besonderen Anwendungsfällen sinnvoll sein kann. Demnach können einzelne Tabellen als Dual definiert und die im Folgenden beschriebenen Vorteile beider Methoden genutzt werden.

Import vs DirectQuery

Welche Verbindung man wählen sollte, hängt von vielen Faktoren ab. Wie bereits erwähnt, besteht eine Limitierung von 8 Aktualisierungen pro Tag und je Dataset bei importierten Datenquellen, sofern man nur eine Pro Lizenz besitzt. Mit der Nutzung einer DirectQuery besteht diese Limitierung nicht. Ebenfalls existiert keine Beschränkung in Bezug auf die Upload-Größe von 1GB je Dataset. Eine stetige Aktualität der Reports ist unter der Einstellung DirectQuery selbst redend.

Wann bringt also der Import Vorteile?

Dieser besteht im Grunde in den folgenden technischen Limitierungen von DirectQuery:

  • Es können nicht mehr als 1 Mio. Zeilen zurückgegeben werden (Aggregationen wiederum können über mehr Zeilen laufen).
  • Es können nur eingeschränkt Measures (Sprache DAX) geschrieben werden.
  • Es treten Fehler im Abfrageeditor bei übermäßiger Komplexität von Abfragen auf.
  • Zeitintelligenzfunktionen sind nicht verfügbar.

Daten laden: AdventureWorks2017Dataset

Wie zu erwarten, verlief der Import der Daten reibungslos, da sowohl die Datenquelle als auch das Dataset Produkte von Microsoft sind. Ein Import war notwendig, um Measures unter Nutzung von DAX anzuwenden. Power BI ermöglichte es, die Daten schnell in das Tool zu laden.

Beziehungen zwischen Datentabellen werden durch die Software entweder aufgrund von automatischer Erkennung gleicher Attribute über mehrere Tabellen hinweg oder durch das Laden von Metadaten erkannt. Aufgrund des recht komplexen und weit verzweigten Datasets schien dieses Feature im ersten Moment von Vorteil zu sein, erst in späteren Visualisierungsschritten stellte sich heraus, dass einige Verbindungen nicht aus den Metadaten geladen wurden, da eine falsch gesetzte Beziehung durch eine automatische Erkennung gesetzt wurde und so die durch die Metadaten determinierte Beziehung nicht übernommen werden konnte. Lange Rede kurzer Sinn: Diese Automatisierung ist arbeitserleichternd und nützlich, insbesondere für Einsteiger, aber das manuelle Setzen von Beziehungen kann wenig auffällige Fehler vermeiden und fördert zugleich das eigene Verständnis für die Datengrundlage. Microsoft bietet seinen Nutzer an, diese Features zu deaktivieren. Das manuelle Setzen der Beziehungen ist über das Userinterface (UI) im Register „Beziehungen“ einfach umzusetzen. Besonders positiv ist die Verwirklichung dieses Registers, da der Nutzer ein einfach zu bedienendes Tool zur Strukturierung der Daten erhält. Ein Entity-Relationship-Modell (ERM) zeigt das Resultat der Verknüpfung und zugleich das Datenmodel gemäß dem Konzept eines Sternenschemas.

Daten transformieren

Eines der wesentlichen Instrumente zur Transformierung von Daten ist Power Query. Diese Software ist ebenfalls ein etablierter Bestandteil von Excel und verfügt über ein gelungenes UI, welches die Sprache M generiert. Ca. 95% der gewünschten Daten Transformationen können über das UI durchgeführt werden und so ist es in den meisten Fällen nicht notwendig, M schreiben zu müssen. Durch das UI ermöglicht Power Query, wesentliche Aufgaben wie das Bereinigen, Pivotieren und Zusammenführen von Daten umzusetzen. Aber es ist von Vorteil, wenn man sich zumindest mit der Syntax auskennt und die Sprache in groben Zügen versteht. Die Sprache M wie auch das UI, welches unter anderem die einzelnen Bearbeitungs-/Berechnungsschritte aufzeigt, ist Workflow-orientiert. Das UI ist gut strukturiert, und Nutzer finden schnellen Zugang zur Funktionsweise. Ein sehr gut umgesetztes Beispiel ist die Funktion „Spalten aus Beispielen“. In nur wenigen Schritten konnten der Längen- und Breitengrad aus einer zusammengefassten Spalte getrennt werden. Den erzeugten M-Code und den beschriebenen Workflow seht ihr in der folgenden Grafik.

Das Feature zur Zusammenführung von Tabellen ist jedoch problematisch, da das UI von Power Query dem Nutzer keine vorprogrammierten Visualisierungen o.ä. an die Hand gibt, um die Resultate überprüfen zu können. Wie bei dem Beispiel Dataset von Microsoft, welches mit über 70 Tabellen eine relativ komplexe Struktur aufweist, können bei unzureichender Kenntnis über die Struktur der Datenbasis Fehler entstehen. Eine mögliche Folge können die ungewollte Vervielfachung von Zeilen (Kardinalität ist „viele zu viele“) oder gar das Fehlen von Informationen sein (nur eine Teilmenge ist in die Verknüpfung eingeschlossen). Zur Überprüfung der JOIN Ergebnisse können die drei genannten Register (siehe obige Grafik) dienen, aber ein Nutzer muss sich selbst ein eigenes Vorgehen zur Überwachung der korrekten Zusammenführung überlegen.

Nachdem die Bearbeitung der Daten in Power Query abgeschlossen ist und diese in Power BI geladen werden, besteht weiterhin die Möglichkeit, die Daten unter Nutzung von DAX zu transformieren. Insbesondere Measures bedienen sich ausschließlich dieser Sprache und ein gutes Auto-Fill-Feature mit zusätzlicher Funktionsbeschreibung erleichtert das Schreiben in DAX. Dynamische Aggregationen und etliche weitere Kalkulationen sind denkbar. Nachfolgend findet ihr einige wenige Beispiele, welche auch im AdventureWorks Dashboard Anwendung finden:

Measures können komplexe Formen annehmen und Power BI bietet eine sehr gute Möglichkeit gebräuchliche Berechnungen über sogenannte Quickmeasures (QM) vorzunehmen. Ähnlich wie für die Sprache M gibt es ein UI zur Erstellung dieser, ohne eine Zeile Code schreiben zu müssen. Die Auswahl an QM ist groß und die Anwendungsfälle für die einzelnen QM sind vielfältig. Als Beispiel könnt ihr euch das Measure „Kunden nach Year/KPI/Category“ im bereitgestellten AdventureWorks Dashboard anschauen, welches leicht abgewandelt auf Grundlage des QM „Verkettete Werteliste“ erstellt wurde. Dieses Measure wurde als dynamischer Titel in das Balkendiagramm eingebunden und wie das funktioniert seht ihr hier.

Daten visualisieren

Der letzte Schritt, die Visualisierung der Daten, ist nicht nur der wichtigste, sondern auch der sich am meisten unterscheidende Schritt im Vergleich der einzelnen BI-Tools. Ein wesentlicher Faktor dabei ist die Arbeitsabfolge in Bezug auf den Bau von Visualisierungen. Power BI ermöglicht dem Nutzer, einzelne Grafiken in einem UI zu gestalten und in dem selbigen nach Belieben anzuordnen. Bei Tableau und Looker zum Beispiel werden die einzelnen Grafiken in separaten UIs gestaltet und in einem weiteren UI als Dashboard zusammengesetzt. Eine Anordnung der Visualisierungen ist in Power BI somit sehr flexibel und ein Dashboard kann in wenigen Minuten erstellt werden. Verlieren kann man sich in den Details, fast jede visuelle Vorstellung kann erfüllt werden und in der Regel sind diese nur durch die eigene Zeit und das Know-How limitiert. Ebenfalls kann das Repertoire an Visualisierungen um sogenannte Custom Visualizations erweitert werden. Sofern man eine Pro Lizenz besitzt, ist das Herunterladen dieser Erweiterungen unter AppSource möglich.

Eine weitere Möglichkeit zur Anreicherung von Grafiken um Detailinformationen, besteht über das Feature Quickinfo. Sowohl eine schnell umsetzbare und somit wenig detaillierte Einbindung von Details ist möglich, aber auch eine aufwendigere Alternative ermöglicht die Umsetzung optisch ansprechender und sehr detaillierter Quickinfos.

Das Setzen von Filtern kann etliche Resultate und Erkenntnisse mit sich bringen. Dem Nutzer können beliebige Ansichten bzw. Filtereinstellungen in sogenannten Bookmarks gespeichert werden, sodass ein einziger Klick genügt. In dem AdventureWorks Dashboard wurde ein nützliches Bookmark verwendet, welches dem Zurücksetzen aller Filter dient.

Erstellt man Visualisierungen im immer gleichen Format, dann lohnt es sich ein eigenes Design in JSON-Format zu erstellen. Wenn man mit diesem Format nicht vertraut ist, kann man eine Designvorlage über das Tool Report Theme Generator V3 sehr einfach selbst erstellen.

Existiert ein Datenmodell und werden Daten aus verschiedenen Tabellen im selben Dashboard zusammengestellt (siehe auch Beispiel Dashboard AdventureWorks), dann werden entsprechende JOIN-Operationen im Hintergrund beim Zusammenstellen der Visualisierung erstellt. Ob das Datenmodell richtig aufgebaut wurde, ist oft erst in diesem Schritt erkennbar und wie bereits erwähnt, muss sich ein jeder Anwender ein eigenes Vorgehen überlegen, um mit Hilfe dieses Features die vorausgegangenen Schritte zu kontrollieren.

Warum braucht Power BI eine Python Integration?

Interessant ist dieses Feature in Bezug auf Machine Learning Algorithmen, welche direkt in Power BI integriert werden können. Python ist aber auch für einige Nutzer eine gern genutzte Alternative zu DAX und M, sofern man sich mit diesen Sprachen nicht auseinandersetzen möchte. Zwei weitere wesentliche Gründe für die Nutzung von Python sind Daten zu transformieren und zu visualisieren, unter Nutzung der allseits bekannten Plots. Zudem können weitere Quellen eingebunden werden. Ein Vorteil von Python ist dessen Repertoire an vielen nützlichen Bibliotheken wie pandas, matplotlib u.v.m.. Jedoch ist zu bedenken, dass die Python-Skripte zur Datenbereinigung und zur Abfrage der Datenquelle erst durch den Data Refresh in Power BI ausgeführt werden. In DAX geschriebene Measures bieten den Vorteil, dass diese mehrmals verwendet werden können. Ein Python-Skript hingegen muss kopiert und demnach auch mehrfach instandgehalten werden.

Es ist ratsam, Python in Power BI nur zu nutzen, wenn man an die Grenzen von DAX und M kommt.

Fazit

Das Lizenzmodel ist stark auf die Nutzung in der Cloud ausgerichtet und zudem ist die Funktionalität der Software, bei einer lokalen Verwendung (Power Bi Report Server) verglichen mit der cloud-basierten Variante, eingeschränkt. Das Lizenzmodell ist für den Power BI Neuling, welcher geringe Kapazitäten beansprucht einfach strukturiert und sehr transparent. Bereits kleine Firmen können so einen leichten Einstieg in Power BI finden, da auch kein Mindestumsatz gefordert ist.

Gut aufbereitete Daten können ohne großen Aufwand geladen werden und bis zum Aufbau erster Visualisierungen bedarf es nicht vieler Schritte, jedoch sind erste Resultate sehr kritisch zu hinterfragen. Die Kontrolle automatisch generierter Beziehungen und das Schreiben von zusätzlichen DAX Measures zur Verwendung in den Visualisierungen sind in den meisten Fällen notwendig, um eine korrekte Darstellung der Zahlen zu gewährleisten.

Die Transformation der Daten kann zum großen Teil über unterschiedliche UIs umgesetzt werden, jedoch ist das Schreiben von Code ab einem gewissen Punkt unumgänglich und wird auch nie komplett vermeidbar sein. Power BI bietet aber bereits ein gut durchdachtes Konzept.

Im Großen und Ganzen ist Power BI ein ausgereiftes und sehr gut handhabbares Produkt mit etlichen Features, ob von Microsoft selbst oder durch Drittanbieter angeboten. Eine große Community bietet ebenfalls Hilfestellung bei fast jedem Problem, wenn dieses nicht bereits erörtert wurde. Hervorzuheben ist der Kern des Produkts: die Visualisierungen. Einfach zu erstellende Visualisierungen jeglicher Art in einem ansprechenden Design grenzen dieses Produkt von anderen ab.

Fortsetzung: Tableau wurde als zweites Tool dieser Artikelserie näher beleuchtet.

Artikelserie: BI Tools im Vergleich – Datengrundlage

Als Datengrundlage habe ich mir die Trainingsdaten – AdventureWorks 2017 – von Microsoft geschnappt und Ziel soll es sein, ein möglichst gleiches Dashboard in jedem dieser Tools zu erstellen.

Bei der Datenbasis handelt es sich bereits um ein relationales Datenbankmodel mit strukturierten Daten, welches als bak (Backup Datei) zur Verfügung steht. Die Daten sind bereits bereinigt und normalisiert, sowie bestehen auch bereits Beziehungen zwischen den Tabellen. Demnach fallen in meinem Fall aufwendige Datenbereinigungen und auch der Aufbau eines relationalen Datenmodells im Dashboard selbst weg. In den meisten Tools ist beides möglich, wenn auch nicht das optimale Programm, um Datenbereinigungen vorzunehmen. Alle Tools bieten einem die Möglichkeit strukturierte und unstrukturierte Daten aus verschiedensten Datenquellen zu importieren. Meine Datenquelle wird SQL Server von Microsoft sein, da die bak nicht direkt in die meisten Dashboards geladen werden kann und zudem auf Grund der Datenmenge ein kompletter Upload auch nicht ratsam ist. Aus Gründen der Performance sollten nur die für das Dashboard relevanten Daten importiert werden. In meinem Fall werde ich Daten aus lediglich 15 von insgesamt 71 Tabellen verwenden um Visualisierungen für wesentliche Geschäftskennzahlen aufzubauen. Die obere Grafik zeigt das Entity-Relationship-Modell (ERM) zu den relevanten Tabellen. Die Datengrundlage eignet sich sehr gut für tiefer gehende Analysen und bietet zugleich ein großes Potential für sehr ausgefallene Visualisierungen. Im Fokus dieser Artikelserie soll aber nicht die Komplexität der Grafiken, sondern die allgemeine Handhabbarkeit stehen. Meiner Erfahrung nach geht der Blick für das wesentliche verloren, sobald man zu ausgefallene Visualisierungen in einem Dashboard verwendet.

Eine mir selbst auferlegte Beschränkung soll sein, dass die Daten lediglich in dem Dashboard manipuliert werden, bedeutet das keine Tabellen in SQL Server geändert oder Views erstellt werden. Gehen wir einfach Mal davon aus, dass der Data Engineer Haare auf den Zähnen hat und mich weder an seine Datenbank ran lässt noch mir in irgendeiner Art und Weise zuarbeitet.

Also ganz nach dem Motto: Help yourself! 😉

Daten zum Üben gibt es etliche. Einfach Mal Github, Kaggle oder andere Open Data Quellen anzapfen. Falls ihr Lust habt, dann probiert euch doch selber einmal an den Dashboards. Ihr solltet ein wenig Zeit mitbringen, aber wenn man erstmal drin ist macht es viel Spaß und es gibt immer etwas neues zu entdecken!

Das erste Dashboard werde ich in Power BI erstellen. Falls ihr mir folgen möchtet: Hier ein paar Links um euch startklar zu machen.

Dataset: AdventureWorks 2017

MS SQL Server

MS SSMS

MS Power BI (Desktop)

Artikelserie: BI Tools im Vergleich – Einführung und Motivation

„Mit welchem BI-Tool arbeitest du am liebsten?“ Mit dieser Frage werde ich dieser Tage oft konfrontiert. Meine klassische Antwort und eine typische Beraterantwort: „Es kommt darauf an.“ Nach einem Jahr als Berater sitzt diese Antwort sicher, aber gerade in diesem Fall auch begründet. Auf den Analytics und Business Intelligence Markt drängen jedes Jahr etliche neue Dashboard-Anbieter und die etablierten erweitern Services und Technik in rasantem Tempo. Zudem sind die Anforderungen an ein BI-Tool höchst unterschiedlich und von vielen Faktoren abhängig. Meine Perspektive, also die Anwenderperspektive eines Entwicklers, ist ein Faktor und auch der Kern dieser Artikelserie. Um die Masse an Tools auf eine machbare Anzahl runter zu brechen werde ich die bekanntesten Tools im Vergleich ausprobieren und hier vorstellen. Die Aufgabe ist also schnell erklärt: Ein Dashboard mit den gleichen Funktionen und Aussagen in unterschiedlichen Tools erstellen. Im Folgenden werde ich auch ein paar Worte zur Bewertungsgrundlage und zur Datengrundlage verlieren.

Erstmal kurz zu mir: Wie bereits erwähnt arbeite ich seit einem Jahr als Berater, genauer als Data Analyst in einem BI-Consulting Unternehmen namens DATANOMIQ. Bereits davor habe ich mich auf der anderen Seite der Macht, quasi als Kunde eines Beraters, viel mit Dashboards beschäftigt. Aber erst in dem vergangenen Jahr wurde mir die Fülle an BI Tools bewusst und der Lerneffekt war riesig. Die folgende Grafik zeigt alle Tools welche ich in der Artikelserie vorstellen möchte.

Gartner’s Magic Quadrant for Analytics and Business Intelligence Platform führt jedes Jahr eine Portfolioanalyse über die visionärsten und bedeutendsten BI-Tools durch, unter der genannten befindet sich nur eines, welches nicht in dieser Übersicht geführt wird, ich jedoch als potenziellen Newcomer für die kommenden Jahre erwarte. Trotz mittlerweile einigen Jahren Erfahrung gibt es noch reichlich Potential nach oben und viel Neues zu entdecken, gerade in einem so direkten Vergleich. Also seht mich ruhig als fortgeschrittenen BI-Analyst, der für sich herausfinden will, welche Tools aus Anwendersicht am besten geeignet sind und vielleicht kann ich dem ein oder anderen auch ein paar nützliche Tipps mit auf den Weg geben.

Was ist eigentlich eine „Analytical and Business Intelligence Platform“?

Für alle, die komplett neu im Thema sind, möchte ich erklären, was eine Analytical and Business Intelligence Platform in diesem Kontext ist und warum wir es nachfolgend auch einfach als BI-Tool bezeichnen können. Es sind Softwarelösungen zur Generierung von Erkenntnissen mittels Visualisierung und Informationsintegration von Daten. Sie sollten einfach handhabbar sein, weil der Nutzer für die Erstellung von Dashboards keine speziellen IT-Kenntnisse mitbringen muss und das Userinterface der jeweiligen Software einen mehr oder minder gut befähigt die meisten Features zu nutzen. Die meisten und zumindest die oben genannten lassen sich aber auch um komplexere Anwendungen und Programmiersprachen erweitern. Zudem bestimmt natürlich auch der Use Case den Schwierigkeitsgrad der Umsetzung.

Cloudbasierte BI Tools sind mittlerweile der Standard und folgen dem allgemeinen Trend. Die klassische Desktop-Version wird aber ebenfalls von den meisten angeboten. Von den oben genannten haben lediglich Data Studio und Looker keine Desktop- Version. Für den einfachen User macht das keinen großen Unterschied, welche Version man nutzt. Aber für das Unternehmen in Gesamtheit ist es ein wesentlicher Entscheidungsfaktor für die Wahl der Software und auch auf den Workflow des Developers bzw. BI-Analyst kann sich das auswirken.

Unternehmensperspektive: Strategie & Struktur

Die Unternehmensstrategie setzt einen wesentlichen Rahmen zur Entwicklung einer Datenstrategie worunter auch ein anständiges Konzept zur Data Governance gehört.

Ein wesentlicher Punkt der Datenstrategie ist die Verteilung der BI- und Datenkompetenz im Unternehmen. An der Entwicklung der Dashboards arbeiten in der Regel zwei Parteien, der Developer, der im Unternehmen meistens die Bezeichnung BI- oder Data Analyst hat, und der Stakeholder, also einzelner User oder die User ganzer Fachabteilungen.

Prognose: Laut Gartner wird die Anzahl der Daten- und Analyse-Experten in den Fachabteilungen, also die Entwickler und Benutzer von BI Tools, drei Mal so schnell wachsen verglichen mit dem bereits starken Wachstum an IT-Fachkräften.

Nicht selten gibt es für ein Dashboard mehrere Stakeholder verschiedener Abteilungen. Je nach Organisation und Softwarelösung mit unterschiedlich weitreichenden Verantwortlichkeiten, was die Entwicklung eines Dashboards an geht.

Die obige Grafik zeigt die wesentlichen Prozessschritte von der Konzeption bis zum fertigen Dashboard und drei oft gelebte Konzepte zur Verteilung der Aufgaben zwischen dem User und dem Developer. Natürlich handelt es sich fast immer um einen iterativen Prozess und am Ende stellen sich auch positive Nebenerkenntnisse heraus. Verschiedene Tools unterstützen durch Ihre Konfiguration und Features verschiedene Ansätze zur Aufgabenverteilung, auch wenn mit jedem Tool fast jedes System gelebt werden kann, provozieren einige Tools mit ihrem logischen Aufbau und dem Lizenzmodell zu einer bestimmten Organisationsform. Looker zum Beispiel verkauft mit der Software das Konzept, dem User eine größere Möglichkeit zu geben, das Dashboard in Eigenregie zu bauen und gleichzeitig die Datenhoheit an den richtigen Stellen zu gewährleisten (mittlerer Balken in der Grafik). Somit wird dem User eine höhere Verantwortung übertragen und weit mehr Kompetenzen müssen vermittelt werden, da der Aufbau von Visualisierung ebenfalls Fehlerpotential in sich birgt. Ein Full‑Service hingegen unterstützt das Konzept fast aller Tools durch Zuweisen von Berechtigungen. Teilweise werden aber gewisse kostenintensive Features nicht genutzt oder auf Cloud-Lizenzen verzichtet, so dass jeder Mitarbeiter unabhängig auf einer eigenen Desktop-Version arbeitet, am Ende dann leider die Single Source of Truth nicht mehr gegeben ist. Denn das führt eigentlich gezwungenermaßen dazu, dass die User sich aus x beliebigen Datentöpfen bedienen, ungeschultes Personal falsche Berechnungen anstellt und am Ende die unterschiedlichen Abteilungen sich mit schlichtweg falschen KPIs überbieten. Das spricht meistens für ein Unternehmen ohne vollumfängliches Konzept für Data Governance bzw. einer fehlenden Datenstrategie.

Zu dem Thema könnte man einen Roman schreiben und um euch diesen zu ersparen, möchte ich kurz die wichtigsten Fragestellungen aus Unternehmensperspektive aufzählen, ohne Anspruch auf Vollständigkeit:

  • Wann wird ein Return on Invest (ROI) realisiert werden?
  • Wie hoch ist mein Budget für BI-Lösungen?
  • Sollen die Mitarbeiter mit BI-Kompetenz zentral oder dezentral organisiert sein?
  • Wie ist meine Infrastruktur aufgebaut? Cloudbasiert oder on Premise?
  • Soll der Stakeholder/User Zeit-Ressourcen für den Aufbau von Dashboards erhalten?
  • Über welche Skills verfügen die Mitarbeiter bereits?
  • Welche Autorisierung in Bezug auf die Datensichtbarkeit und -manipulation haben die jeweiligen Mitarbeiter der Fachabteilungen?
  • Bedarf an Dashboards: Wie häufig werden diese benötigt und wie oft werden bestehende Dashboards angepasst?
  • Kann die Data Exploration durch den Stakeholder/User einen signifikanten Mehrwert liefern?
  • Werden Dashboards in der Regel für mehrere Stakeholder gebaut?

Die Entscheidung für die Wahl eines Dashboards ist nicht nur davon abhängig, wie sich die Grafiken von links nach rechts schieben lassen, sondern es handelt sich auch um eine wichtige strategische Frage aus Unternehmersicht.

Ein Leitsatz hierbei sollte lauten:
Die Strategie des Unternehmens bestimmt die Anforderungen an das Tool und nicht andersrum!

Perspektive eines Entwicklers:      Bewertungsgrundlage der Tools

So jetzt Mal Butter bei die Fische und ab zum Kern des Artikels. Jeder der Artikel wird aus den folgenden Elementen bestehen:

  • Das Tool:
    • Daten laden
    • Daten transformieren
    • Daten visualisieren
    • Zukunftsfähigkeit am Beispiel von Pythonintegration
    • Handhabbarkeit
  • Umweltfaktoren:
    • Community
    • Dokumentation
    • Features anderer Entwickler(-firmen) zur Erweiterung
    • Lizenzmodell
      • Cloud (SaaS) ODER on premise Lizenzen?
      • Preis (pro Lizenz, Unternehmenslizenz etc.)
      • Freie Version

 

Im Rahmen dieser Artikelserie erscheinen im Laufe der kommenden Monate folgende Artikel zu den Reviews der BI-Tools:

  1. Power BI von Microsoft
  2. Tableau
  3. Qlik Sense
  4. MicroStrategy (erscheint demnächst)
  5. Looker (erscheint demnächst)

Über einen vorausgehend veröffentlichten Artikel wird die Datengrundlage erläutert, die für alle Reviews gemeinsam verwendet wird: Vorstellung der Datengrundlage

Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 1/2

ERP, CRM, FiBu – täglich durchlaufen unzählige Geschäftsprozesse die IT-Systeme von Unternehmen. Es entstehen Ströme aus Massendaten, die am Ende in der Finanzbuchhaltung münden und dort automatisch auf Konten erfasst werden.

Mit auditbee können Wirtschaftsprüfer diese Datenströme wirtschaftlich und einfach analysieren. auditbee integriert die Datenanalyse in den gesamten Prüfungsverlauf und macht Schluss mit ausgedruckten Kontenblättern, komplizierten Datenabfragen sowie dem Zufall bei der Fehlersuche.

Wirtschaftsprüfer und die Nadel im Heuhaufen

Die Finanzdaten von Unternehmen sind wichtig für viele Adressaten – Gesellschafter, Banken, Kunden, etc. Deswegen ist es die gesetzliche Aufgabe des Wirtschaftsprüfers, wesentliche Fehler in der Buchhaltung und dem Jahresabschluss aufzudecken. Dazu überprüft er einzelne Sachverhalte mit hohem Fehlerrisiko und Prozesse, bei denen systematische Fehler in Summe von Bedeutung für den Abschluss sein können (IDW PS 261 n.F.).

Die Prüfung gleicht jedoch der Suche nach der Nadel im Heuhaufen!

Fehler sind menschlich und können passieren. Das Problem ist, dass sie im gesamten Datenhaufen gut verborgen sein können – und je größer dieser ist, desto schwieriger wird die Suche. Neben Irrtümern können Fehler auch durch absichtliche Falschdarstellungen und bewusste Täuschungen entstehen. Um solche dolosen Handlungen festzustellen, hat der Prüfer häufig tief im Datenhaufen zu graben, weil sie gut versteckt sind. Deswegen sind auch nach international anerkannten Prüfungsgrundsätzen die Journalbuchungen zu analysieren (ISA 240.32).

Die Suche nach dem Fehler

Noch vor einigen Jahren bestand die Prüfung hauptsächlich darin, eine Vielzahl an bewusst ausgewählten Belegen als Stichprobe in Papier einzusehen und mit den Angaben in der Buchhaltung abzustimmen – analog mit Stift und Textmarker auf ausgedruckten Kontenblättern. Dafür mussten Unmengen Belege kopiert und Kontenblätter ausgedruckt werden. Das hat nicht nur Papier verschwendet, sondern auch sehr viel der begrenzten Zeit gekostet. Zu allen Übels mussten die so entstandenen Prüfungsakten noch Kistenweise zum Mandanten hin- und wieder zurück transportiert werden. Es gab keine digitale Alternative.

Heute haben viele Unternehmen ihre Belege digitalisiert und setzen Dokumentenmanagement-systeme ein. Eine enorme Arbeitserleichterung für den Prüfer, der jetzt alle Belege digital einsehen kann. Weil der Datenhaufen jedoch gleichzeitig immer weiter wächst, entstehen neue Herausforderungen. Die Datenmenge als Grundgesamtheit wirkt sich beispielsweise auf den Umfang einer Stichprobe aus. Um Massendaten aus automatisierten Geschäftsprozessen wirtschaftlich überprüfen zu können, sind daher Datenanalysen unerlässlich.

Mit dem BMF-Schreiben „Grundsätze zum Datenzugriff und zur Prüfbarkeit digitaler Unterlagen – GDPdU“ wurde im Jahr 2001 der Grundstein für die Datenanalyse in der Prüfung gelegt. Der Nachfolger „Grundsätze zur ordnungsmäßigen Führung und Aufbewahrung von Büchern, Aufzeichnungen und Unterlagen in elektronischer Form sowie zum Datenzugriff – GoBD“ wurde 2014 veröffentlicht. Mit den BMF-Schreiben hat eine gewisse Normierung der steuerlich relevanten Daten (GDPdU/GoBD-Daten) durch die Finanzverwaltung stattgefunden. Diese lassen sich aus jeder Buchhaltungssoftware extrahieren und umfassen sämtliche Journalbuchungen.

Mit Datenanalysen kann der Prüfer nicht nur das Unternehmen und dessen Entwicklung besser verstehen. Dank der GDPdU/GoBD-Daten können Fehler mit auditbee viel leichter gefunden werden, weil sich der Prüfer jeden Halm im Datenhaufen ganz genau ansehen, Auffälligkeiten erkennen und hinterfragen kann. Mit der Analyse und Risikobeurteilung wird zudem die Belegprüfung deutlich reduziert, weil sich der Prüfer bei der Auswahl auf auffällige und risikobehaftete Daten beschränken kann.

Integration der Datenanalyse in die Prüfung – Spezialisten oder Self-Service

Das Tagesgeschäft des Wirtschaftsprüfers ist sehr vielfältig – Prüfung, Unternehmensbewertung, Steuerberatung. Deshalb erfolgt die Datenanalyse regelmäßig durch Spezialisten. Das sind IT-affine Mitarbeiter innerhalb der Kanzlei, die sich im Rahmen von Projekten selbständig weitergebildet oder eine Qualifikation als CISA bzw. IT Auditor haben.

Der Spezialist überprüft die Journalbuchungen (Journal Entry Tests) mit Excel oder einer Analysesoftware für Prüfer (DATEV Datenanalyse, IDEA, ACL). Oft ist er aber nicht mehr an der weiteren Prüfung beteiligt. Stattdessen führt der Prüfer mit seinen Assistenten als Team vor Ort die Hauptprüfung durch. Dabei werden häufig Konten erneut für die Belegauswahl in Excel gezogen. Das führt nicht nur zu Medienbrüchen, sondern erhöht auch die Wahrscheinlichkeit für Doppelarbeit, Fehler und Missverständnisse.

Neben alten Gewohnheiten und Zeitdruck ist die Analysesoftware oft selbst ein Grund, weshalb die Datenanalyse in der Praxis selten in die Prüfung integriert ist. Schließlich erfordern die Softwarelösungen einiges an IT-Kenntnis in der Einrichtung und Bedienung. Zudem ist die Interpretation von überwiegend in Tabellen dargestellten Daten schwierig und umständlich.

Mit auditbee als vorbereitete Dashboard Lösung auf Basis von Qlik Sense kann jeder im Team seine Daten selbst analysieren. Damit wird die Datenanalyse in die Prüfung integriert und kann ihr volles Potential entfalten.

auditbee als Self-Service BI-Lösung lässt sich so einfach bedienen, dass das Prüfungsteam nicht mehr von einzelnen Spezialisten abhängig ist. Damit aber nicht jeder bei 0 anfängt, werden die Daten bereits vom auditbee Team als Service in die BI-Software Qlik Sense geladen und abgestimmt. Zudem sind bereits verschiedene Dashboards zur Analyse eingerichtet. Der einzelne Anwender kann sich mit auditbee Daten und Kennzahlen ansehen, ohne eine einzige Formel eingeben zu müssen. Die Navigation und das dynamische Filtern der Daten im gesamten Dashboard erfolgt mit der Maus und das nahezu in Echtzeit. Anstatt von Abfragen mit langen Ladezeiten und Duplizierung der Daten können diese sofort im gesamten auditbee Modell nach unterschiedlichen Dimensionen (mehrdimensional) analysiert werden.

Mit auditbee zur strukturierten Belegauswahl

Bei der traditionellen bewussten Auswahl sucht sich der Prüfer Belege nach eigenem Ermessen anhand der Informationen auf dem Kontoblatt aus. Das sind regelmäßig Betrag, Buchungsdatum oder Buchungstext. Diese Methode ist relativ einseitig, eindimensional und vorhersehbar, weil vom Prüfer eher größere Beträge oder auffällige Texte ausgewählt werden. Dadurch kann es sein, dass absichtliche Falschdarstellungen und Irrtümer bei betragsmäßig kleineren Belegen nicht in die Stichprobe einbezogen werden und somit ungeprüft bleiben.

Zufalls- sowie statistische Auswahlverfahren (u.a. Monetary Unit Sampling) können wegen der Schwächen der traditionellen Methode eine Alternative sein. Doch auch sie haben einen relevanten Nachteil. Der Umfang der Stichprobe ist oftmals sehr hoch, um ein hinreichendes Signifikanzniveau (Alpha 0,05) zu erreichen. Ein Grund für den Prüfer, sich möglicherweise doch für die bewusste Auswahl zu entscheiden, um die Zeit für Belegabstimmungen zu verkürzen.

Durch die Verbindung sämtlicher FiBu-Daten und der Darstellung weiterer Dimensionen – Referenz, Beleg Art, Erfassungsdatum, Debitor, etc. – ermöglicht auditbee dem Prüfer eine dritte Methode. Bei der strukturierten Belegauswahl fokussiert sich der Prüfer auf Auffälligkeiten und wählt seine Stichprobe aus einer deutlich kleineren Zahl an Belegen bewusst oder per Zufall aus.

Der Prüfer analysiert nicht alles auf einmal, sondern betrachtet nur solche Daten, die aus Sicht des Themas und der zu prüfenden Frage relevant sind. Beispiel: Es werden nur die Daten im Umsatzbereich betrachtet, die das Merkmal „nicht zeitnah erfasst“ aufweisen. Ausgehend von der Frage kategorisiert der Prüfer die Daten nach der Höhe des Fehlerrisikos (Risikobeurteilung nach IDW PS 261 n.F.). Beispielsweise können automatisierte Buchungen ein geringes Fehlerrisiko aufweisen, Sachbuchungen oder Buchungen bestimmter Mitarbeiter dagegen ein höheres. Nur noch Belege mit höherem Risiko sowie andere Auffälligkeiten ergründet der Prüfer weiter im Detail. Hierzu filtert er die Daten anhand der auffälligen Dimensionen (Erfasser, Debitor, Monat, etc.). Am Ende bleiben nur noch wenige auffällige Datensätze übrig, aus der der Prüfer seine Stichprobe auswählt.

Bezogen auf die Nadel im Heuhaufen zeigen die 3 Methoden folgendes Bild.

Methode 1: Der Prüfer trägt nur die großen Strohalme von der Oberfläche ab, um zu sehen, ob darunter die Nadel verborgen ist (traditionelle Belegauswahl anhand des Kontoblattes).

Methode 2: Der Prüfer greift an verschiedenen Stellen in den Heuhaufen hinein, um per Zufall die Nadel zu finden (statistische Zufallsauswahlverfahren).

Methode 3: Der Prüfer sieht sich den Heuhaufen erst genau an, ob irgendwelche Stellen durchgewühlt aussehen (Auffälligkeiten), hier trägt er den Teil ab (Filtern der auffälligen Daten) und durchsucht systematisch den kleinen Haufen (strukturierte Auswahl).

Dies ist Teil 2/2 des Artikels, lesen Sie hier den zweiten Artikel Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 2/2.

Mit Dashboards zur Prozessoptimierung

Geschäftlicher Erfolg ergibt sich oft aus den richtigen Fragen – zum Beispiel: „Wie kann ich sicherstellen, dass mein Produkt das beste ist?“, „Wie hebe ich mich von meinen Mitbewerbern ab?“ und „Wie baue ich mein Unternehmen weiter aus?“ Moderne Unternehmen gehen über derartige Fragen hinaus und stellen vielmehr die Funktionsweise ihrer Organisation in den Fokus. Fragen auf dieser Ebene lauten dann: „Wie kann ich meine Geschäftsprozesse so effizient wie möglich gestalten?“, „Wie kann ich Zusammenarbeit meiner Mitarbeiter verbessern?“ oder auch „Warum funktionieren die Prozesse meines Unternehmens nicht so, wie sie sollten?“


Read this article in English: 
“Process Paradise by the Dashboard Light”


Um die Antworten auf diese (und viele andere!) Fragen zu erhalten, setzen immer mehr Unternehmen auf Process Mining. Process Mining hilft Unternehmen dabei, den versteckten Mehrwert in ihren Prozessen aufzudecken, indem Informationen zu Prozessmodellen aus den verschiedenen IT-Systemen eines Unternehmens automatisch erfasst werden. Auf diese Weise kann die End-to-End-Prozesslandschaft eines Unternehmens kontinuierlich überwacht werden. Manager und Mitarbeiter profitieren so von operativen Erkenntnissen und können potenzielle Risiken ebenso erkennen wie Möglichkeiten zur Verbesserung.

Process Mining ist jedoch keine „Wunderwaffe“, die Daten auf Knopfdruck in Erkenntnisse umwandelt. Eine Process-Mining-Software ist vielmehr als Werkzeug zu betrachten, das Informationen erzeugt, die anschließend analysiert und in Maßnahmen umgesetzt werden. Hierfür müssen die generierten Informationen den Entscheidungsträgern jedoch auch in einem verständlichen Format zur Verfügung stehen.

Bei den meisten Process-Mining-Tools steht nach wie vor die Verbesserung der Analysefunktionen im Fokus und die generierten Daten müssen von Experten oder Spezialisten innerhalb einer Organisation bewertet werden. Dies führt zwangsläufig dazu, dass es zwischen den einzelnen Schritten zu Verzögerungen kommt und die Abläufe bis zur Ergreifung von Maßnahmen ins Stocken geraten.

Process-Mining-Software, die einen kooperativeren Ansatz verfolgt und dadurch das erforderliche spezifische Fachwissen verringert, kann diese Lücke schließen. Denn nur wenn Informationen, Hypothesen und Analysen mit einer Vielzahl von Personen geteilt und erörtert werden, können am Ende aussagekräftige Erkenntnisse gewonnen werden.

Aktuelle Process-Mining-Software kann natürlich standardisierte Berichte und Informationen generieren. In einem sich immer schneller ändernden Geschäftsumfeld reicht dies jedoch möglicherweise nicht mehr aus. Das Erfolgsgeheimnis eines wirklich effektiven Process Minings besteht darin, Herausforderungen und geschäftliche Möglichkeiten vorherzusehen und dann in Echtzeit auf sie zu reagieren.

Dashboards der Zukunft

Nehmen wir ein analoges Beispiel, um aufzuzeigen, wie sich das Process Mining verbessern lässt. Der technologische Fortschritt soll die Dinge einfacher machen: Denken Sie beispielsweise an den Unterschied zwischen der handschriftlichen Erfassung von Ausgaben und einem Tabellenkalkulator. Stellen Sie sich nun vor, die Tabelle könnte Ihnen genau sagen, wann Sie sie lesen und wo Sie beginnen müssen, und würde Sie auf Fehler und Auslassungen aufmerksam machen, bevor Sie überhaupt bemerkt haben, dass sie Ihnen passiert sind.

Fortschrittliche Process-Mining-Tools bieten Unternehmen, die ihre Arbeitsweise optimieren möchten, genau diese Art der Unterstützung. Denn mit der richtigen Process-Mining-Software können individuelle operative Cockpits erstellt werden, die geschäftliche Daten in Echtzeit mit dem Prozessmanagement verbinden. Der Vorteil: Es werden nicht nur einzelne Prozesse und Ergebnisse kontinuierlich überwacht, sondern auch klare Einblicke in den Gesamtzustand eines Unternehmens geboten.

Durch die richtige Kombination von Process Mining mit den vorhandenen Prozessmodellen eines Unternehmens werden statisch dargestellte Funktionsweisen eines bestimmten Prozesses in dynamische Dashboards umgewandelt. Manager und Mitarbeiter erhalten so Warnungen über potenzielle Probleme und Schwachstellen in Ihren Prozessen. Und denken Sie daran, dynamisch heißt nicht zwingend störend: Die richtige Process-Mining-Software setzt an der richtigen Stelle in Ihren Prozessen an und bietet ein völlig neues Maß an Prozesstransparenz und damit an Prozessverständnis.

Infolgedessen können Transformationsinitiativen und andere Verbesserungspläne jederzeit angepasst und umstrukturiert werden und Entscheidungsträger mittels automatisierter Nachrichten sofort über Probleme informiert werden, sodass sich Korrekturmaßnahmen schneller als je zuvor umsetzen lassen. Der Vorteil: Unternehmen sparen Zeit und Geld, da Zykluszeiten verkürzt, Engpässe lokalisiert und nicht konforme Prozesse in der Prozesslandschaft der Organisation aufgedeckt werden.

Dynamische Dashboards von Signavio

 Testen Sie Signavio Process Intelligence und erleben Sie selbst, wie die modernste und fortschrittlichste Process-Mining-Software Ihnen dabei hilft, umsetzbare Einblicke in die Funktionsweise Ihres Unternehmens zu erhalten. Mit Signavios Live Insights profitieren Sie von einer zentralen Ansicht Ihrer Prozesse und Informationen, die in Form eines Ampelsystems dargestellt werden. Entscheiden Sie einfach, welche Prozesse und Aktivitäten Sie innerhalb eines Prozesses überwachen möchten, platzieren Sie Indikatoren und wählen Sie Grenzwerte aus. Alles Weitere übernimmt Signavio Process Intelligence, das Ihre Prozessmodelle mit den Daten verbindet.

Lassen Sie veraltete Arbeitsweisen hinter sich. Setzen Sie stattdessen auf faktenbasierte Erkenntnisse, um Ihre Geschäftstransformation zu unterstützen und Ihre Prozessmanagementinitiativen schneller zum Erfolg zu führen. Erfahren Sie mehr über Signavio Process Intelligence oder registrieren Sie sich für eine kostenlose 30-Tage-Testversion über www.signavio.com/try.

Erfahren Sie in unserem kostenlosen Whitepaper mehr über erfolgreiches Process Mining mit Signavio Process Intelligence.

Programmierung für OttoNormalVerbraucher

Facebook und Co. arbeiten daran Nachrichten so aufzubereiten, dass sie emotional noch mehr ansprechen, als ob die gesellschaftliche Situation nicht schon aufgeheizt genug ist. Wir arbeiten daran dem Endnutzer Werkzeuge bereitzustellen um seine rationale Urteilskraft mit Hilfe des Computers zu stärken. Dafür benötigt man möglichst einfache aber dennoch leistungsstarke Programmiersprachen und umfangreiche, vertrauenswürdige, öffentlich zugängliche Informationen in Form von vielgestaltigen großen Tabellen und Dokumenten ähnlich der Wikipedia. 

Auch wenn die entwickelte Sprache so einfach wie möglich ist, wird sie im Gegensatz zum Facebookansatz einen gewissen Lernaufwand erfordern. 

Eine solche Programmiersprache in Kombination mit vertrauensvollen Daten könnte ein großer Schritt in Richtung einer weiteren Demokratisierung der Gesellschaft werden. Viele Falschnachrichten könnten leicht von jedermann durch entsprechende Fakten oder statistischen Auswertungen paralysiert werden. 

Vielleicht kann man die Schaffung einer solchen Programmiersprache mit der Schaffung des ersten Alphabets durch die Phönizier oder der Schaffung des ersten Alphabets mit Vokalen durch die Griechen vergleichen. Hätten diese Völker solche Leistungen vollbringen können ohne diese Voraussetzungen. Ich vermute ohne dieses Alphabet hätte es keine griechische Wissenschaft und Kultur gegeben; vielleicht auch keine griechische Demokratie.  

Entwurfskriterien für eine solche Sprache:

  1. Eine mathematische Fundierung ist erforderlich.
  2. Methodisch-didaktische und pragmatische Fragen stehen zunächst vor Effizienzproblemen.
  3. Kurze, lesbare Programme; die wichtigsten Schlüsselworte sollten kurz sein
  4. Einfache, unstrukturierte Programme; Schleifen und allgemeine Rekursionen führen häufig zu schwer lesbaren und schwer änderbaren Programmen; 
  5. Universelle Anwendbarkeit; sie muss nicht nur für Relationen (flache einfache Tabellen) sondern auch für strukturierte Tabellen und Dokumente nutzbar sein; sie muss nicht nur für Anfragen an die wichtigsten Systeme sondern auch für vielfältige Berechnungen geeignet sein
  6. Um im Schulunterricht einsetzbar zu sein, muss sie die verschiedenen mathematische Teilgebiete unterstützen, sowie Nutzen für die anderen Fächer bieten
  7. Sie sollte so mächtig sein, dass sie andere Systeme und Sprachen wie Tabellenkalkulation und SQL ersetzen kann. 
  8. Aus Endnutzersicht darf es nur ein einheitliches System mit einheitlicher Syntax (Schreibweise) für die Verarbeitung von Massendaten geben, genau wie die Operationen der Einzeldatenverarbeitung (+ – * : sin) standardisiert sind. 

 

Einführung in o++o: 

A. Merkel „Jeder Schüler soll neben lesen, rechnen und schreiben auch programmieren können.“ 

o++o (ausführlich ottoPS) ist eine tabellenorientierte Programmiersprache mit funktionalen Möglichkeiten, die auf Schleifen verzichtet. Dennoch ist o++o sehr ausdrucksstark und man kann mit ihr nicht nur kompakte Anfragen sondern auch vielfältige Berechnungen für strukturierte Tabellen und strukturierte Dokumente bewerkstelligen.

o++o benutzt viele mathematische Konzepte, daher sehen wir die Hauptvorteile der Vermittlung im Mathematikunterricht, genau wie die wesentlichen Fähigkeiten für die Nutzung des Taschenrechners in Mathematik vermittelt werden. o++o verwendet insbesondere folgende Konzepte: Kollektion (Menge, Multimenge, Liste); Gleichheit und Inklusionsbeziehungen dieser; Tupel; leistungsfähige Operationen zum Selektieren; Berechnen; Restrukturieren; Sortieren und Aggregieren (Summe; Durchschnitt; …),… .

Tabellenkalkulationsprogramme wie EXCEL und die Datenbankstandardabfragesprache SQL kennen keine strukturierten Schemen und Tabellen. Erste Tests mit Vorschulkindern lassen vermuten, dass man mit strukturierten Tabellen leichter rechnen kann als mit Dezimalzahlen. Wir wollen einige o++o-Beispielprogramme anfügen:

1. Berechne den Wert eines einfachen Terms.

2*3+4

* und + haben jeweils 2 Inputwerte. Zunächst wird 2*3 (6) berechnet. Die 6 ist erster Inputwert von +, so dass sich insgesamt 24 ergibt. Hier wird also einfach von links nach rechts gerechnet.

 

2. Schreibe den Term cos³(sin²(3.14159)) in o++o.

pi sin hoch 2 cos hoch 3

 

Unserer Meinung nach ist der Ausgangsterm für Otto Normalverbraucher schwer zu lesen. Man beginnt mit pi geht nach links bis zum sin dann nach rechts zum hoch 2 jetzt bewegt man sich wieder nach links zum cos und abschließend nach rechts zum hoch 3. Diese Schreibweise wurde sicher eingeführt um Klammern zu sparen. Eigentlich müsste der Ausgangsterm um unmissverständlich zu sein, folgendes Aussehen haben: 

(cos((sin(3.14159))²))³ 

Das ist sicher noch schwerer zu lesen und man bewegt sich noch mehr von links nach rechts und umgekehrt. 

 

3. Schreibe den Term sin²(x)+cos³(y)  in o++o.

X sin hoch 2 + (Y cos hoch 3) 

oder 

X sin hoch 2

+ Y cos hoch 3

Man könnte alle Terme in o++o ohne Klammern schreiben, allerdings müssten dann bestimmte Terme mehrzeilig geschrieben werden.  

 

4. Wie berechnet man den Term 2+3:4*5 ?

2+(3:(4*5))=2 3/20

2+((3:4)*5)=5 ¾

o++o: ((2+3):4)*5=6 1/4

 

Man erkennt, dass man mit der Schulweisheit Punktrechnung geht vor Strichrechnung noch nicht auskommt. Man benötigt die Regel „von links nach rechts“ zusätzlich.

 

5. Berechne den Durchschnitt mehrerer Noten.

1 2 3 1 2 ++:

 

Vom methodischen Standpunkt kann man dieses Programm noch verbessern, indem man die Klammern für Listen hinzufügt: [1 2 3 1 2] ++:

Man erkennt jetzt, dass die Durchschnittsoperation ++: einen Inputwert, nämlich eine Liste besitzt und dass ++: diesem einen Inputwert nachgestellt wird. Da die Nutzer in der Regel nicht viel tippen wollen, gehen wir davon aus, dass die erste Notation in Praxis häufiger benutzt werden wird.

 

6. Berechne die Durchschnitte einer strukturierten Tabelle noten.tab für jedes Fach.

noten.tab

DUR:=NOTEl ++:

noten.tab könnte so aussehen:

FACH,NOTEl l
Ma       1 2 1 3 1 2
Phy      4 3 2 2 1

 

Hierbei kürzt l Liste ab. D.h., noten.tab ist eine einfache strukturierte Tabelle (Liste), die zu jedem Fach eine Liste von Noten enthält. Um Platz zu sparen, wählen wir auch hier die methodisch nicht optimale Darstellung. Wie FACH ist auch NOTE ein Spaltenname, so dass noten.tab eigentlich so dargestellt werden müsste:

FACH,NOTEl l

Ma       1 2 1 3 1 2
Phy      4 3 2 2 1

 

Das Ergebnis der Anfrage wieder im „tab-Format“:

FACH, DUR, NOTEl l
Ma 1.66666666667 1 2 1 3 1 2
Phy 2.4 4 3 2 2 1

7. Bilde die Summe der Zahlen von 1 bis 100 (Aufgabe von Gauß Klasse 5).

1 .. 100 ++

Wie die Addition und die Multiplikation besitzt  .. zwei Inputwerte (1 und 100). Als Zwischenergebnis entsteht die Liste

ZAHLl
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

,deren Zahlen dann aufsummiert werden, so dass sich 5050 ergibt. 

 

8. Berechne näherungsweise das Maximum der Sinus-Funktion im Intervall [1 2].

1 … 2!0.001 sin max 

… benötigt 3 Inputwerte: 1. den Anfangswert 1, den Endwert 2 und die Schrittweite 0.001. Es entstehen hierbei die Zahlen 1 1.001 1.002 1.003 …1.999 2.

Auf jede der Zahlen wird die Sinusfunktion angewandt, sodass wieder 1001 Zahlen entstehen. Auf diese Liste wird dann die Funktion max (Maximum) angewandt. Obwohl es sich hierbei um ein Näherungsverfahren handelt, kommt der exakte Wert 1 heraus, wenn die Schrittweite weiter verfeinert wird. sin und max haben jeweils einen Inputwert (hier eine Liste) aber der Outputwert von sin ist wieder eine Liste und max erzeugt lediglich eine Zahl, da es sich hier um eine Aggregationsfunktion handelt. Der zweite und der dritte Inputwert einer dreistelligen Operation (oben  …) wird jeweils durch ein „!“ getrennt. Das ist in o++o nötig, da das Komma für die Paarbildung bereits vergeben ist und das Leerzeichen bereits Listenelemente trennt. 

 

9. Berechne näherungsweise das Minimum des Polynoms X³ + 4 X² -3 X+2 im Intervall [0 2] mit zugehörigem X-Wert.

[X! 0 … 2!0.001] 

Y:= X polynom [1 4 -3 2] 

MINI:= Yl min

avec Y = MINI

avec ist französisch und bezeichnet eine Selektion. Ein konkretes Polynom von einer Variablen X  hat stets nur einen Inputwert, der für X eingesetzt wird. polynom in Zeile 2 ist dagegen allgemeiner und hat 2 Inputwerte: 

  1. Den Inputwert für X, der hier alle Zahlen, die in der ersten Zeile generiert wurden, annimmt.
  2. Eine Liste von Zahlen, die den Koeffizienten des konkreten Polynoms entspricht.

Durch die ersten Zeile entsteht eine Liste von Zahlen, die alle den Namen X bekommen haben. Das erkennt man am besten in der xml bzw. ment-Repräsentation:

<X>0.</X>

<X>0.001</X>

<X>0.002</X>

Gesamtergebnis:
MINI,             (X, Y     l)

1.481482037 0.333 1.481482037

10. Berechne eine Nullstelle der Cosinus Funktion im Intervall [1 2] näherungsweise.

[X! 1 … 2!0.0001]

avec X cos < 0

avec X pos = 1  

Hier verbleiben nach der ersten Selektion nur die X-Werte mit Funktionswert kleiner 0. Von diesen wird im zweiten Schritt der erste Wert ausgewählt. Da wir wissen, dass cos nur eine Nullstelle im betrachteten Intervall besitzt, wird diese durch das Ergebnis angenähert. pos kürzt Position ab, so dass das erste Paar der verbliebenen Paare selektiert wird. 

11. Berechne das Gesamtwachstum, wenn 5 Jahreswachstumszahlen gegeben sind. Runde das Ergebnis auf eine Stelle nach dem Komma.

[W! 0 1.5 2.1 1.3 0.4 1.2]

ACCU:= first 100. next ACCU pred *(W:100+1) at W

rnd 1

Die Ergebnistabelle:

[W! 0 1.5 2.1 1.3 0.4 1.2]
ACCU:= first 100. next ACCU pred *(W:100+1) at W
rnd 1
Die Ergebnistabelle:
W, ACCU l
0. 100.
1.5 101.5
2.1 103.6
1.3 105.
0.4 105.4
1.2 106.7

Der erste ACCU-Wert ergibt sich durch den Ausdruck hinter first (100.). Für den zweiten Wert wird für ACCU pred der Wert 100. eingesetzt und der Term nach next bewertet. Es ergibt sich 101.5. Diese Zahl wird wieder in ACCU pred eingesetzt und der next-Term erneut berechnet (rund 103.6),…  bis der letzte W-Wert erreicht ist. pred ist der predecessor (Vorgänger).

 

12. Berechne die Fläche unter der Sinuskurve im Intervall [0, pi] näherungsweise.

0 … pi!0.0001 sin * 0.0001 ++

Hierbei werden nacheinander alle Zahlen zwischen 0 und pi generiert, dann von jeder Zahl der Sinus berechnet und anschließend jede Zahl mit 0.0001 multipliziert. Es entstehen 31415 Rechteckflächen, die abschließend addiert werden.

 

13. Berechne den DurchschnittsBMI pro Alter und den BMI pro Person und Alter für alle Personen über 20.

<TAB!
NAME, LAENGE, (ALTER, GEWICHT l) l
Klaus        1.68     18      61     30     65     56     80
Rolf           1.78      40     72
Kathi         1.70       18      55     40     70
Walleri     1.00      3      16
Viktoria   1.61      13      51
Bert          1.72      18      66     30     70
!TAB>

avec NAME! 20&lt;ALTER
BMI:= GEWICHT : LAENGE : LAENGE
gib ALTER,BMIAVG,(NAME,BMI m) m BMIAVG:= BMI ! ++:
rnd 2 #rundet alle Zahlen der Tabelle auf 2 Stellen nach dem Punkt

Die TAB-Klammern deuten an, dass die eingeschlossenen Daten der TAB-Darstellung entsprechen. 

Die obige Bedingung selektiert Personen-Sätze, d.h. NAME,LAENGE,(ALTER,GEWICHT l) Tupel (strukturierte Tupel bzw. Strupel). Da eine Personen mehrere ALTER-Angaben besitzt, muss quantifiziert werden. NAME! 20 <ALTER selektiert demnach alle Personen, die einen entsprechenden Alterseintrag besitzen. D.h., der Existenzquantor wird nicht geschrieben, gehört aber zu jeder Bedingung.  In diesem kleinen Beispiel könnte man die Selektion natürlich auch per Hand realisieren.

Resultat:

ALTER, BMIAVG, (NAME, BMI  m) m

18     20.98   Bert 22.31

                       Kathi 19.03

                       Klaus 21.61

30     23.35   Bert 23.66

                       Klaus 23.03

40     23.47   Kathi 24.22

                       Rolf  22.72

56     28.34   Klaus 28.34

Das Endergebnis kann beispielsweise durch einfaches Klicken als Säulendiagramm dargestellt werden. Das Beispiel zeigt, dass man eine Hierarchie einfach durch Angabe des gewünschten Schemas umkehren kann. Im Ergebnis ist der Name dem Alter untergeordnet.

 Es wird insbesondere deutlich, dass die Aufgaben ohne Kenntnisse der Differential- und Integral-rechnung gelöst werden können. Mit o++o kann der Mathematikunterricht in vielfältiger Weise unterstützt werden. Das reicht von Klasse 7 oder tiefer bis zur Klassenstufe 12. Es betrifft: Rechnen mit natürlichen Zahlen, Dezimalzahlen, näherungsweise Berechnung von Nullstellen beliebiger Funktionen, Ableitung, Flächen unter Kurven, Extremwerte (kann wahrscheinlich bereits in der Sekundarschule gelehrt werden), Wahrscheinlichkeitsrechnung, … . Mit o++o können Dinge in einfacher Weise berechnet werden, die sonst nur theoretisch abgehandelt werden. Dadurch kann das Verständnis der Konzepte wesentlich verbessert, erweitert und vertieft werden. Weitere Informationen zu o++o finden Sie unter ottops.de (Z.B. „o++o auf 8 Seiten“ ist eine kurze Einführung).

Wir glauben, dass o++o besondere Vorteile für den Mathematik- und Informatikunterricht bietet aber auch in den anderen Fächern sinnvoll genutzt werden kann.

Treffen Sie bessere Entscheidungen

Entscheidungen prägen unseren Alltag, dies beginnt schon bei der Frage, was man anziehen oder essen soll. Andere hingegen mögen auf den ersten Blick unbedeutend erscheinen, können das Leben aber gravierend verändern, wie beispielsweise die Entscheidung, ob die Überquerung einer Straße sicher ist. Je größer die relative Macht eines Entscheidungsträgers ist, desto größer ist natürlich auch die Auswirkung seiner Entscheidungen.


Read this article in English: 
“How to Make Better Decisions”


Auch der Unternehmensalltag ist geprägt durch Entscheidungen. Tatsächlich kann man ein Unternehmen als die Summe großer und kleiner Entscheidungen betrachten: Welche neuen Märkte erschlossen werden sollen, über die nächste große Werbekampagne bis hin zur Wandfarbe für das neue Büro. Im Idealfall wäre jede einzelne Entscheidung innerhalb einer Organisation Teil einer konsistenten, kohärenten Unternehmensstrategie.

Leider ist eine derartige Konsistenz für viele Unternehmen schwer umsetzbar. Den Überblick darüber zu behalten, was in der gestrigen Sitzung beschlossen wurde, geschweige denn vor Wochen, Monaten oder gar Jahren, kann schwierig sein. Die Erkennung, Kategorisierung und Standardisierung der Entscheidungsfindung kann daher eine Möglichkeit sein, diese Herausforderung zu meistern.

Strategische, taktische und operative Entscheidungen

Grundsätzlich gibt es in einem Unternehmen drei Entscheidungsebenen: Strategische Entscheidungen haben einen großen Einfluss auf das gesamte Unternehmen, wie bspw. Fusionen und Übernahmen oder die Aufgabe eines leistungsschwachen Geschäftsbereichs. Taktische Entscheidungen werden zu bestimmten Themen getroffen, z. B. wo und wie eine Marketingkampagne durchgeführt werden soll.

Und schließlich gibt es noch die operativen Entscheidungen, auf die jeder Mitarbeiter täglich in jedem Unternehmen trifft: Beispielsweise wie viele Treuepunkte ein Kunde erhält, bei welchem ​​Lieferanten Materialien und Dienstleistungen gekauft werden oder ob ein Kunde einen Kredit erhält. Millionen dieser Entscheidungen werden jeden Tag getroffen.

Der kumulative Effekt dieser operativen Entscheidungen hat einen enormen Einfluss auf die geschäftliche Leistung eines Unternehmens. Nicht unbedingt in dem Maße wie sich strategische oder taktische Entscheidungen auswirken, aber sie nehmen Einfluss darauf, wie reibungslos und effektiv die Dinge innerhalb des Unternehmens tatsächlich erledigt werden.

Risiken einer schlechten Entscheidungsfindung

Auf operativer Ebene können sich selbst kleine Entscheidungen erheblich auf das gesamte Unternehmen auswirken – vor allem dann, wenn sich diese Entscheidungen wiederholen. In vielen Fällen bedeutet dies:

  • Compliance-Verstöße: Mitarbeiter und Systeme wissen nicht, was das Management erwartet, oder welches das richtige Verfahren ist. Mit der Zeit kann dies dazu führen, dass Richtlinien generell nicht eingehalten werden.
  • Weniger Agilität: Unkontrolliert oder unstrukturiert getroffene Entscheidungen lassen sich nur schwer ändern, um schnell auf neue interne oder externe Umstände reagieren zu können.
  • Reduzierte Genauigkeit: Ohne einen klaren Entscheidungsrahmen können sich unklar und unpräzise ausgerichtete Prozesse und Praktiken weiterverbreiten.
  • Mangelnde Transparenz: Mitarbeiter und Management können möglicherweise die Faktoren nicht erkennen und verstehen, die jedoch für eine effektive Entscheidungsfindung zu berücksichtigen sind.
  • Zunehmende Nichteinhaltung gesetzlicher Vorschriften: Viele Entscheidungen betreffen Themen wie Steuern, Finanzen und Umwelt, sodass falsch getroffene Entscheidungen zu potenziellen Verstößen gegen Gesetze und Vorschriften und damit letztlich zu Straf- und Rechtskosten führen können.

Diese Risiken können sich wiederholen, wenn Entscheidungen nicht prozessbasiert, sondern aus dem Bauch heraus getroffen werden oder wenn Entscheidungsträger erst Anwendungsfälle, Berichte und Prozesse durchsuchen müssen.

Treffen Sie bessere Entscheidungen

Die richtige Entscheidung zur richtigen Zeit zu treffen, ist für den Geschäftserfolg entscheidend; doch nur wenige Unternehmen verwalten ihre Entscheidungen als separate Instanzen. Die meisten Unternehmen nutzen KPIs oder Ähnliches, um die Auswirkungen ihrer Entscheidungen zu messen, statt die eigentlichen Entscheidungsprozesse im Vorfeld zu definieren.

Hier kommt Business Decision Management (BDM) ins Spiel, mit dem Entscheidungen identifiziert, katalogisiert und modelliert werden können – insbesondere die bereits genannten operativen Entscheidungen. BDM kann zudem ihre Auswirkungen auf die Leistung quantifizieren und Metriken und Schlüsselindikatoren für die Entscheidungen erstellen.

Mit einem effektiven BDM-Ansatz und der Decision Model and Notation (DMN) können Unternehmen Modelle zur Entscheidungsfindung erstellen. DMN bietet ein klares, benutzerfreundliches Notationssystem, das Geschäftsentscheidungen einschließlich der zugrunde liegenden Richtlinien und Daten beschreibt.

Bessere Entscheidungen mit Signavio

Die Signavio Business Transformation Suite unterstützt nicht nur den DMN-Standard, sondern auch den Aufbau einer umfassenden Umgebung zur kollaborativen Ermittlung, Verwaltung und Verbesserung Ihrer Entscheidungen.

Mit dem Signavio Process Manager können Sie Entscheidungen über mehrere Geschäftsbereiche hinweg standardisieren, replizieren und wiederverwenden und diese Entscheidungen mit Ihren Geschäftsprozessen verknüpfen. Der Signavio Process Manager ermöglicht es Ihren Mitarbeitern, stets die beste Entscheidung für ihre Arbeit zu treffen – egal, wie komplex die Aufgaben sind.

Profitieren Sie von den vielen Vorteilen wie verbesserte Leistung und geringere Risiken und trennen Sie die Entscheidungsfindung von unklaren Prozessen und unsicheren Technologien. Registrieren Sie sich noch heute für eine kostenlose 30-Tage-Testversion und lernen Sie die Signavio Business Transformation Suite und ihre Vorteile kennen. Mehr zum Thema lesen Sie in unserem kostenlosen Whitepaper.

Body and Soul: Software-Roboter und datenbasierte Prozessauswertung

Software-Roboter liegen im Trend. Immer mehr Unternehmen aus unterschiedlichen Branchen setzen auf Robotic Process Automation (RPA), um zeitintensive manuelle Tätigkeiten zu automatisieren, effizienter zu gestalten und von den Schultern ihrer Belegschaft zu nehmen.

Doch so vielversprechend diese Ambitionen auch klingen: Noch heute scheitern viele RPA-Projekte an der Vorbereitung. Ein Prozessschritt lässt sich schnell automatisieren, doch wurde der Prozess vorher nicht optimiert, resultiert dies oft in hohen Kosten und frustrierten Mitarbeitern. In diesem Beitrag erfahren Sie, wie Sie eine RPA-Initiative richtig angehen, ihren Erfolg messen und langfristige Erfolge erzielen. Lernen Sie, wie Sie Process Mining gewinnbringend einsetzen, um RPA vorzubereiten. Anhand eines Service-Prozesses zeigen wir auf, warum eine Prozessoptimierung das entscheidende Erfolgskriterium für Ihre RPA-Initiative ist.

1.       Die Digitalisierung der Unternehmen: RPA und Process Mining gehen Hand in Hand

Process Mining und Robotic Process Automation (RPA) zählen zu den wichtigsten Werkzeugen für Unternehmen, die auf Digitalisierung setzen, so eine Befragung des deutschen Wirtschaftsmagazins „Computerwoche“ (2019).

Rund die Hälfte der deutschen Unternehmen hat bereits mit der Analyse von Geschäftsprozessen begonnen, während 25% der Unternehmen dem Thema RPA einen hohen Stellenwert beimessen. Innovative Unternehmen verknüpfen beide Methoden miteinander: Sie setzen Software-Roboter als leistungsstarke Automatisierungstechnologie ein; die Richtung gibt die datengestützte Prozessauswertung an.

2.       Anwendungsfall: Wie ein Service-Prozess optimiert und automatisiert wird

Unternehmen aller Branchen stehen vor der Herausforderung, ihre Prozesse zu digitalisieren und effizienter zu gestalten. Signavio unterstützt mehr als 1.000 Organisationen aller Größen und Branchen bei diesem Ziel. Die cloudbasierte Software-Lösung ermöglicht Prozessverantwortlichen und Führungskräften, ihre Prozesse zu verstehen, zu analysieren und bessere Geschäftsentscheidungen zu treffen. 

Wie sich die Prozessoptimierung gestaltet, wird im Folgenden an einem Anwendungsbeispiel gezeigt: Ein Unternehmen der Telekommunikationsindustrie verfügt über zahlreiche Service-Prozesse, darunter auch die Problembehebung im Falle einer gestörten Internetverbindung. Der Prozess gestaltet sich wie folgt:

Sobald sich ein Kunde über eine gestörte Internetverbindung beschwert, wird im Unternehmen ein Service-Prozess ausgelöst. Dieser Prozess besteht aus verschiedenen Teilschritten: Ist das Problem nach mehreren Schritten der internen Prüfung nicht behoben, ist ein Vor-Ort-Besuch eines Service-Mitarbeiters beim Kunden vorgesehen.

Dieser Service-Prozess führte im Unternehmensalltag des Telekommunikationsanbieters in der Vergangenheit regelmäßig zu internen Diskussionen. Die Prozessverantwortlichen äußerten die Vermutung, dass der Service zu viel Zeit benötige und intern hohe Kosten verursache. Im Rahmen einer Prozessinitiative wollten sie dieser Vermutung nachgehen und neue Möglichkeiten der Prozessoptimierung erarbeiten. Die folgenden Fragen waren dabei relevant:

  • Wie identifizieren wir den aktuellen Ist-Zustand des Prozesses?
  • Auf welchem Wege stoßen wir Verbesserungen an?
  • Wo lassen sich Service-Roboter einsetzen, um den Arbeitsalltag des Teams zu erleichtern?

Signavios Technologie bot den Prozessverantwortlichen die Möglichkeit, den kritischen Serviceprozess datenbasiert auszuwerten, zu optimieren und die Automatisierung von Teilschritten durch den Einsatz von Software-Robotern vorzubereiten. Im Kontext dieses Fallbeispiels erhalten Sie im Folgenden einen Einblick in die innovative SaaS-Lösung. 

2.1   Den Service-Prozess im Kontext der Customer Journey verstehen: Operative Abläufe und die Customer Experience visualisieren

Die Bearbeitung einer Kundenanfrage ist nur einer von Hunderten oder sogar Tausenden alltäglichen Prozessen in einer Organisation. Die Signavio Business Transformation Suite ermöglicht Unternehmen aller Branchen, die gesamte Prozesslandschaft zu betrachten und konstant weiterzuentwickeln.

Anhand der unterschiedlichen Komponenten dieser Technologie erarbeiteten die Prozessverantwortlichen des Telekommunikationsunternehmens eine 360°-Grad-Sicht auf alltägliche operative Abläufe:

  • Modellierung, Dokumentation und Visualisierung von Geschäftsprozessen im Kontext der Customer Journey (Signavio Process Manager) 
  • Automatisierung von Prozessschritten (Signavio Workflow Accelerator)
  • Datengestützte Auswertung von Prozessen (Signavio Process Intelligence)
  • Teamübergreifende Prozesssicht entlang der gesamten Value Chain (Signavio Collaboration Hub)

Die Mitarbeiter des Telekommunikationsunternehmens sehen im Signavio Collaboration Hub die gesamte Wertschöpfungskette ihres Unternehmens mitsamt allen Management-, Kern- und Serviceprozessen. Mit Blick auf die Prozesslandkarte navigieren sie die Ansicht auf den jeweils gesuchten Prozess: In unserem Beispiel besteht der Prozess in der Prüfung der Internetverbindung über das Glasfaserkabel.

Im Signavio Process Manager kann dieser Prozess entlang der gesamten Customer Journey eingesehen werden: Eine Persona symbolisiert den Kunden mit dem Problem der gestörten Internetverbindung. So wird seine gesamte Reise entlang unterschiedlicher Prozessschritte bis zur Lösung des Problems visualisiert.

 

Ein weiterer Klick auf den jeweiligen Prozessschritt führt zum hinterlegten Prozessmodell: Dort sind alle operativen Abläufe hinterlegt, die zur Lösung des Problems beitragen. Durch die integrierte Möglichkeit der Prozesssimulation gelingt es, den Prozess anhand verschiedener Datensätze zu prüfen und die Kosten, Durchlaufzeiten und Bottlenecks im Voraus zu berechnen. Dies ist bereits ein guter erster Schritt, um herauszufinden, wie effizient ein Prozess tatsächlich verläuft. Doch um die Ursachen der bestehenden Probleme zu ergründen, bedarf es einer datengestützten Methode der Prozessauswertung.

2.2   Von der datenbasierten Auswertung zur Prozessverbesserung: Process Mining

Die Methode des Process Minings ermöglicht Prozessverantwortlichen einen akkuraten Einblick in alltägliche operative Abläufe: Anhand datenbasierter Auswertungen gelingt es, Schwachstellen in Geschäftsprozessen sowie Optimierungspotenziale zu erkennen und herauszufinden, welche Prozesse sich tatsächlich für die Automatisierung eignen.

In unserem Beispiel wenden die Prozessverantwortlichen des Telekommunikationsunternehmens Process Mining an, um herauszufinden, an welchen Stellen der Prozess der gestörten Internetverbindung dysfunktional ist. Sie möchten herausfinden, ob sich Teilschritte durch den Einsatz von Software-Robotern automatisieren lassen.

Dafür nutzen die Prozessverantwortlichen Process Intelligence, das Analysemodul der Signavio Business Transformation Suite. In einer sogenannten Investigation erhalten sie einen detaillierten Einblick in den kritischen Prozess und können die Erfolgskennzahlen anhand unterschiedlicher Faktoren auswerten: Performance, Time, Occurrence, Variants, Loops usw.

So sehen sie beispielsweise, welche Prozessvarianten im Unternehmensalltag auftreten und auf welche Ursachen sie zurückzuführen sind. Sie greifen auf die Daten aus den ERP-Systemen der Organisation zu, um beispielsweise die Durchlaufzeiten des Prozesses zu bestimmen. Dabei sehen die Prozessverantwortlichen den tatsächlichen Ablauf eines Prozesses – und finden heraus, ob er wirklich funktioniert, wie gewünscht.

In unserem Beispiel zeigt die Datenauswertung etwa: Der Service-Prozess tritt in mehr als 240 Varianten auf – und weicht im Unternehmensalltag somit deutlich von seinem modellierten Idealzustand ab.

In der Signavio Business Transformation Suite können die erhobenen transaktionalen Daten als Overlay direkt auf das Prozessmodell gelegt werden, um die realen Zeiten für einzelne Prozessschritte anzuzeigen. Diese Visualisierung zeigt auf: Obwohl zunächst eine interne Prüfung der Störung vorgesehen ist, wird dieser Schritt im Unternehmensalltag häufig übersprungen: Dies führt dazu, dass zumeist sofort ein Außendienst-Mitarbeiter zu den Kunden fährt und eine Vor-Ort-Analyse durchführt. Dieser Schritt erweist sich häufig als unnötig und verursacht somit regelmäßig Kosten und Prozessverzögerungen.

Mit Blick auf die Ergebnisse der Datenanalyse schlussfolgern die Prozessverantwortlichen, dass Teilschritte der internen Prüfung durch Software-Roboter automatisiert werden können.

2.3   Soul meets Body: Die RPA-Implementierung planen         

Die operativen Daten aus den ERP-Systemen des Unternehmens wurden mit der Prozessdokumentation zusammengebracht. Auf diesem Wege konnte das Telekommunikationsunternehmen wertvolle Erkenntnisse zur Prozessoptimierung gewinnen und herausfinden, an welchen Stellen sich die Automatisierung durch Robotic Process Automation als sinnvoll erweist. Im Collaboration Hub kann nun die RPA-Implementierung geplant und das hinterlegte Prozessmodell angepasst werden:

Im geänderten Prozessmodell ist nun zu sehen: Prozessschritte wie „Netzwerkverbindung prüfen“ werden nicht mehr manuell durchgeführt. Ein Software-Roboter wurde so programmiert, dass er die Aktivität automatisiert anhand von vorgegebenen Eingabeinformationen übernehmen kann. Um zu prüfen, ob die Automatisierung dieser und weiterer Teilschritte sinnvoll ist, kann eine Simulation im Signavio Process Manager gestartet werden und als Testlauf mit den Daten aus Process Intelligence durchgeführt werden. So werden diese Fragen beantwortet:

  • Ist die Automatisierung sinnvoll?
  • Wie verändern Software-Roboter die Performance?
  • Wie hoch sind die Kosten, Durchlaufzeiten und der Ressourcenbedarf?
  • Erhöht sich der Return on Investment? 

3.       Signavio bringt die Prozessdokumentation mit den operativen Daten zusammen

Mit der Signavio Business Transformation Suite ist es dem Telekommunikationsunternehmen gelungen, den Prozess der gestörten Internetverbindung zu analysieren, zu optimieren und durch den Einsatz externer Software-Roboter zu automatisieren. Im Rahmen der Auswertung wurden zudem weitere Aktivitäten gefunden, die perspektivisch von Software-Robotern übernommen werden können: zum Beispiel ein Funktions-Check der Devices oder einzelne Kommunikationsaufgaben wie Bestätigungen. Somit ist der Prozess digitaler und effizienter geworden.

Das Besondere an diesem Anwendungsfall: Erst durch die Visualisierung des Prozesses in der Customer Journey und die folgende Auswertung der ERP-Daten konnte das bestehende Problem identifiziert und eine Lösung gefunden werden. Daher erwies sich der Einsatz der RPA-Technologie erst nach der Untersuchung des Ist-Zustandes als wirklich sinnvoll.

Sie möchten mehr erfahren? Hier erhalten Sie unser kostenloses Whitepaper zum Thema „Process Mining“! 

Von BI zu PI: Der nächste Schritt auf dem Weg zu datengetriebenen Entscheidungen

„Alles ist stetig und fortlaufend im Wandel.“ „Das Tempo der Veränderungen nimmt zu.“ „Die Welt wird immer komplexer und Unternehmen müssen Schritt halten.“ Unternehmen jeder Art und Größe haben diese Sätze schon oft gehört – vielleicht zu oft! Und dennoch ist es für den Erfolg eines Unternehmens von entscheidender Bedeutung, sich den Veränderungen anzupassen.


Read this article in English: 
“From BI to PI: The Next Step in the Evolution of Data-Driven Decisions”


Sie müssen die zugrunde liegenden organisatorischen Bausteine verstehen, um sicherzustellen, dass die von Ihnen getroffenen Entscheidungen sich auch in die richtige Richtung entwickeln. Es geht sozusagen um die DNA Ihres Unternehmens: die Geschäftsprozesse, auf denen Ihre Arbeitsweise basiert, und die alles zu einer harmonischen Einheit miteinander verbinden. Zu verstehen, wie diese Prozesse verlaufen und an welcher Stelle es Verbesserungsmöglichkeiten gibt, kann den Unterschied zwischen Erfolg und Misserfolg ausmachen.

Unternehmen, die ihren Fokus auf Wachstum gesetzt haben, haben dies bereits erkannt. In der Vergangenheit wurde Business Intelligence als die Lösung für diese Herausforderung betrachtet. In jüngerer Zeit sehen sich zukunftsorientierte Unternehmen damit konfrontiert, Lösungen zu überwachen, die mit dem heutigen Tempo der Veränderungen Schritt halten können. Gleichzeitig erkennen diese Unternehmen, dass die zunehmende Komplexität der Geschäftsprozesse dazu führt, dass herkömmliche Methoden nicht mehr ausreichen.

Anpassung an ein sich änderndes Umfeld? Die Herausforderungen von BI

Business Intelligence ist nicht notwendigerweise überholt oder unnötig. In einer schnelllebigen und sich ständig verändernden Welt stehen die BI-Tools und -Lösungen jedoch vor einer Reihe von Herausforderungen. Hierzu können zählen:

  • Hohe Datenlatenz – Die Datenlatenz gibt an, wie lange ein Benutzer benötigt, um Daten beispielsweise über ein Business-Intelligence-Dashboard abzurufen. In vielen Fällen kann dies mehr als 24 Stunden dauern. Ein geschäftskritischer Zeitraum, da Unternehmen Geschäftschancen für sich nutzen möchten, die möglicherweise ein begrenztes Zeitfenster haben.
  • Unvollständige Datensätze – Business Intelligence verfolgt einen breiten Ansatz, sodass Prüfungen möglicherweise zwar umfassend, aber nicht tief greifend sind. Dies erhöht die Wahrscheinlichkeit, dass Daten übersehen werden; insbesondere in Fällen, in denen die Prüfungsparameter durch die Tools selbst nur schwer geändert werden können.
  • Erkennung statt Analyse – Business-Intelligence-Tools sind in erster Linie darauf ausgelegt, Daten zu finden. Der Fokus hierbei liegt vor allem auf Daten, die für ihre Benutzer nützlich sein können. An dieser Stelle endet jedoch häufig die Leistungsfähigkeit der Tools, da sie Benutzern keine einfachen Optionen bieten, die Daten tatsächlich zu analysieren. Die Möglichkeit, umsetzbare Erkenntnisse zu gewinnen, verringert sich somit.
  • Eingeschränkte Skalierbarkeit – Im Allgemeinen bleibt Business Intelligence ein Bereich für Spezialisten und Experten mit dem entsprechenden Know-how, über das Mitarbeiter im operativen Bereich oftmals nicht verfügen. Ohne umfangreiches Verständnis für die geschäftlichen Prozesse und deren Analyse innerhalb des Unternehmens bleibt die optimierte Anwendung eines bestimmten Business-Intelligence-Tools aber eingeschränkt.
  • Nicht nachvollziehbare Metriken – Werden Metriken verwendet, die nicht mit den Geschäftsprozessen verknüpft sind, kann Business Intelligence kaum positive Veränderungen innerhalb eines Unternehmens unterstützen. Für Benutzer ist es schwierig, Ergebnisse richtig auszuwerten und zu verstehen und diese Ergebnisse zweckdienlich zu nutzen.

Process Intelligence: der nächste wegweisende Schritt

Es bedarf einer effektiveren Methode zur Prozessanalyse, um eine effiziente Arbeitsweise und fundierte Entscheidungsfindung sicherzustellen. An dieser Stelle kommt Process Intelligence (PI) ins Spiel. PI bietet die entscheidenden Hintergrundinformationen für die Beantwortung von Fragen, die mit Business-Intelligence-Tools unbeantwortet bleiben.

Process Intelligence ermöglicht die durchgehende Visualisierung von Prozessabläufen mithilfe von Rohdaten. Mit dem richtigen Process-Intelligence-Tool können diese Rohdaten sofort analysiert werden, sodass Prozesse präzise angezeigt werden. Der Endbenutzer kann diese Informationen nach Bedarf einsehen und bearbeiten, ohne eine Vorauswahl für die Analyse treffen zu müssen.

Zum Vergleich: Da Business Intelligence vordefinierte Analysekriterien benötigt, kann BI nur dann wirklich nützlich sein, wenn diese Kriterien auch definiert sind. Unternehmen können verzögerte Analysen vermeiden, indem sie Process Intelligence zur Ermittlung der Hauptursache von Prozessproblemen nutzen, und dann die richtigen Kriterien zur Bestimmung des Analyserahmens auswählen.

Anschließend können Sie Ihre Systemprozesse analysieren und erkennen die Diskrepanzen und Varianten zwischen dem angestrebten Geschäftsprozess und dem tatsächlichen Verlauf Ihrer Prozesse. Und je schneller Sie Echtzeit-Einblicke in Ihre Prozesse gewinnen, desto schneller können Sie in Ihrem Unternehmen positive Veränderungen auf den Weg bringen.

Kurz gesagt: Business Intelligence eignet sich dafür, ein breites Verständnis über die Abläufe in einem Unternehmen zu gewinnen. Für einige Unternehmen kann dies ausreichend sein. Für andere hingegen ist ein Überblick nicht genug.

Sie suchen nach einer Möglichkeit um festzustellen, wie jeder Prozess in Ihrer Organisation tatsächlich funktioniert? Die Antwort hierauf lautet Software. Software, die Prozesserkennung, Prozessanalyse und Konformitätsprüfung miteinander kombiniert.

Mit den richtigen Process-Intelligence-Tools können Sie nicht nur Daten aus den verschiedenen IT-Systemen in Ihrem Unternehmen gewinnen, sondern auch Ihre End-to-End-Prozesse kontinuierlich überwachen. So erhalten Sie Erkenntnisse über mögliche Risiken und Verbesserungspotenziale. PI steht für einen kollaborativen Ansatz zur Prozessverbesserung, der zu einem bahnbrechenden Verständnis über die Abläufe in Ihrem Unternehmen führt, und wie diese optimiert werden können.

Erhöhtes Potenzial mit Signavio Process Intelligence

Mit Signavio Process Intelligence erhalten Sie wegweisende Erkenntnisse über Ihre Prozesse, auf deren Basis Sie bessere Geschäftsentscheidungen treffen können. Erlangen Sie eine vollständige Sicht auf Ihre Abläufe und ein Verständnis dafür, was in Ihrer Organisation tatsächlich geschieht.

Als Teil der Signavio Business Transformation Suite lässt sich Signavio Process Intelligence perfekt mit der Prozessmodellierung und -automatisierung kombinieren. Als eine vollständig cloudbasierte Process-Mining-Lösung erleichtert es die Software, organisationsweit zusammenzuarbeiten und Wissen zu teilen.

Generieren Sie neue Ideen, sparen Sie Aufwand und Kosten ein und optimieren Sie Ihre Prozesse. Erfahren Sie mehr über Signavio Process Intelligence.

Allgemeines über Geodaten

Dieser Artikel ist der Auftakt in einer Artikelserie zum Thema “Geodatenanalyse”.

Von den vielen Arten an Datensätzen, die öffentlich im Internet verfügbar sind, bin ich in letzter Zeit vermehrt über eine besonders interessante Gruppe gestolpert, die sich gleich für mehrere Zwecke nutzen lassen: Geodaten.

Gerade in wirtschaftlicher Hinsicht bieten sich eine ganze Reihe von Anwendungsfällen, bei denen Geodaten helfen können, Einblicke in Tatsachen zu erlangen, die ohne nicht möglich wären. Der wohl bekannteste Fall hierfür ist vermutlich die einfache Navigation zwischen zwei Punkten, die jeder kennt, der bereits ein Navigationssystem genutzt oder sich eine Route von Google Maps berechnen lassen hat.
Hiermit können nicht nur Fragen nach dem schnellsten oder Energie einsparensten (und damit gleichermaßen auch witschaftlichsten) Weg z. B. von Berlin nach Hamburg beantwortet werden, sondern auch die bestmögliche Lösung für Ausnahmesituationen wie Stau oder Vollsperrungen berechnet werden (ja, Stau ist, zumindest in der Theorie immer noch eine “Ausnahmesituation” ;-)).
Neben dieser beliebten Art Geodaten zu nutzen, gibt es eine ganze Reihe weiterer Situationen in denen deren Nutzung hilfreich bis essentiell sein kann. Als Beispiel sei hier der Einzugsbereich von in Konkurrenz stehenden Einheiten, wie z. B. Supermärkten genannt. Ohne an dieser Stelle statistische Nachweise vorlegen zu können, kaufen (zumindest meiner persönlichen Beobachtung nach) die meisten Menschen fast immer bei dem Supermarkt ein, der am bequemsten zu erreichen ist und dies ist in der Regel der am nächsten gelegene. Besitzt man nun eine Datenbank mit der Information, wo welcher Supermarkt bzw. welche Supermarktkette liegt, kann man mit so genannten Voronidiagrammen recht einfach den jeweiligen Einzugsbereich der jeweiligen Supermärkte berechnen.
Entsprechende Karten können auch von beliebigen anderen Entitäten mit fester geographischer Position gezeichnet werden: Geldautomaten, Funkmasten, öffentlicher Nahverkehr, …

Ein anderes Beispiel, das für die Datenauswertung interessant ist, ist die kartographische Auswertung von Postleitzahlen. Diese sind in fast jedem Datensatz zu Kunden, Lieferanten, ect. vorhanden, bilden jedoch weder eine ordinale, noch eine sinnvolle kategorische Größe, da es viele tausend verschiedene gibt. Zudem ist auch eine einfache Gruppierung in gröbere Kategorien wie beispielsweise Postleitzahlen des Schemas 1xxxx oft kaum sinnvoll, da diese in aller Regel kein sinnvolles Mapping auf z. B. politische Gebiete – wie beispielsweise Bundesländer – zulassen. Ein Ausweg aus diesem Dilemma ist eine einfache kartographische Übersicht, welche die einzelnen Postleitzahlengebiete in einer Farbskala zeigt.

Im gezeigten Beispiel ist die Bevölkerungsdichte Deutschlands als Karte zu sehen. Hiermit wird schnell und übersichtlich deutlich, wo in Deutschland die Bevölkerung lokalisiert ist. Ähnliche Karten können beispielsweise erstellt werden, um Fragen wie “Wie ist meine Kundschaft verteilt?” oder “Wo hat die Werbekampange XYZ besonders gut funktioniert?” zu beantworten. Bezieht man weitere Daten wie die absolute Bevölkerung oder die Bevölkerungsdichte mit ein, können auch Antworten auf Fragen wie “Welchen Anteil der Bevölkerung habe ich bereits erreicht und wo ist noch nicht genutztes Potential?” oder “Ist mein Produkt eher in städtischen oder ländlichen Gebieten gefragt?” einfach und schnell gefunden werden.
Ohne die entsprechende geographische Zusatzinformation bleiben insbesondere Postleitzahlen leider oft als “nicht sinnvoll auswertbar” bei der Datenauswertung links liegen.
Eine ganz andere Art von Vorteil der Geodaten ist der educational point of view:
  • Wer erst anfängt, sich mit Datenbanken zu beschäftigen, findet mit Straßen, Postleitzahlen und Ländern einen deutlich einfacheren und vor allem besser verständlichen Zugang zu SQL als mit abstrakten Größen und Nummern wie ProductID, CustomerID und AdressID. Zudem lassen sich Geodaten nebenbei bemerkt mittels so genannter GeoInformationSystems (*gis-Programme), erstaunlich einfach und ansprechend plotten.
  • Wer sich mit SQL bereits ein wenig auskennt, kann mit den (beispielsweise von Spatialite oder PostGIS) bereitgestellten SQL-Funktionen eine ganze Menge über Datenbanken sowie deren Möglichkeiten – aber auch über deren Grenzen – erfahren.
  • Für wen relationale Datenbanken sowie deren Funktionen schon lange nichts Neues mehr darstellen, kann sich hier (selbst mit dem eigenen Notebook) erstaunlich einfach in das Thema “Bug Data” einarbeiten, da die Menge an öffentlich vorhandenen Geodaten z.B. des OpenStreetMaps-Projektes selbst in optimal gepackten Format vielen Dutzend GB entsprechen. Gerade die Möglichkeit, die viele *gis-Programme wie beispielsweise QGIS bieten, nämlich Straßen-, Schienen- und Stromnetze “on-the-fly” zu plotten, macht die Bedeutung von richtig oder falsch gesetzten Indices in verschiedenen Datenbanken allein anhand der Geschwindigkeit mit der sich die Plots aufbauen sehr eindrucksvoll deutlich.
Um an Datensätze zu kommen, reicht es in der Regel Google mit den entsprechenden Schlagworten zu versorgen.
Neben – um einen Vergleich zu nutzen – dem Brockhaus der Karten GoogleMaps gibt es beispielsweise mit dem OpenStreetMaps-Projekt einen freien Geodatensatz, welcher in diesem Kontext etwa als das Wikipedia der Karten zu verstehen ist.
Hier findet man zum Beispiel Daten wie Straßen-, Schienen- oder dem Stromnetz, aber auch die im obigen Voronidiagramm eingezeichneten Gebäude und Supermärkte stammen aus diesem Datensatz. Hiermit lassen sich recht einfach just for fun interessante Dinge herausfinden, wie z. B., dass es in Deutschland ca. 28 Mio Gebäude gibt (ein SQL-Einzeiler), dass der Berliner Osten auch ca. 30 Jahre nach der Wende noch immer vorwiegend von der Tram versorgt wird, während im Westen hauptsächlich die U-Bahn fährt. Oder über welche Trassen der in der Nordsee von Windkraftanlagen erzeugte Strom auf das Festland kommt und von da aus weiter verteilt wird.
Eher grundlegende aber deswegen nicht weniger nützliche Datensätze lassen sich unter dem Stichwort “natural earth” finden. Hier sind Daten wie globale Küstenlinien, mittels Echolot ausgemessene Meerestiefen, aber auch von Menschen geschaffene Dinge wie Landesgrenzen und Städte sehr übersichtlich zu finden.
Im Grunde sind der Vorstellung aber keinerlei Grenzen gesetzt und fast alle denkbaren geographischen Fakten können, manchmal sogar live via Sattelit, mitverfolgt werden. So kann man sich beispielsweise neben aktueller Wolkenbedekung, Regenradar und globaler Oberflächentemperatur des Planeten auch das Abschmelzen der Polkappen seit 1970 ansehen (NSIDC) oder sich live die Blitzeinschläge auf dem gesamten Planeten anschauen – mit Vorhersage darüber, wann und wo der Donner zu hören ist (das funktioniert wirklich! Beispielsweise auf lightningmaps).
Kurzum Geodaten sind neben ihrer wirtschaftlichen Relevanz – vor allem für die Logistik – auch für angehende Data Scientists sehr aufschlussreich und ein wunderbares Spielzeug, mit dem man sich lange beschäftigen und eine Menge interessanter Dinge herausfinden kann.