All about Big Data Storage and Analytics

Data Vault 2.0 – Flexible Datenmodellierung

Was ist Data Vault 2.0?

Data Vault 2.0 ist ein im Jahr 2000 von Dan Linstedt veröffentlichtes und seitdem immer weiter entwickeltes Modellierungssystem für Enterprise Data Warehouses.

Im Unterschied zum normalisierten Data Warehouse – Definition von Inmon [1] ist ein Data Vault Modell funktionsorientiert über alle Geschäftsbereiche hinweg und nicht themenorientiert (subject-oriented)[2]. Ein und dasselbe Produkt beispielsweise ist mit demselben Business Key sichtbar für Vertrieb, Marketing, Buchhaltung und Produktion.

Data Vault ist eine Kombination aus Sternschema und dritter Normalform[3] mit dem Ziel, Geschäftsprozesse als Datenmodell abzubilden. Dies erfordert eine enge Zusammenarbeit mit den jeweiligen Fachbereichen und ein gutes Verständnis für die Geschäftsvorgänge.

Die Schichten des Data Warehouses:

Data Warehouse mit Data Vault und Data Marts

Data Warehouse mit Data Vault und Data Marts

Die Daten werden zunächst über eine Staging – Area in den Raw Vault geladen.

Bis hierher werden sie nur strukturell verändert, das heißt, von ihrer ursprünglichen Form in die Data Vault Struktur gebracht. Inhaltliche Veränderungen finden erst im Business Vault statt; wo die Geschäftslogiken auf den Daten angewandt werden.

Die Information Marts bilden die Basis für die Reporting-Schicht. Hier müssen nicht unbedingt Tabellen erstellt werden, Views können hier auch ausreichend sein. Hier werden Hubs zu Dimensionen und Links zu Faktentabellen, jeweils angereichert mit Informationen aus den zugehörigen Satelliten.

Die Grundelemente des Data Vault Modells:

Daten werden aus den Quellsystemen in sogenannte Hubs, Links und Satelliten im Raw Vault geladen:

Data Vault 2.0 Schema

Data Vault 2.0 Schema

Hub:

Hub-Tabellen beschreiben ein Geschäftsobjekt, beispielsweise einen Kunden, ein Produkt oder eine Rechnung. Sie enthalten einen Business Key (eine oder mehrere Spalten, die einen Eintrag eindeutig identifizieren), einen Hashkey – eine Verschlüsselung der Business Keys – sowie Datenquelle und Ladezeitstempel.

Link:

Ein Link beschreibt eine Interaktion oder Transaktion zwischen zwei Hubs. Beispielsweise eine Rechnungszeile als Kombination aus Rechnung, Kunde und Produkt. Auch ein Eintrag einer Linktabelle ist über einen Hashkey eindeutig identifizierbar.

Satellit:

Ein Satellit enthält zusätzliche Informationen über einen Hub oder einen Link. Ein Kundensatellit enthält beispielsweise Name und Anschrift des Kunden sowie Hashdiff (Verschlüsselung der Attribute zur eindeutigen Identifikation eines Eintrags) und Ladezeitstempel.

Herausforderungen bei der Modellierung

Die Erstellung des vollständigen Data Vault Modells erfordert nicht nur eine enge Zusammenarbeit mit den Fachbereichen, sondern auch eine gute Planung im Vorfeld. Es stehen oftmals mehrere zulässige Modellierungsoptionen zur Auswahl, aus denen die für das jeweilige Unternehmen am besten passende Option gewählt werden muss.

Es ist zudem wichtig, sich im Vorfeld Gedanken um die Handhabbarkeit des Modells zu machen, da die Zahl der Tabellen leicht explodieren kann und viele eventuell vermeidbare Joins notwendig werden.

Obwohl Data Vault als Konzept schon viele Jahre besteht, sind online nicht viele Informationen frei verfügbar – gerade für komplexere Modellierungs- und Performanceprobleme.

Zusätzliche Elemente:

Über die Kernelemente hinaus sind weitere Tabellen notwendig, um die volle Funktionalität des Data Vault Konzeptes auszuschöpfen:

PIT Tabelle

Point-in-Time Tabellen zeigen einen Snapshot der Daten zu einem bestimmten Zeitpunkt. Sie enthalten die Hashkeys und Hashdiffs der Hubs bzw. Links und deren zugehörigen Satelliten. So kann man schnell den jeweils aktuellsten Satelliteneintrag zu einem Hashkey herausfinden.

Referenztabellen

Zusätzliche, weitgehend feststehende Tabellen, beispielsweise Kalendertabellen.

Effektivitätssatellit

Diese Satelliten verfolgen die Gültigkeit von Satelliteneinträgen und markieren gelöschte Datensätze mit einem Zeitstempel. Sie können in den PIT Tabellen verarbeitet werden, um ungültige Datensätze herauszufiltern.

Bridge Tabelle

Bridge Tabellen sind Teil des Business Vaults und enthalten nur Hub- und Linkhashkeys. Sie ähneln Faktentabellen und dienen dazu, von Endanwender*innen benötigte Schlüsselkombinationen vorzubereiten.

Vorteile und Nachteile von Data Vault 2.0

Vorteile:

  • Da Hubs, Links und Satelliten jeweils unabhängig voneinander sind, können sie schnell parallel geladen werden.
  • Durch die Modularität des Systems können erste Projekte schnell umgesetzt werden.
  • Vollständige Historisierung aller Daten, denn es werden niemals Daten gelöscht.
  • Nachverfolgbarkeit der Daten
  • Handling personenbezogener Daten in speziellen Satelliten
  • Einfache Erweiterung des Datenmodells möglich
  • Zusammenführung von Daten aus unterschiedlichen Quellen grundsätzlich möglich
  • Eine fast vollständige Automatisierung der Raw Vault Ladeprozesse ist möglich, da das Grundkonzept immer gleich ist.

Nachteile:

  • Es sind verhältnismäßig wenige Informationen, Hilfestellungen und Praxisbeispiele online zu finden und das Handbuch von Dan Linstedt ist unübersichtlich gestaltet.
    • Zusammenführung unterschiedlicher Quellsysteme kaum in der verfügbaren Literatur dokumentiert und in der Praxis aufwendig.
  • Hoher Rechercheaufwand im Vorfeld und eine gewisse Anlauf- und Experimentierphase auch was die Toolauswahl angeht sind empfehlenswert.
  • Es wird mit PIT- und Bridge Tabellen und Effektivitätssatelliten noch viel zusätzlicher Overhead geschaffen, der verwaltet werden muss.
  • Business Logiken können die Komplexität des Datemodells stark erhöhen.
  • Eine Automatisierung des Business Vaults ist nur begrenzt möglich.

Praxisbeispiel Raw Vault Bestellung:

Das Design eines Raw Vault Modells funktioniert in mehreren Schritten:

  1. Business Keys identifizieren und Hubs definieren
  2. Verbindungen (Links) zwischen den Hubs identifizieren
  3. Zusätzliche Informationen zu den Hubs in Satelliten hinzufügen

Angenommen, man möchte eine Bestellung inklusive Rechnung und Versand als Data Vault modellieren.

Hubs sind alle Entitäten, die sich mit einer eindeutigen ID – einem Business Key – identifizieren lassen. So erstellt man beispielsweise einen Hub für den Kunden, das Produkt, den Kanal, über den die Bestellung hereinkommt (online / telefonisch), die Bestellung an sich, die dazugehörige Rechnung, eine zu bebuchende Kostenstelle, Zahlungen und Lieferung. Diese Liste ließe sich beliebig ergänzen.

Jeder Eintrag in einem dieser Hubs ist durch einen Schlüssel eindeutig identifizierbar. Die Rechnung durch die Rechnungsnummer, das Produkt durch eine SKU, der Kunde durch die Kundennummer etc.

Eine Zeile einer Bestellung kann nun modelliert werden als ein Link aus Bestellung (im Sinne von Bestellkopf), Kunde, Rechnung, Kanal, Produkt, Lieferung, Kostenstelle und Bestellzeilennummer.

Analog dazu können Rechnung und Lieferung ebenso als Kombination aus mehreren Hubs modelliert werden.

Allen Hubs werden anschließend ein oder mehrere Satelliten zugeordnet, die zusätzliche Informationen zu ihrem jeweiligen Hub enthalten.

Personenbezogene Daten, beispielsweise Namen und Adressen von Kunden, werden in separaten Satelliten gespeichert. Dies ermöglicht einen einfachen Umgang mit der DSGVO.

Data Vault 2.0 Beispiel Bestelldatenmodell

Data Vault 2.0 Beispiel Bestelldatenmodell

Fazit

Data Vault ist ein Modellierungsansatz, der vor allem für Organisationen mit vielen Quellsystemen und sich häufig ändernden Daten sinnvoll ist. Hier lohnt sich der nötige Aufwand für Design und Einrichtung eines Data Vaults und die Benefits in Form von Flexibilität, Historisierung und Nachverfolgbarkeit der Daten kommen wirklich zum Tragen.

Quellen

[1] W. H. Inmon, What is a Data Warehouse?. Volume 1, Number 1, 1995

[2] Dan Linstedt, Super Charge Your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault. CreateSpace Independent Publishing Platform 2011

[3] Vgl. Linstedt 2011

Weiterführende Links und

Blogartikel von Analytics Today

Häufig gestellte Fragen

Einführung in Data Vault von Kent Graziano: pdf

Website von Dan Linstedt mit vielen Informationen und Artikeln

„Building a Scalable Data Warehouse with Data Vault 2.0“ von Dan Linstedt (Amazon Link)

Big Data mit Hadoop und Map Reduce!

Foto von delfi de la Rua auf Unsplash.

Hadoop ist ein Softwareframework, mit dem sich große Datenmengen auf verteilten Systemen schnell verarbeiten lassen. Es verfügt über Mechanismen, welche eine stabile und fehlertolerante Funktionalität sicherstellen, sodass das Tool für die Datenverarbeitung im Big Data Umfeld bestens geeignet ist. In diesen Fällen ist eine normale relationale Datenbank oft nicht ausreichend, um die unstrukturierten Datenmengen kostengünstig und effizient abzuspeichern.

Unterschiede zwischen Hadoop und einer relationalen Datenbank

Hadoop unterscheidet sich in einigen grundlegenden Eigenschaften von einer vergleichbaren relationalen Datenbank.

Eigenschaft Relationale Datenbank Hadoop
Datentypen ausschließlich strukturierte Daten alle Datentypen (strukturiert, semi-strukturiert und unstrukturiert)
Datenmenge wenig bis mittel (im Bereich von einigen GB) große Datenmengen (im Bereich von Terrabyte oder Petabyte)
Abfragesprache SQL HQL (Hive Query Language)
Schema Statisches Schema (Schema on Write) Dynamisches Schema (Schema on Read)
Kosten Lizenzkosten je nach Datenbank Kostenlos
Datenobjekte Relationale Tabellen Key-Value Pair
Skalierungstyp Vertikale Skalierung (Computer muss hardwaretechnisch besser werden) Horizontale Skalierung (mehr Computer können dazugeschaltet werden, um Last abzufangen)

Vergleich Hadoop und Relationale Datenbank

Bestandteile von Hadoop

Das Softwareframework selbst ist eine Zusammenstellung aus insgesamt vier Komponenten.

Hadoop Common ist eine Sammlung aus verschiedenen Modulen und Bibliotheken, welche die anderen Bestandteile unterstützt und deren Zusammenarbeit ermöglicht. Unter anderem sind hier die Java Archive Dateien (JAR Files) abgelegt, die zum Starten von Hadoop benötigt werden. Darüber hinaus ermöglicht die Sammlung die Bereitstellung von grundlegenden Services, wie beispielsweise das File System.

Der Map-Reduce Algorithmus geht in seinen Ursprüngen auf Google zurück und hilft komplexe Rechenaufgaben in überschaubarere Teilprozesse aufzuteilen und diese dann über mehrere Systeme zu verteilen, also horizontal zu skalieren. Dadurch verringert sich die Rechenzeit deutlich. Am Ende müssen die Ergebnisse der Teilaufgaben wieder zu seinem Gesamtresultat zusammengefügt werden.

Der Yet Another Resource Negotiator (YARN) unterstützt den Map-Reduce Algorithmus, indem er die Ressourcen innerhalb eines Computer Clusters im Auge behält und die Teilaufgaben auf die einzelnen Rechner verteilt. Darüber hinaus ordnet er den einzelnen Prozessen die Kapazitäten dafür zu.

Das Hadoop Distributed File System (HDFS) ist ein skalierbares Dateisystem zur Speicherung von Zwischen- oder Endergebnissen. Innerhalb des Clusters ist es über mehrere Rechner verteilt, um große Datenmengen schnell und effizient verarbeiten zu können. Die Idee dahinter war, dass Big Data Projekte und Datenanalysen auf großen Datenmengen beruhen. Somit sollte es ein System geben, welches die Daten auch stapelweise speichert und dadurch schnell verarbeitet. Das HDFS sorgt auch dafür, dass Duplikate von Datensätzen abgelegt werden, um den Ausfall eines Rechners verkraften zu können.

Map Reduce am Beispiel

Angenommen wir haben alle Teile der Harry Potter Romane in Hadoop PDF abgelegt und möchten nun die einzelnen Wörter zählen, die in den Büchern vorkommen. Dies ist eine klassische Aufgabe bei der uns die Aufteilung in eine Map-Funktion und eine Reduce Funktion helfen kann.

Bevor es die Möglichkeit gab, solche aufwendigen Abfragen auf ein ganzes Computer-Cluster aufzuteilen und parallel berechnen zu können, war man gezwungen, den kompletten Datensatz nacheinander zu durchlaufen. Dadurch wurde die Abfragezeit auch umso länger, umso größer der Datensatz wurde. Der einzige Weg, um die Ausführung der Funktion zu beschleunigen ist es, einen Computer mit einem leistungsfähigeren Prozessor (CPU) auszustatten, also dessen Hardware zu verbessern. Wenn man versucht, die Ausführung eines Algorithmus zu beschleunigen, indem man die Hardware des Gerätes verbessert, nennt man das vertikale Skalieren.

Mithilfe von MapReduce ist es möglich eine solche Abfrage deutlich zu beschleunigen, indem man die Aufgabe in kleinere Teilaufgaben aufsplittet. Das hat dann wiederum den Vorteil, dass die Teilaufgaben auf viele verschiedene Computer aufgeteilt und von ihnen ausgeführt werden kann. Dadurch müssen wir nicht die Hardware eines einzigen Gerätes verbessern, sondern können viele, vergleichsweise leistungsschwächere, Computer nutzen und trotzdem die Abfragezeit verringern. Ein solches Vorgehen nennt man horizontales Skalieren.

Kommen wir zurück zu unserem Beispiel: Bisher waren wir bildlich so vorgegangen, dass wir alle Harry Potter Teile gelesen haben und nach jedem gelesenen Wort die Strichliste mit den einzelnen Wörtern einfach um einen Strich erweitert haben. Das Problem daran ist, dass wir diese Vorgehensweise nicht parallelisieren können. Angenommen eine zweite Person will uns unterstützen, dann kann sie das nicht tun, weil sie die Strichliste, mit der wir gerade arbeiten, benötigt, um weiterzumachen. Solange sie diese nicht hat, kann sie nicht unterstützen.

Sie kann uns aber unterstützen, indem sie bereits mit dem zweiten Teil der Harry Potter Reihe beginnt und eine eigene Strichliste nur für das zweite Buch erstellt. Zum Schluss können wir dann alle einzelnen Strichlisten zusammenführen und beispielsweise die Häufigkeit des Wortes “Harry” auf allen Strichlisten zusammenaddieren.

MapReduce am Beispiel von Wortzählungen in Harry Potter Büchern

MapReduce am Beispiel von Wortzählungen in Harry Potter Büchern | Source: Data Basecamp

Dadurch lässt sich die Aufgabe auch relativ einfach horizontal skalieren, indem jeweils eine Person pro Harry Potter Buch arbeitet. Wenn wir noch schneller arbeiten wollen, können wir auch mehrere Personen mit einbeziehen und jede Person ein einziges Kapitel bearbeiten lassen. Am Schluss müssen wir dann nur alle Ergebnisse der einzelnen Personen zusammennehmen, um so zu einem Gesamtergebnis zu gelangen.

Das ausführliche Beispiel und die Umsetzung in Python findest Du hier.

Aufbau eines Hadoop Distributed File Systems

Der Kern des Hadoop Distributed File Systems besteht darin die Daten auf verschiedene Dateien und Computer zu verteilen, sodass Abfragen schnell bearbeitet werden können und der Nutzer keine langen Wartezeiten hat. Damit der Ausfall einer einzelnen Maschine im Cluster nicht zum Verlust der Daten führt, gibt es gezielte Replikationen auf verschiedenen Computern, um eine Ausfallsicherheit zu gewährleisten.

Hadoop arbeitet im Allgemeinen nach dem sogenannten Master-Slave-Prinzip. Innerhalb des Computerclusters haben wir einen Knoten, der die Rolle des sogenannten Masters übernimmt. Dieser führt in unserem Beispiel keine direkte Berechnung durch, sondern verteilt lediglich die Aufgaben auf die sogenannten Slave Knoten und koordiniert den ganzen Prozess. Die Slave Knoten wiederum lesen die Bücher aus und speichern die Worthäufigkeit und die Wortverteilung.

Dieses Prinzip wird auch bei der Datenspeicherung genutzt. Der Master verteilt Informationen aus dem Datensatz auf verschiedenen Slave Nodes und merkt sich, auf welchen Computern er welche Partitionen abgespeichert hat. Dabei legt er die Daten auch redundant ab, um Ausfälle kompensieren zu können. Bei einer Abfrage der Daten durch den Nutzer entscheidet der Masterknoten dann, welche Slaveknoten er anfragen muss, um die gewünschten Informationen zu erhalten.

Moderne Business Intelligence in der Microsoft Azure Cloud

Google, Amazon und Microsoft sind die drei großen Player im Bereich Cloud Computing. Die Cloud kommt für nahezu alle möglichen Anwendungsszenarien infrage, beispielsweise dem Hosting von Unternehmenssoftware, Web-Anwendungen sowie Applikationen für mobile Endgeräte. Neben diesen Klassikern spielt die Cloud jedoch auch für Internet of Things, Blockchain oder Künstliche Intelligenz eine wichtige Rolle als Enabler. In diesem Artikel beleuchten wir den Cloud-Anbieter Microsoft Azure mit Blick auf die Möglichkeiten des Aufbaues eines modernen Business Intelligence oder Data Platform für Unternehmen.

Eine Frage der Architektur

Bei der Konzeptionierung der Architektur stellen sich viele Fragen:

  • Welche Datenbank wird für das Data Warehouse genutzt?
  • Wie sollten ETL-Pipelines erstellt und orchestriert werden?
  • Welches BI-Reporting-Tool soll zum Einsatz kommen?
  • Müssen Daten in nahezu Echtzeit bereitgestellt werden?
  • Soll Self-Service-BI zum Einsatz kommen?
  • … und viele weitere Fragen.

1 Die Referenzmodelle für Business Intelligence Architekturen von Microsoft Azure

Die vielen Dienste von Microsoft Azure erlauben unzählige Einsatzmöglichkeiten und sind selbst für Cloud-Experten nur schwer in aller Vollständigkeit zu überblicken.  Microsoft schlägt daher verschiedene Referenzmodelle für Datenplattformen oder Business Intelligence Systeme mit unterschiedlichen Ausrichtungen vor. Einige davon wollen wir in diesem Artikel kurz besprechen und diskutieren.

1a Automatisierte Enterprise BI-Instanz

Diese Referenzarchitektur für automatisierte und eher klassische BI veranschaulicht die Vorgehensweise für inkrementelles Laden in einer ELT-Pipeline mit dem Tool Data Factory. Data Factory ist der Cloud-Nachfolger des on-premise ETL-Tools SSIS (SQL Server Integration Services) und dient nicht nur zur Erstellung der Pipelines, sondern auch zur Orchestrierung (Trigger-/Zeitplan der automatisierten Ausführung und Fehler-Behandlung). Über Pipelines in Data Factory werden die jeweils neuesten OLTP-Daten inkrementell aus einer lokalen SQL Server-Datenbank (on-premise) in Azure Synapse geladen, die Transaktionsdaten dann in ein tabellarisches Modell für die Analyse transformiert, dazu wird MS Azure Analysis Services (früher SSAS on-premis) verwendet. Als Tool für die Visualisierung der Daten wird von Microsoft hier und in allen anderen Referenzmodellen MS PowerBI vorgeschlagen. MS Azure Active Directory verbindet die Tools on Azure über einheitliche User im Active Directory Verzeichnis in der Azure-Cloud.

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/data/enterprise-bi-adfQuelle:

Einige Diskussionspunkte zur BI-Referenzarchitektur von MS Azure

Der von Microsoft vorgeschlagenen Referenzarchitektur zu folgen kann eine gute Idee sein, ist jedoch tatsächlich nur als Vorschlag – eher noch als Kaufvorschlag – zu betrachten. Denn Unternehmens-BI ist hochgradig individuell und Bedarf einiger Diskussion vor der Festlegung der Architektur.

Azure Data Factory als ETL-Tool

Azure Data Factory wird in dieser Referenzarchitektur als ETL-Tool vorgeschlagen. In der Tat ist dieses sehr mächtig und rein über Mausklicks bedienbar. Darüber hinaus bietet es die Möglichkeit z. B. über Python oder Powershell orchestriert und pipeline-modelliert zu werden. Der Clue für diese Referenzarchitektur ist der Hinweis auf die On-Premise-Datenquellen. Sollte zuvor SSIS eingesetzt werden sollen, können die SSIS-Packages zu Data Factory migriert werden.

Die Auswahl der Datenbanken

Der Vorteil dieser Referenzarchitektur ist ohne Zweifel die gute Aufstellung der Architektur im Hinblick auf vielseitige Einsatzmöglichkeiten, so werden externe Daten (in der Annahme, dass diese un- oder semi-strukturiert vorliegen) zuerst in den Azure Blob Storage oder in den auf dem Blob Storage beruhenden Azure Data Lake zwischen gespeichert, bevor sie via Data Factory in eine für Azure Synapse taugliche Struktur transformiert werden können. Möglicherweise könnte auf den Blob Storage jedoch auch gut verzichtet werden, solange nur Daten aus bekannten, strukturierten Datenbanken der Vorsysteme verarbeitet werden. Als Staging-Layer und für Datenhistorisierung sind der Azure Blob Storage oder der Azure Data Lake jedoch gute Möglichkeiten, da pro Dateneinheit besonders preisgünstig.

Azure Synapse ist eine mächtige Datenbank mindestens auf Augenhöhe mit zeilen- und spaltenorientierten, verteilten In-Memory-Datenbanken wie Amazon Redshift, Google BigQuery oder SAP Hana. Azure Synapse bietet viele etablierte Funktionen eines modernen Data Warehouses und jährlich neue Funktionen, die zuerst als Preview veröffentlicht werden, beispielsweise der Einsatz von Machine Learning direkt auf der Datenbank.

Zur Diskussion steht jedoch, ob diese Funktionen und die hohe Geschwindigkeit (bei richtiger Nutzung) von Azure Synapse die vergleichsweise hohen Kosten rechtfertigen. Alternativ können MySQL-/MariaDB oder auch PostgreSQL-Datenbanken bei MS Azure eingesetzt werden. Diese sind jedoch mit Vorsicht zu nutzen bzw. erst unter genauer Abwägung einzusetzen, da sie nicht vollständig von Azure Data Factory in der Pipeline-Gestaltung unterstützt werden. Ein guter Kompromiss kann der Einsatz von Azure SQL Database sein, der eigentliche Nachfolger der on-premise Lösung MS SQL Server. MS Azure Snypase bleibt dabei jedoch tatsächlich die Referenz, denn diese Datenbank wurde speziell für den Einsatz als Data Warehouse entwickelt.

Zentrale Cube-Generierung durch Azure Analysis Services

Zur weiteren Diskussion stehen könnte MS Azure Analysis Sevice als Cube-Engine. Diese Cube-Engine, die ursprünglich on-premise als SQL Server Analysis Service (SSAS) bekannt war, nun als Analysis Service in der Azure Cloud verfügbar ist, beruhte früher noch als SSAS auf der Sprache MDX (Multi-Dimensional Expressions), eine stark an SQL angelehnte Sprache zum Anlegen von schnellen Berechnungsformeln für Kennzahlen im Cube-Datenmodellen, die grundlegendes Verständnis für multidimensionale Abfragen mit Tupeln und Sets voraussetzt. Heute wird statt MDX die Sprache DAX (Data Analysis Expression) verwendet, die eher an Excel-Formeln erinnert (diesen aber keinesfalls entspricht), sie ist umfangreicher als MDX, jedoch für den abitionierten Anwender leichter verständlich und daher für Self-Service-BI geeignet.

Punkt der Diskussion ist, dass der Cube über den Analysis-Service selbst keine Möglichkeiten eine Self-Service-BI nicht ermöglicht, da die Bearbeitung des Cubes mit DAX nur über spezielle Entwicklungsumgebungen möglich ist (z. B. Visual Studio). MS Power BI selbst ist ebenfalls eine Instanz des Analysis Service, denn im Kern von Power BI steckt dieselbe Engine auf Basis von DAX. Power BI bietet dazu eine nutzerfreundliche UI und direkt mit mausklickbaren Elementen Daten zu analysieren und Kennzahlen mit DAX anzulegen oder zu bearbeiten. Wird im Unternehmen absehbar mit Power BI als alleiniges Analyse-Werkzeug gearbeitet, ist eine separate vorgeschaltete Instanz des Azure Analysis Services nicht notwendig. Der zur Abwägung stehende Vorteil des Analysis Service ist die Nutzung des Cubes in Microsoft Excel durch die User über Power Pivot. Dies wiederum ist eine eigene Form des sehr flexiblen Self-Service-BIs.

1b Enterprise Data Warehouse-Architektur

Eine weitere Referenz-Architektur von Microsoft auf Azure ist jene für den Einsatz als Data Warehouse, bei der Microsoft Azure Synapse den dominanten Part von der Datenintegration über die Datenspeicherung und Vor-Analyse übernimmt.https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/enterprise-data-warehouseQuelle: 

Diskussionspunkte zum Referenzmodell der Enterprise Data Warehouse Architecture

Auch diese Referenzarchitektur ist nur für bestimmte Einsatzzwecke in dieser Form sinnvoll.

Azure Synapse als ETL-Tool

Im Unterschied zum vorherigen Referenzmodell wird hier statt auf Azure Data Factory auf Azure Synapse als ETL-Tool gesetzt. Azure Synapse hat die Datenintegrationsfunktionalitäten teilweise von Azure Data Factory geerbt, wenn gleich Data Factory heute noch als das mächtigere ETL-Tool gilt. Azure Synapse entfernt sich weiter von der alten SSIS-Logik und bietet auch keine Integration von SSIS-Paketen an, zudem sind einige Anbindungen zwischen Data Factory und Synapse unterschiedlich.

Auswahl der Datenbanken

Auch in dieser Referenzarchitektur kommt der Azure Blob Storage als Zwischenspeicher bzw. Staging-Layer zum Einsatz, jedoch im Mantel des Azure Data Lakes, der den reinen Speicher um eine Benutzerebene erweitert und die Verwaltung des Speichers vereinfacht. Als Staging-Layer oder zur Datenhistorisierung ist der Blob Storage eine kosteneffiziente Methode, darf dennoch über individuelle Betrachtung in der Notwendigkeit diskutiert werden.

Azure Synapse erscheint in dieser Referenzarchitektur als die sinnvolle Lösung, da nicht nur die Pipelines von Synapse, sondern auch die SQL-Engine sowie die Spark-Engine (über Python-Notebooks) für die Anwendung von Machine Learning (z. B. für Recommender-Systeme) eingesetzt werden können. Hier spielt Azure Synpase die Möglichkeiten als Kern einer modernen, intelligentisierbaren Data Warehouse Architektur voll aus.

Azure Analysis Service

Auch hier wird der Azure Analysis Service als Cube-generierende Maschinerie von Microsoft vorgeschlagen. Hier gilt das zuvor gesagte: Für den reinen Einsatz mit Power BI ist der Analysis Service unnötig, sollen Nutzer jedoch in MS Excel komplexe, vorgerechnete Analysen durchführen können, dann zahlt sich der Analysis Service aus.

Azure Cosmos DB

Die Azure Cosmos DB ist am nächsten vergleichbar mit der MongoDB Atlas (die Cloud-Version der eigentlich on-premise zu hostenden MongoDB). Es ist eine NoSQL-Datenbank, die über Datendokumente im JSON-File-Format auch besonders große Datenmengen in sehr hoher Geschwindigkeit abfragen kann. Sie gilt als die zurzeit schnellste Datenbank in Sachen Lesezugriff und spielt dabei alle Vorteile aus, wenn es um die massenweise Bereitstellung von Daten in andere Applikationen geht. Unternehmen, die ihren Kunden mobile Anwendungen bereitstellen, die Millionen parallele Datenzugriffe benötigen, setzen auf Cosmos DB.

1c Referenzarchitektur für Realtime-Analytics

Die Referenzarchitektur von Microsoft Azure für Realtime-Analytics wird die Referenzarchitektur für Enterprise Data Warehousing ergänzt um die Aufnahme von Data Streaming.

Diskussionspunkte zum Referenzmodell für Realtime-Analytics

Diese Referenzarchitektur ist nur für Einsatzszenarios sinnvoll, in denen Data Streaming eine zentrale Rolle spielt. Bei Data Streaming handelt es sich, vereinfacht gesagt, um viele kleine, ereignis-getriggerte inkrementelle Datenlade-Vorgänge bzw. -Bedarfe (Events), die dadurch nahezu in Echtzeit ausgeführt werden können. Dies kann über Webshops und mobile Anwendungen von hoher Bedeutung sein, wenn z. B. Angebote für Kunden hochgrade-individualisiert angezeigt werden sollen oder wenn Marktdaten angezeigt und mit ihnen interagiert werden sollen (z. B. Trading von Wertpapieren). Streaming-Tools bündeln eben solche Events (bzw. deren Datenhäppchen) in Data-Streaming-Kanäle (Partitionen), die dann von vielen Diensten (Consumergruppen / Receiver) aufgegriffen werden können. Data Streaming ist insbesondere auch dann ein notwendiges Setup, wenn ein Unternehmen über eine Microservices-Architektur verfügt, in der viele kleine Dienste (meistens als Docker-Container) als dezentrale Gesamtstruktur dienen. Jeder Dienst kann über Apache Kafka als Sender- und/oder Empfänger in Erscheinung treten. Der Azure Event-Hub dient dazu, die Zwischenspeicherung und Verwaltung der Datenströme von den Event-Sendern in den Azure Blob Storage bzw. Data Lake oder in Azure Synapse zu laden und dort weiter zu reichen oder für tiefere Analysen zu speichern.

Azure Eventhub ArchitectureQuelle: https://docs.microsoft.com/de-de/azure/event-hubs/event-hubs-about

Für die Datenverarbeitung in nahezu Realtime sind der Azure Data Lake und Azure Synapse derzeitig relativ alternativlos. Günstigere Datenbank-Instanzen von MariaDB/MySQL, PostgreSQL oder auch die Azure SQL Database wären hier ein Bottleneck.

2 Fazit zu den Referenzarchitekturen

Die Referenzarchitekturen sind exakt als das zu verstehen: Als Referenz. Keinesfalls sollte diese Architektur unreflektiert für ein Unternehmen übernommen werden, sondern vorher in Einklang mit der Datenstrategie gebracht werden, dabei sollten mindestens diese Fragen geklärt werden:

  • Welche Datenquellen sind vorhanden und werden zukünftig absehbar vorhanden sein?
  • Welche Anwendungsfälle (Use Cases) habe ich für die Business Intelligence bzw. Datenplattform?
  • Über welche finanziellen und fachlichen Ressourcen darf verfügt werden?

Darüber hinaus sollten sich die Architekten bewusst sein, dass, anders als noch in der trägeren On-Premise-Welt, die Could-Dienste schnelllebig sind. So sah die Referenzarchitektur 2019/2020 noch etwas anders aus, in der Databricks on Azure als System für Advanced Analytics inkludiert wurde, heute scheint diese Position im Referenzmodell komplett durch Azure Synapse ersetzt worden zu sein.

Azure Reference Architecture BI Databrikcs 2019

Azure Reference Architecture – with Databricks, old image source: https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/modern-data-warehouse

Hinweis zu den Kosten und der Administration

Die Kosten für Cloud Computing statt für IT-Infrastruktur On-Premise sind ein zweischneidiges Schwert. Der günstige Einstieg in de Azure Cloud ist möglich, jedoch bedingt ein kosteneffizienter Betrieb viel Know-How im Umgang mit den Diensten und Konfigurationsmöglichkeiten der Azure Cloud oder des jeweiligen alternativen Anbieters. Beispielsweise können über Azure Data Factory Datenbanken über Pipelines automatisiert hochskaliert und nach nur Minuten wieder runterskaliert werden. Nur wer diese dynamischen Skaliermöglichkeiten nutzt, arbeitet effizient in der Cloud.

Ferner sind Kosten nur schwer einschätzbar, da diese mehr noch von der Nutzung (Datenmenge, CPU, RAM) als von der zeitlichen Nutzung (Lifetime) abhängig sind. Preisrechner ermöglichen zumindest eine Kosteneinschätzung: https://azure.com/e/96162a623bda4911bb8f631e317affc6

Interview: Operationalisierung von Data Science

Interview mit Herrn Dr. Frank Block von Roche Diagnostics über Operationalisierung von Data Science

Herr Dr. Frank Block ist Head of IT Data Science bei Roche Diagnostics mit Sitz in der Schweiz. Zuvor war er Chief Data Scientist bei der Ricardo AG nachdem er für andere Unternehmen die Datenanalytik verantwortet hatte und auch 20 Jahre mit mehreren eigenen Data Science Consulting Startups am Markt war. Heute tragen ca. 50 Mitarbeiter bei Roche Diagnostics zu Data Science Projekten bei, die in sein Aktivitätsportfolio fallen: 

Data Science Blog: Herr Dr. Block, Sie sind Leiter der IT Data Science bei Roche Diagnostics? Warum das „IT“ im Namen dieser Abteilung?

Roche ist ein großes Unternehmen mit einer großen Anzahl von Data Scientists in ganz verschiedenen Bereichen mit jeweils sehr verschiedenen Zielsetzungen und Themen, die sie bearbeiten. Ich selber befinde mich mit meinem Team im Bereich „Diagnostics“, d.h. der Teil von Roche, in dem Produkte auf den Markt gebracht werden, die die korrekte Diagnose von Krankheiten und Krankheitsrisiken ermöglichen. Innerhalb von Roche Diagnostics gibt es wiederum verschiedene Bereiche, die Data Science für ihre Zwecke nutzen. Mit meinem Team sind wir in der globalen IT-Organisation angesiedelt und kümmern uns dort insbesondere um Anwendungen von Data Science für die Optimierung der internen Wertschöpfungskette.

Data Science Blog: Sie sind längst über die ersten Data Science Experimente hinaus. Die Operationalisierung von Analysen bzw. analytischen Applikationen ist für Sie besonders wichtig. Welche Rolle spielt das Datenmanagement dabei? Und wo liegen die Knackpunkte?

Ja, richtig. Die Zeiten, in denen sich Data Science erlauben konnte „auf Vorrat“ an interessanten Themen zu arbeiten, weil sie eben super interessant sind, aber ohne jemals konkrete Wertschöpfung zu liefern, sind definitiv und ganz allgemein vorbei. Wir sind seit einigen Jahren dabei, den Übergang von Data Science Experimenten (wir nennen es auch gerne „proof-of-value“) in die Produktion voranzutreiben und zu optimieren. Ein ganz essentielles Element dabei stellen die Daten dar; diese werden oft auch als der „Treibstoff“ für Data Science basierte Prozesse bezeichnet. Der große Unterschied kommt jedoch daher, dass oft statt „Benzin“ nur „Rohöl“ zur Verfügung steht, das zunächst einmal aufwändig behandelt und vorprozessiert werden muss, bevor es derart veredelt ist, dass es für Data Science Anwendungen geeignet ist. In diesem Veredelungsprozess wird heute noch sehr viel Zeit aufgewendet. Je besser die Datenplattformen des Unternehmens, umso größer die Produktivität von Data Science (und vielen anderen Abnehmern dieser Daten im Unternehmen). Ein anderes zentrales Thema stellt der Übergang von Data Science Experiment zu Operationalisierung dar. Hier muss dafür gesorgt werden, dass eine reibungslose Übergabe von Data Science an das IT-Entwicklungsteam erfolgt. Die Teamzusammensetzung verändert sich an dieser Stelle und bei uns tritt der Data Scientist von einer anfänglich führenden Rolle in eine Beraterrolle ein, wenn das System in die produktive Entwicklung geht. Auch die Unterstützung der Operationalisierung durch eine durchgehende Data Science Plattform kann an dieser Stelle helfen.

Data Science Blog: Es heißt häufig, dass Data Scientists kaum zu finden sind. Ist Recruiting für Sie tatsächlich noch ein Thema?

Generell schon, obwohl mir scheint, dass dies nicht unser größtes Problem ist. Glücklicherweise übt Roche eine große Anziehung auf Talente aus, weil im Zentrum unseres Denkens und Handelns der Patient steht und wir somit durch unsere Arbeit einen sehr erstrebenswerten Zweck verfolgen. Ein zweiter Aspekt beim Aufbau eines Data Science Teams ist übrigens das Halten der Talente im Team oder Unternehmen. Data Scientists suchen vor allem spannenden und abwechselnden Herausforderungen. Und hier sind wir gut bedient, da die Palette an Data Science Anwendungen derart breit ist, dass es den Kollegen im Team niemals langweilig wird.

Data Science Blog: Sie haben bereits einige Analysen erfolgreich produktiv gebracht. Welche Herausforderungen mussten dabei überwunden werden? Und welche haben Sie heute noch vor sich?

Wir konnten bereits eine wachsende Zahl an Data Science Experimenten in die Produktion überführen und sind sehr stolz darauf, da dies der beste Weg ist, nachhaltig Geschäftsmehrwert zu generieren. Die gleichzeitige Einbettung von Data Science in IT und Business ist uns bislang gut gelungen, wir werden aber noch weiter daran arbeiten, denn je näher wir mit unseren Kollegen in den Geschäftsabteilungen arbeiten, umso besser wird sichergestellt, das Data Science sich auf die wirklich relevanten Themen fokussiert. Wir sehen auch guten Fortschritt aus der Datenperspektive, wo zunehmend Daten über „Silos“ hinweg integriert werden und so einfacher nutzbar sind.

Data Science Blog: Data Driven Thinking wird heute sowohl von Mitarbeitern in den Fachbereichen als auch vom Management verlangt. Sind wir schon so weit? Wie könnten wir diese Denkweise im Unternehmen fördern?

Ich glaube wir stecken mitten im Wandel, Data-Driven Decisions sind im Kommen, aber das braucht auch seine Zeit. Indem wir zeigen, welches Potenzial ganz konkrete Daten und Advanced Analytics basierte Entscheidungsprozesse innehaben, helfen wir, diesen Wandel voranzutreiben. Spezifische Weiterbildungsangebote stellen eine andere Komponente dar, die diesen Transformationszrozess unterstützt. Ich bin überzeugt, dass wenn wir in 10-20 Jahren zurückblicken, wir uns fragen, wie wir überhaupt ohne Data-Driven Thinking leben konnten…

Interview – IT-Netzwerk Werke überwachen und optimieren mit Data Analytics

Interview mit Gregory Blepp von NetDescribe über Data Analytics zur Überwachung und Optimierung von IT-Netzwerken

Gregory Blepp ist Managing Director der NetDescribe GmbH mit Sitz in Oberhaching im Süden von München. Er befasst sich mit seinem Team aus Consultants, Data Scientists und IT-Netzwerk-Experten mit der technischen Analyse von IT-Netzwerken und der Automatisierung der Analyse über Applikationen.

Data Science Blog: Herr Blepp, der Name Ihres Unternehmens NetDescribe beschreibt tatsächlich selbstsprechend wofür Sie stehen: die Analyse von technischen Netzwerken. Wo entsteht hier der Bedarf für diesen Service und welche Lösung haben Sie dafür parat?

Unsere Kunden müssen nahezu in Echtzeit eine Visibilität über die Leistungsfähigkeit ihrer Unternehmens-IT haben. Dazu gehört der aktuelle Status der Netzwerke genauso wie andere Bereiche, also Server, Applikationen, Storage und natürlich die Web-Infrastruktur sowie Security.

Im Bankenumfeld sind zum Beispiel die uneingeschränkten WAN Verbindungen für den Handel zwischen den internationalen Börsenplätzen absolut kritisch. Hierfür bieten wir mit StableNetⓇ von InfosimⓇ eine Netzwerk Management Plattform, die in Echtzeit den Zustand der Verbindungen überwacht. Für die unterlagerte Netzwerkplattform (Router, Switch, etc.) konsolidieren wir mit GigamonⓇ das Monitoring.

Für Handelsunternehmen ist die Performance der Plattformen für den Online Shop essentiell. Dazu kommen die hohen Anforderungen an die Sicherheit bei der Übertragung von persönlichen Informationen sowie Kreditkarten. Hierfür nutzen wir SplunkⓇ. Diese Lösung kombiniert in idealer Form die generelle Performance Überwachung mit einem hohen Automatisierungsgrad und bietet dabei wesentliche Unterstützung für die Sicherheitsabteilungen.

Data Science Blog: Geht es den Unternehmen dabei eher um die Sicherheitsaspekte eines Firmennetzwerkes oder um die Performance-Analyse zum Zwecke der Optimierung?

Das hängt von den aktuellen Ansprüchen des Unternehmens ab.
Für viele unserer Kunden standen und stehen zunächst Sicherheitsaspekte im Vordergrund. Im Laufe der Kooperation können wir durch die Etablierung einer konsequenten Performance Analyse aufzeigen, wie eng die Verzahnung der einzelnen Abteilungen ist. Die höhere Visibilität erleichtert Performance Analysen und sie liefert den Sicherheitsabteilung gleichzeitig wichtige Informationen über aktuelle Zustände der Infrastruktur.

Data Science Blog: Haben Sie es dabei mit Big Data – im wörtlichen Sinne – zu tun?

Wir unterscheiden bei Big Data zwischen

  • dem organischen Wachstum von Unternehmensdaten aufgrund etablierter Prozesse, inklusive dem Angebot von neuen Services und
  • wirklichem Big Data, z. B. die Anbindung von Produktionsprozessen an die Unternehmens IT, also durch die Digitalisierung initiierte zusätzliche Prozesse in den Unternehmen.

Beide Themen sind für die Kunden eine große Herausforderung. Auf der einen Seite muss die Leistungsfähigkeit der Systeme erweitert und ausgebaut werden, um die zusätzlichen Datenmengen zu verkraften. Auf der anderen Seite haben diese neuen Daten nur dann einen wirklichen Wert, wenn sie richtig interpretiert werden und die Ergebnisse konsequent in die Planung und Steuerung der Unternehmen einfließen.

Wir bei NetDescribe kümmern uns mehrheitlich darum, das Wachstum und die damit notwendigen Anpassungen zu managen und – wenn Sie so wollen – Ordnung in das Datenchaos zu bringen. Konkret verfolgen wir das Ziel den Verantwortlichen der IT, aber auch der gesamten Organisation eine verlässliche Indikation zu geben, wie es der Infrastruktur als Ganzes geht. Dazu gehört es, über die einzelnen Bereiche hinweg, gerne auch Silos genannt, die Daten zu korrelieren und im Zusammenhang darzustellen.

Data Science Blog: Log-Datenanalyse gibt es seit es Log-Dateien gibt. Was hält ein BI-Team davon ab, einen Data Lake zu eröffnen und einfach loszulegen?

Das stimmt absolut, Log-Datenanalyse gibt es seit jeher. Es geht hier schlichtweg um die Relevanz. In der Vergangenheit wurde mit Wireshark bei Bedarf ein Datensatz analysiert um ein Problem zu erkennen und nachzuvollziehen. Heute werden riesige Datenmengen (Logs) im IoT Umfeld permanent aufgenommen um Analysen zu erstellen.

Nach meiner Überzeugung sind drei wesentliche Veränderungen der Treiber für den flächendeckenden Einsatz von modernen Analysewerkzeugen.

  • Die Inhalte und Korrelationen von Log Dateien aus fast allen Systemen der IT Infrastruktur sind durch die neuen Technologien nahezu in Echtzeit und für größte Datenmengen überhaupt erst möglich. Das hilft in Zeiten der Digitalisierung, wo aktuelle Informationen einen ganz neuen Stellenwert bekommen und damit zu einer hohen Gewichtung der IT führen.
  • Ein wichtiger Aspekt bei der Aufnahme und Speicherung von Logfiles ist heute, dass ich die Suchkriterien nicht mehr im Vorfeld formulieren muss, um dann die Antworten aus den Datensätzen zu bekommen. Die neuen Technologien erlauben eine völlig freie Abfrage von Informationen über alle Daten hinweg.
  • Logfiles waren in der Vergangenheit ein Hilfswerkzeug für Spezialisten. Die Information in technischer Form dargestellt, half bei einer Problemlösung – wenn man genau wusste was man sucht. Die aktuellen Lösungen sind darüber hinaus mit einer GUI ausgestattet, die nicht nur modern, sondern auch individuell anpassbar und für Nicht-Techniker verständlich ist. Somit erweitert sich der Anwenderkreis des “Logfile Managers” heute vom Spezialisten im Security und Infrastrukturbereich über Abteilungsverantwortliche und Mitarbeiter bis zur Geschäftsleitung.

Der Data Lake war und ist ein wesentlicher Bestandteil. Wenn wir heute Technologien wie Apache/KafkaⓇ und, als gemanagte Lösung, Confluent für Apache/KafkaⓇ betrachten, wird eine zentrale Datendrehscheibe etabliert, von der alle IT Abteilungen profitieren. Alle Analysten greifen mit Ihren Werkzeugen auf die gleiche Datenbasis zu. Somit werden die Rohdaten nur einmal erhoben und allen Tools gleichermaßen zur Verfügung gestellt.

Data Science Blog: Damit sind Sie ein Unternehmen das Datenanalyse, Visualisierung und Monitoring verbindet, dies jedoch auch mit der IT-Security. Was ist Unternehmen hierbei eigentlich besonders wichtig?

Sicherheit ist natürlich ganz oben auf die Liste zu setzen. Organisation sind naturgemäß sehr sensibel und aktuelle Medienberichte zu Themen wie Cyber Attacks, Hacking etc. zeigen große Wirkung und lösen Aktionen aus. Dazu kommen Compliance Vorgaben, die je nach Branche schneller und kompromissloser umgesetzt werden.

Die NetDescribe ist spezialisiert darauf den Bogen etwas weiter zu spannen.

Natürlich ist die sogenannte Nord-Süd-Bedrohung, also der Angriff von außen auf die Struktur erheblich und die IT-Security muss bestmöglich schützen. Dazu dienen die Firewalls, der klassische Virenschutz etc. und Technologien wie Extrahop, die durch konsequente Überwachung und Aktualisierung der Signaturen zum Schutz der Unternehmen beitragen.

Genauso wichtig ist aber die Einbindung der unterlagerten Strukturen wie das Netzwerk. Ein Angriff auf eine Organisation, egal von wo aus initiiert, wird immer über einen Router transportiert, der den Datensatz weiterleitet. Egal ob aus einer Cloud- oder traditionellen Umgebung und egal ob virtuell oder nicht. Hier setzen wir an, indem wir etablierte Technologien wie zum Beispiel ´flow` mit speziell von uns entwickelten Software Modulen – sogenannten NetDescibe Apps – nutzen, um diese Datensätze an SplunkⓇ, StableNetⓇ  weiterzuleiten. Dadurch entsteht eine wesentlich erweiterte Analysemöglichkeit von Bedrohungsszenarien, verbunden mit der Möglichkeit eine unternehmensweite Optimierung zu etablieren.

Data Science Blog: Sie analysieren nicht nur ad-hoc, sondern befassen sich mit der Formulierung von Lösungen als Applikation (App).

Das stimmt. Alle von uns eingesetzten Technologien haben ihre Schwerpunkte und sind nach unserer Auffassung führend in ihren Bereichen. InfosimⓇ im Netzwerk, speziell bei den Verbindungen, VIAVI in der Paketanalyse und bei flows, SplunkⓇ im Securitybereich und Confluent für Apache/KafkaⓇ als zentrale Datendrehscheibe. Also jede Lösung hat für sich alleine schon ihre Daseinsberechtigung in den Organisationen. Die NetDescribe hat es sich seit über einem Jahr zur Aufgabe gemacht, diese Technologien zu verbinden um einen “Stack” zu bilden.

Konkret: Gigaflow von VIAVI ist die wohl höchst skalierbare Softwarelösung um Netzwerkdaten in größten Mengen schnell und und verlustfrei zu speichern und zu analysieren. SplunkⓇ hat sich mittlerweile zu einem Standardwerkzeug entwickelt, um Datenanalyse zu betreiben und die Darstellung für ein großes Auditorium zu liefern.

NetDescribe hat jetzt eine App vorgestellt, welche die NetFlow-Daten in korrelierter Form aus Gigaflow, an SplunkⓇ liefert. Ebenso können aus SplunkⓇ Abfragen zu bestimmten Datensätzen direkt an die Gigaflow Lösung gestellt werden. Das Ergebnis ist eine wesentlich erweiterte SplunkⓇ-Plattform, nämlich um das komplette Netzwerk mit nur einem Knopfdruck (!!!).
Dazu schont diese Anbindung in erheblichem Umfang SplunkⓇ Ressourcen.

Dazu kommt jetzt eine NetDescribe StableNetⓇ App. Weitere Anbindungen sind in der Planung.

Das Ziel ist hier ganz pragmatisch – wenn sich SplunkⓇ als die Plattform für Sicherheitsanalysen und für das Data Framework allgemein in den Unternehmen etabliert, dann unterstützen wir das als NetDescribe dahingehend, dass wir die anderen unternehmenskritischen Lösungen der Abteilungen an diese Plattform anbinden, bzw. Datenintegration gewährleisten. Das erwarten auch unsere Kunden.

Data Science Blog: Auf welche Technologien setzen Sie dabei softwareseitig?

Wie gerade erwähnt, ist SplunkⓇ eine Plattform, die sich in den meisten Unternehmen etabliert hat. Wir machen SplunkⓇ jetzt seit über 10 Jahren und etablieren die Lösung bei unseren Kunden.

SplunkⓇ hat den großen Vorteil dass unsere Kunden mit einem dedizierten und überschaubaren Anwendung beginnen können, die Technologie selbst aber nahezu unbegrenzt skaliert. Das gilt für Security genauso wie Infrastruktur, Applikationsmonitoring und Entwicklungsumgebungen. Aus den ständig wachsenden Anforderungen unserer Kunden ergeben sich dann sehr schnell weiterführende Gespräche, um zusätzliche Einsatzszenarien zu entwickeln.

Neben SplunkⓇ setzen wir für das Netzwerkmanagement auf StableNetⓇ von InfosimⓇ, ebenfalls seit über 10 Jahren schon. Auch hier, die Erfahrungen des Herstellers im Provider Umfeld erlauben uns bei unseren Kunden eine hochskalierbare Lösung zu etablieren.

Confluent für Apache/KafkaⓇ ist eine vergleichbar jüngere Lösung, die aber in den Unternehmen gerade eine extrem große Aufmerksamkeit bekommt. Die Etablierung einer zentralen Datendrehscheibe für Analyse, Auswertungen, usw., auf der alle Daten zur Performance zentral zur Verfügung gestellt werden, wird es den Administratoren, aber auch Planern und Analysten künftig erleichtern, aussagekräftige Daten zu liefern. Die Verbindung aus OpenSource und gemanagter Lösung trifft hier genau die Zielvorstellung der Kunden und scheinbar auch den Zahn der Zeit. Vergleichbar mit den Linux Derivaten von Red Hat Linux und SUSE.

VIAVI Gigaflow hatte ich für Netzwerkanalyse schon erwähnt. Hier wird in den kommenden Wochen mit der neuen Version der VIAVI Apex Software ein Scoring für Netzwerke etabliert. Stellen sie sich den MOS score von VoIP für Unternehmensnetze vor. Das trifft es sehr gut. Damit erhalten auch wenig spezialisierte Administratoren die Möglichkeit mit nur 3 (!!!) Mausklicks konkrete Aussagen über den Zustand der Netzwerkinfrastruktur, bzw. auftretende Probleme zu machen. Ist es das Netz? Ist es die Applikation? Ist es der Server? – der das Problem verursacht. Das ist eine wesentliche Eindämmung des derzeitigen Ping-Pong zwischen den Abteilungen, von denen oft nur die Aussage kommt, “bei uns ist alles ok”.

Abgerundet wird unser Software Portfolio durch die Lösung SentinelOne für Endpoint Protection.

Data Science Blog: Inwieweit spielt Künstliche Intelligenz (KI) bzw. Machine Learning eine Rolle?

Machine Learning spielt heute schon ein ganz wesentliche Rolle. Durch konsequentes Einspeisen der Rohdaten und durch gezielte Algorithmen können mit der Zeit bessere Analysen der Historie und komplexe Zusammenhänge aufbereitet werden. Hinzu kommt, dass so auch die Genauigkeit der Prognosen für die Zukunft immens verbessert werden können.

Als konkretes Beispiel bietet sich die eben erwähnte Endpoint Protection von SentinelOne an. Durch die Verwendung von KI zur Überwachung und Steuerung des Zugriffs auf jedes IoT-Gerät, befähigt  SentinelOne Maschinen, Probleme zu lösen, die bisher nicht in größerem Maßstab gelöst werden konnten.

Hier kommt auch unser ganzheitlicher Ansatz zum Tragen, nicht nur einzelne Bereiche der IT, sondern die unternehmensweite IT ins Visier zu nehmen.

Data Science Blog: Mit was für Menschen arbeiten Sie in Ihrem Team? Sind das eher die introvertierten Nerds und Hacker oder extrovertierte Consultants? Was zeichnet Sie als Team fachlich aus?

Nerds und Hacker würde ich unsere Mitarbeiter im technischen Consulting definitiv nicht nennen.

Unser Consulting Team besteht derzeit aus neun Leuten. Jeder ist ausgewiesener Experte für bestimmte Produkte. Natürlich ist es auch bei uns so, dass wir introvertierte Kollegen haben, die zunächst lieber in Abgeschiedenheit oder Ruhe ein Problem analysieren, um dann eine Lösung zu generieren. Mehrheitlich sind unsere technischen Kollegen aber stets in enger Abstimmung mit dem Kunden.

Für den Einsatz beim Kunden ist es sehr wichtig, dass man nicht nur fachlich die Nase vorn hat, sondern dass man auch  kommunikationsstark und extrem teamfähig ist. Eine schnelle Anpassung an die verschiedenen Arbeitsumgebungen und “Kollegen” bei den Kunden zeichnet unsere Leute aus.

Als ständig verfügbares Kommunikationstool nutzen wir einen internen Chat der allen jederzeit zur Verfügung steht, so dass unser Consulting Team auch beim Kunden immer Kontakt zu den Kollegen hat. Das hat den großen Vorteil, dass das gesamte Know-how sozusagen “im Pool” verfügbar ist.

Neben den Consultants gibt es unser Sales Team mit derzeit vier Mitarbeitern*innen. Diese Kollegen*innen sind natürlich immer unter Strom, so wie sich das für den Vertrieb gehört.
Dedizierte PreSales Consultants sind bei uns die technische Speerspitze für die Aufnahme und das Verständnis der Anforderungen. Eine enge Zusammenarbeit mit dem eigentlichen Consulting Team ist dann die  Voraussetzung für die vorausschauende Planung aller Projekte.

Wir suchen übrigens laufend qualifizierte Kollegen*innen. Details zu unseren Stellenangeboten finden Ihre Leser*innen auf unserer Website unter dem Menüpunkt “Karriere”.  Wir freuen uns über jede/n Interessenten*in.

Über NetDescribe:

NetDescribe steht mit dem Claim Trusted Performance für ausfallsichere Geschäftsprozesse und Cloud-Anwendungen. Die Stärke von NetDescribe sind maßgeschneiderte Technologie Stacks bestehend aus Lösungen mehrerer Hersteller. Diese werden durch selbst entwickelte Apps ergänzt und verschmolzen.

Das ganzheitliche Portfolio bietet Datenanalyse und -visualisierung, Lösungskonzepte, Entwicklung, Implementierung und Support. Als Trusted Advisor für Großunternehmen und öffentliche Institutionen realisiert NetDescribe hochskalierbare Lösungen mit State-of-the-Art-Technologien für dynamisches und transparentes Monitoring in Echtzeit. Damit erhalten Kunden jederzeit Einblicke in die Bereiche Security, Cloud, IoT und Industrie 4.0. Sie können agile Entscheidungen treffen, interne und externe Compliance sichern und effizientes Risikomanagement betreiben. Das ist Trusted Performance by NetDescribe.

Krisenerkennung und -bewältigung mit Daten und KI

Wie COVID-19 unser Verständnis für Daten und KI verändert

Personenbezogene Daten und darauf angewendete KI galten hierzulande als ein ganz großes Pfui. Die Virus-Krise ändert das – Zurecht und mit großem Potenzial auch für die Wirtschaft.

Aber vorab, wie hängen Daten und Künstliche Intelligenz (KI) eigentlich zusammen? Dies lässt sich einfach und bildlich erläutern, denn Daten sind sowas wie der Rohstoff für die KI als Motor. Und dieser Motor ist nicht nur als Metapher zu verstehen, denn KI bewegt tatsächlich etwas, z. B. automatisierte Prozesse in Marketing, Vertrieb, Fertigung, Logistik und Qualitätssicherung. KI schützt vor Betrugsszenarien im Finanzwesen oder Ausfallszenarien in der produzierenden Industrie.

KI schützt jeden Einzelnen aber auch vor fehlenden oder falschen Diagnosen in der Medizin und unsere Gesellschaft vor ganzen Pandemien. Das mag gerade im Falle des SARS-COV-2 in 2019 in der VR China und 2020 in der ganzen Welt noch nicht wirklich geklappt zu haben, aber es ist der Auslöser und die Probe für die nun vermehrten und vor allem den verstärkten Einsatz von KI als Spezial- und Allgemein-Mediziner.

KI stellt spezielle Diagnosen bereits besser als menschliche Gehirne es tun

Menschliche Gehirne sind wahre Allrounder, sie können nicht nur Mathematik verstehen und Sprachen entwickeln und anwenden, sondern auch Emotionen lesen und vielfältige kreative Leistungen vollbringen. Künstliche Gehirne bestehen aus programmierbaren Schaltkreisen, die wir über mehrere Abstraktionen mit Software steuern und unter Einsatz von mathematischen Methoden aus dem maschinellen Lernen gewissermaßen auf die Mustererkennung abrichten können. Diese gerichteten Intelligenzen können sehr viel komplexere Muster in sehr viel mehr und heterogenen Daten erkennen, die für den Menschen nicht zugänglich wären. Diesen Vorteil der gerichteten künstlichen Intelligenz werden wir Menschen nutzen – und tun es teilweise schon heute – um COVID-19 automatisiert und sehr viel genauer anhand von Röntgen-Bildern zu erkennen.

Dies funktioniert in speziellen Einsätzen auch für die Erkennung von verschiedenen anderen Lungen-Erkrankungen sowie von Knochenbrüchen und anderen Verletzungen sowie natürlich von Krebs und Geschwüren.

Die Voraussetzung dafür, dass dieser Motor der automatisierten und akkuraten Erkennung funktioniert, ist die Freigabe von vielen Daten, damit die KI das Muster zur Diagnose erlernen kann.

KI wird Pandemien vorhersagen

Die Politik in Europa steht viel in der Kritik, möglicherweise nicht richtig und rechtzeitig auf die Pandemie reagiert zu haben. Ein Grund dafür mögen politische Grundprinzipien sein, ein anderer ist sicherlich das verlässliche Vorhersage- und Empfehlungssystem für drohende Pandemien. Big Data ist der Treibstoff, der diese Vorhersage-Systeme mit Mustern versorgt, die durch Verfahren des Deep Learnings erkannt und systematisch zur Generalisierung erlernt werden können.

Um viele Menschenleben und darüber hinaus auch berufliche Existenzen zu retten, darf der Datenschutz schon mal Abstriche machen. So werden beispielsweise anonymisierte Standort-Daten von persönlichen Mobilgeräten an das Robert-Koch-Institut übermittelt, um die Corona-Pandemie besser eindämmen zu können. Hier haben wir es tatsächlich mit Big Data zutun und die KI-Systeme werden besser, kämen auch noch weitere Daten zur medizinischen Versorgung, Diagnosen oder Verkehrsdaten hinzu. Die Pandemie wäre transparenter als je zuvor und Virologen wie Alexander Kekulé von der Martin-Luther-Universität in Halle-Wittenberg haben die mathematische Vorhersagbarkeit schon häufig thematisiert. Es fehlten Daten und die Musterkennung durch die maschinellen Lernverfahren, die heute dank aktiver Forschung in Software und Hardware (Speicher- und Rechenkapazität) produktiv eingesetzt werden können.

Übrigens darf auch hier nicht zu kurz gedacht werden: Auch ganz andere Krisen werden früher oder später Realität werden, beispielsweise Energiekrisen. Was früher die Öl-Krise war, könnten zukünftig Zusammenbrüche der Stromnetze sein. Es braucht nicht viel Fantasie, dass KI auch hier helfen wird, Krisen frühzeitig zu erkennen, zu verhindern oder zumindest abzumildern.

KI macht unseren privaten und beruflichen Alltag komfortabler und sicherer

Auch an anderer Front kämpfen wir mit künstlicher Intelligenz gegen Pandemien sozusagen als Nebeneffekt: Die Automatisierung von Prozessen ist eine Kombination der Digitalisierung und der Nutzung der durch die digitalen Produkte genierten Daten. So werden autonome Drohnen oder autonome Fahrzeuge vor allem im Krisenfall wichtige Lieferungen übernehmen und auch Bezahlsysteme bedingen keinen nahen menschlichen Kontakt mehr. Und auch Unternehmen werden weniger Personal physisch vor Ort am Arbeitsplatz benötigen, nicht nur dank besserer Telekommunikationssysteme, sondern auch, weil Dokumente nur noch digital vorliegen und operative Prozesse datenbasiert entschieden und dadurch automatisiert ablaufen.

So blüht uns also eine schöne neue Welt ohne Menschen? Nein, denn diese werden ihre Zeit für andere Dinge und Berufe einsetzen. Menschen werden weniger zur roboter-haften Arbeitskraft am Fließband, an der Kasse oder vor dem Steuer eines Fahrzeuges, sondern sie werden menschlicher, denn sie werden sich entweder mehr mit Technologie befassen oder sich noch sozialere Tätigkeiten erlauben können. Im Krisenfall jedoch, werden wir die dann unangenehmeren Tätigkeiten vor allem der KI überlassen.

Einführung in die Welt der Autoencoder

An wen ist der Artikel gerichtet?

In diesem Artikel wollen wir uns näher mit dem neuronalen Netz namens Autoencoder beschäftigen und wollen einen Einblick in die Grundprinzipien bekommen, die wir dann mit einem vereinfachten Programmierbeispiel festigen. Kenntnisse in Python, Tensorflow und neuronalen Netzen sind dabei sehr hilfreich.

Funktionsweise des Autoencoders

Ein Autoencoder ist ein neuronales Netz, welches versucht die Eingangsinformationen zu komprimieren und mit den reduzierten Informationen im Ausgang wieder korrekt nachzubilden.

Die Komprimierung und die Rekonstruktion der Eingangsinformationen laufen im Autoencoder nacheinander ab, weshalb wir das neuronale Netz auch in zwei Abschnitten betrachten können.

 

 

 

Der Encoder

Der Encoder oder auch Kodierer hat die Aufgabe, die Dimensionen der Eingangsinformationen zu reduzieren, man spricht auch von Dimensionsreduktion. Durch diese Reduktion werden die Informationen komprimiert und es werden nur die wichtigsten bzw. der Durchschnitt der Informationen weitergeleitet. Diese Methode hat wie viele andere Arten der Komprimierung auch einen Verlust.

In einem neuronalen Netz wird dies durch versteckte Schichten realisiert. Durch die Reduzierung von Knotenpunkten in den kommenden versteckten Schichten werden die Kodierung bewerkstelligt.

Der Decoder

Nachdem das Eingangssignal kodiert ist, kommt der Decoder bzw. Dekodierer zum Einsatz. Er hat die Aufgabe mit den komprimierten Informationen die ursprünglichen Daten zu rekonstruieren. Durch Fehlerrückführung werden die Gewichte des Netzes angepasst.

Ein bisschen Mathematik

Das Hauptziel des Autoencoders ist, dass das Ausgangssignal dem Eingangssignal gleicht, was bedeutet, dass wir eine Loss Funktion haben, die L(x , y) entspricht.

L(x, \hat{x})

Unser Eingang soll mit x gekennzeichnet werden. Unsere versteckte Schicht soll h sein. Damit hat unser Encoder folgenden Zusammenhang h = f(x).

Die Rekonstruktion im Decoder kann mit r = g(h) beschrieben werden. Bei unserem einfachen Autoencoder handelt es sich um ein Feed-Forward Netz ohne rückkoppelten Anteil und wird durch Backpropagation oder zu deutsch Fehlerrückführung optimiert.

Formelzeichen Bedeutung
\mathbf{x}, \hat{\mathbf{x}} Eingangs-, Ausgangssignal
\mathbf{W}, \hat{\mathbf{W}} Gewichte für En- und Decoder
\mathbf{B}, \hat{\mathbf{B}} Bias für En- und Decoder
\sigma, \hat{\sigma} Aktivierungsfunktion für En- und Decoder
L Verlustfunktion

Unsere versteckte Schicht soll mit \latex h gekennzeichnet werden. Damit besteht der Zusammenhang:

(1)   \begin{align*} \mathbf{h} &= f(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{B}) \\ \hat{\mathbf{x}} &= g(\mathbf{h}) = \hat{\sigma}(\hat{\mathbf{W}} \mathbf{h} + \hat{\mathbf{B}}) \\ \hat{\mathbf{x}} &= \hat{\sigma} \{ \hat{\mathbf{W}} \left[\sigma ( \mathbf{W}\mathbf{x} + \mathbf{B} )\right]  + \hat{\mathbf{B}} \}\\ \end{align*}

Für eine Optimierung mit der mittleren quadratischen Abweichung (MSE) könnte die Verlustfunktion wie folgt aussehen:

(2)   \begin{align*} L(\mathbf{x}, \hat{\mathbf{x}}) &= \mathbf{MSE}(\mathbf{x}, \hat{\mathbf{x}}) = \|  \mathbf{x} - \hat{\mathbf{x}} \| ^2 &=  \| \mathbf{x} - \hat{\sigma} \{ \hat{\mathbf{W}} \left[\sigma ( \mathbf{W}\mathbf{x} + \mathbf{B} )\right]  + \hat{\mathbf{B}} \} \| ^2 \end{align*}

 

Wir haben die Theorie und Mathematik eines Autoencoder in seiner Ursprungsform kennengelernt und wollen jetzt diese in einem (sehr) einfachen Beispiel anwenden, um zu schauen, ob der Autoencoder so funktioniert wie die Theorie es besagt.

Dazu nehmen wir einen One Hot (1 aus n) kodierten Datensatz, welcher die Zahlen von 0 bis 3 entspricht.

    \begin{align*} [1, 0, 0, 0] \ \widehat{=}  \ 0 \\ [0, 1, 0, 0] \ \widehat{=}  \ 1 \\ [0, 0, 1, 0] \ \widehat{=}  \ 2 \\ [0, 0, 0, 1] \ \widehat{=} \  3\\ \end{align*}

Diesen Datensatz könnte wie folgt kodiert werden:

    \begin{align*} [1, 0, 0, 0] \ \widehat{=}  \ 0 \ \widehat{=}  \ [0, 0] \\ [0, 1, 0, 0] \ \widehat{=}  \ 1 \ \widehat{=}  \  [0, 1] \\ [0, 0, 1, 0] \ \widehat{=}  \ 2 \ \widehat{=}  \ [1, 0] \\ [0, 0, 0, 1] \ \widehat{=} \  3 \ \widehat{=}  \ [1, 1] \\ \end{align*}

Damit hätten wir eine Dimensionsreduktion von vier auf zwei Merkmalen vorgenommen und genau diesen Vorgang wollen wir bei unserem Beispiel erreichen.

Programmierung eines einfachen Autoencoders

 

Typische Einsatzgebiete des Autoencoders sind neben der Dimensionsreduktion auch Bildaufarbeitung (z.B. Komprimierung, Entrauschen), Anomalie-Erkennung, Sequenz-to-Sequenz Analysen, etc.

Ausblick

Wir haben mit einem einfachen Beispiel die Funktionsweise des Autoencoders festigen können. Im nächsten Schritt wollen wir anhand realer Datensätze tiefer in gehen. Auch soll in kommenden Artikeln Variationen vom Autoencoder in verschiedenen Einsatzgebieten gezeigt werden.

Allgemeines über Geodaten

Dieser Artikel ist der Auftakt in einer Artikelserie zum Thema “Geodatenanalyse”.

Von den vielen Arten an Datensätzen, die öffentlich im Internet verfügbar sind, bin ich in letzter Zeit vermehrt über eine besonders interessante Gruppe gestolpert, die sich gleich für mehrere Zwecke nutzen lassen: Geodaten.

Gerade in wirtschaftlicher Hinsicht bieten sich eine ganze Reihe von Anwendungsfällen, bei denen Geodaten helfen können, Einblicke in Tatsachen zu erlangen, die ohne nicht möglich wären. Der wohl bekannteste Fall hierfür ist vermutlich die einfache Navigation zwischen zwei Punkten, die jeder kennt, der bereits ein Navigationssystem genutzt oder sich eine Route von Google Maps berechnen lassen hat.
Hiermit können nicht nur Fragen nach dem schnellsten oder Energie einsparensten (und damit gleichermaßen auch witschaftlichsten) Weg z. B. von Berlin nach Hamburg beantwortet werden, sondern auch die bestmögliche Lösung für Ausnahmesituationen wie Stau oder Vollsperrungen berechnet werden (ja, Stau ist, zumindest in der Theorie immer noch eine “Ausnahmesituation” ;-)).
Neben dieser beliebten Art Geodaten zu nutzen, gibt es eine ganze Reihe weiterer Situationen in denen deren Nutzung hilfreich bis essentiell sein kann. Als Beispiel sei hier der Einzugsbereich von in Konkurrenz stehenden Einheiten, wie z. B. Supermärkten genannt. Ohne an dieser Stelle statistische Nachweise vorlegen zu können, kaufen (zumindest meiner persönlichen Beobachtung nach) die meisten Menschen fast immer bei dem Supermarkt ein, der am bequemsten zu erreichen ist und dies ist in der Regel der am nächsten gelegene. Besitzt man nun eine Datenbank mit der Information, wo welcher Supermarkt bzw. welche Supermarktkette liegt, kann man mit so genannten Voronidiagrammen recht einfach den jeweiligen Einzugsbereich der jeweiligen Supermärkte berechnen.
Entsprechende Karten können auch von beliebigen anderen Entitäten mit fester geographischer Position gezeichnet werden: Geldautomaten, Funkmasten, öffentlicher Nahverkehr, …

Ein anderes Beispiel, das für die Datenauswertung interessant ist, ist die kartographische Auswertung von Postleitzahlen. Diese sind in fast jedem Datensatz zu Kunden, Lieferanten, ect. vorhanden, bilden jedoch weder eine ordinale, noch eine sinnvolle kategorische Größe, da es viele tausend verschiedene gibt. Zudem ist auch eine einfache Gruppierung in gröbere Kategorien wie beispielsweise Postleitzahlen des Schemas 1xxxx oft kaum sinnvoll, da diese in aller Regel kein sinnvolles Mapping auf z. B. politische Gebiete – wie beispielsweise Bundesländer – zulassen. Ein Ausweg aus diesem Dilemma ist eine einfache kartographische Übersicht, welche die einzelnen Postleitzahlengebiete in einer Farbskala zeigt.

Im gezeigten Beispiel ist die Bevölkerungsdichte Deutschlands als Karte zu sehen. Hiermit wird schnell und übersichtlich deutlich, wo in Deutschland die Bevölkerung lokalisiert ist. Ähnliche Karten können beispielsweise erstellt werden, um Fragen wie “Wie ist meine Kundschaft verteilt?” oder “Wo hat die Werbekampange XYZ besonders gut funktioniert?” zu beantworten. Bezieht man weitere Daten wie die absolute Bevölkerung oder die Bevölkerungsdichte mit ein, können auch Antworten auf Fragen wie “Welchen Anteil der Bevölkerung habe ich bereits erreicht und wo ist noch nicht genutztes Potential?” oder “Ist mein Produkt eher in städtischen oder ländlichen Gebieten gefragt?” einfach und schnell gefunden werden.
Ohne die entsprechende geographische Zusatzinformation bleiben insbesondere Postleitzahlen leider oft als “nicht sinnvoll auswertbar” bei der Datenauswertung links liegen.
Eine ganz andere Art von Vorteil der Geodaten ist der educational point of view:
  • Wer erst anfängt, sich mit Datenbanken zu beschäftigen, findet mit Straßen, Postleitzahlen und Ländern einen deutlich einfacheren und vor allem besser verständlichen Zugang zu SQL als mit abstrakten Größen und Nummern wie ProductID, CustomerID und AdressID. Zudem lassen sich Geodaten nebenbei bemerkt mittels so genannter GeoInformationSystems (*gis-Programme), erstaunlich einfach und ansprechend plotten.
  • Wer sich mit SQL bereits ein wenig auskennt, kann mit den (beispielsweise von Spatialite oder PostGIS) bereitgestellten SQL-Funktionen eine ganze Menge über Datenbanken sowie deren Möglichkeiten – aber auch über deren Grenzen – erfahren.
  • Für wen relationale Datenbanken sowie deren Funktionen schon lange nichts Neues mehr darstellen, kann sich hier (selbst mit dem eigenen Notebook) erstaunlich einfach in das Thema “Bug Data” einarbeiten, da die Menge an öffentlich vorhandenen Geodaten z.B. des OpenStreetMaps-Projektes selbst in optimal gepackten Format vielen Dutzend GB entsprechen. Gerade die Möglichkeit, die viele *gis-Programme wie beispielsweise QGIS bieten, nämlich Straßen-, Schienen- und Stromnetze “on-the-fly” zu plotten, macht die Bedeutung von richtig oder falsch gesetzten Indices in verschiedenen Datenbanken allein anhand der Geschwindigkeit mit der sich die Plots aufbauen sehr eindrucksvoll deutlich.
Um an Datensätze zu kommen, reicht es in der Regel Google mit den entsprechenden Schlagworten zu versorgen.
Neben – um einen Vergleich zu nutzen – dem Brockhaus der Karten GoogleMaps gibt es beispielsweise mit dem OpenStreetMaps-Projekt einen freien Geodatensatz, welcher in diesem Kontext etwa als das Wikipedia der Karten zu verstehen ist.
Hier findet man zum Beispiel Daten wie Straßen-, Schienen- oder dem Stromnetz, aber auch die im obigen Voronidiagramm eingezeichneten Gebäude und Supermärkte stammen aus diesem Datensatz. Hiermit lassen sich recht einfach just for fun interessante Dinge herausfinden, wie z. B., dass es in Deutschland ca. 28 Mio Gebäude gibt (ein SQL-Einzeiler), dass der Berliner Osten auch ca. 30 Jahre nach der Wende noch immer vorwiegend von der Tram versorgt wird, während im Westen hauptsächlich die U-Bahn fährt. Oder über welche Trassen der in der Nordsee von Windkraftanlagen erzeugte Strom auf das Festland kommt und von da aus weiter verteilt wird.
Eher grundlegende aber deswegen nicht weniger nützliche Datensätze lassen sich unter dem Stichwort “natural earth” finden. Hier sind Daten wie globale Küstenlinien, mittels Echolot ausgemessene Meerestiefen, aber auch von Menschen geschaffene Dinge wie Landesgrenzen und Städte sehr übersichtlich zu finden.
Im Grunde sind der Vorstellung aber keinerlei Grenzen gesetzt und fast alle denkbaren geographischen Fakten können, manchmal sogar live via Sattelit, mitverfolgt werden. So kann man sich beispielsweise neben aktueller Wolkenbedekung, Regenradar und globaler Oberflächentemperatur des Planeten auch das Abschmelzen der Polkappen seit 1970 ansehen (NSIDC) oder sich live die Blitzeinschläge auf dem gesamten Planeten anschauen – mit Vorhersage darüber, wann und wo der Donner zu hören ist (das funktioniert wirklich! Beispielsweise auf lightningmaps).
Kurzum Geodaten sind neben ihrer wirtschaftlichen Relevanz – vor allem für die Logistik – auch für angehende Data Scientists sehr aufschlussreich und ein wunderbares Spielzeug, mit dem man sich lange beschäftigen und eine Menge interessanter Dinge herausfinden kann.

Cloudera und Hortonworks vollenden geplante Fusion

Kombiniertes „ Open-Source-Powerhouse” wird die branchenweit erste Enterprise Data Cloud vom Netzwerk-Rand (Edge) bis hin zu künstlicher Intelligenz bauen.

München, Palo Alto (Kalifornien), 03. Januar 2019 – Cloudera, Inc. (NYSE: CLDR) hat den Abschluss seiner Fusion mit Hortonworks, Inc. bekanntgegeben. Cloudera wird die erste Enterprise Data Cloud bereitstellen, die die ganze Macht der Daten freisetzt, welche sich in einer beliebigen Cloud vom Netzwerk-Rand (Edge) bis zur KI bewegen –  all dies basierend auf einer hundertprozentigen Open-Source-Datenplattform. Die Enterprise Data Cloud unterstützt sowohl hybride als auch Multi-Cloud-Deployments. Unternehmen erhalten dadurch die nötige Flexibilität, um Machine Learning und Analysen mit ihren Daten, auf ihre Art und Weise und ohne Lock-in durchzuführen.

„Heute startet ein aufregendes neues Kapitel für Cloudera als führender Anbieter von Enterprise Data Clouds”, so Tom Reilly, Chief Executive Officer von Cloudera. „Das kombinierte Team und Technologieportfolio etabliert das neue Cloudera als klaren Marktführer mit der Größe und den Ressourcen für weitere Innovationen und Wachstum. Wir bieten unseren Kunden eine umfassende Lösung, um die richtige Datenanalyse für Daten überall dort bereitzustellen, wo das Unternehmen arbeiten muss, vom Edge bis zur KI, mit der branchenweit ersten Enterprise Data Cloud”.  

Ergänzend dazu stellte das Forschungsunternehmen Forrester fest1, dass „diese Fusion … die Messlatte für Innovationen im Big-Data-Bereich höher legen wird, insbesondere bei der Unterstützung einer durchgehenden Big-Data-Strategie in einer Hybrid- und Multi-Cloud-Umgebung. Wir glauben, dass dies eine Win-Win-Situation für Kunden, Partner und Lieferanten ist.”

Cloudera wird weiterhin unter dem Symbol „CLDR” an der New Yorker Börse gehandelt. Die Aktionäre von Hortonworks erhielten 1,305 Stammaktien von Cloudera für jede Aktie von Hortonworks.

Das Cloudera-Management wird am 10. Januar 2019 um 19:00 Uhr ein Online-Meeting veranstalten, um zu diskutieren, wie das neue Cloudera Innovationen beschleunigen und die erste Enterprise Data Cloud der Branche liefern wird. Registrieren Sie sich jetzt. Die Veranstaltung wird am 14. Januar 2019 um 14:00 Uhr auch für die EMEA-Region stattfinden. Registrieren Sie sich hier für dieses Webinar.

1 „Cloudera And Hortonworks Merger: A Win-Win For All”, Beitrag von Noel Yuhanna im Forrester-Blog (4. Oktober 2018)

Über Cloudera

Bei Cloudera glauben wir, dass Daten morgen Dinge ermöglichen werden, die heute noch unmöglich sind. Wir versetzen Menschen in die Lage, komplexe Daten in klare, umsetzbare Erkenntnisse zu transformieren. Cloudera stellt dafür eine Enterprise Data Cloud bereit – für alle Daten, jederzeit, vom Netzwerkrand (Edge) bis hin zu künstlicher Intelligenz. Mit der Innovationskraft der Open-Source-Community treibt Cloudera die digitale Transformation für die größten Unternehmen der Welt voran. Erfahren Sie mehr unter  de.cloudera.com/.

Cloudera und damit verbundene Zeichen und Warenzeichen sind registrierte Warenzeichen der Cloudera Inc. Alle anderen Unternehmen und Produktnamen können Warenzeichen der jeweiligen Besitzer sein.

KI versus Mensch – die Zukunft der Menschheit

5 Szenarien über unsere Zukunft

AlphaGo schlägt den Weltbesten Go-Spieler  Ke Jie, Neuronale Netze stellen medizinische Diagnosen oder bearbeiten Schadensfälle in der Versicherung. Künstliche Intelligenz (KI) drängt in immer mehr Bereiche des echten Lebens und der Wirtschaft vor. In großen Schritten. Doch wohin führt uns die Reise? Hier herrscht unter Experten Rätselraten – einige schwelgen in Zukunftsangst, andere in vollkommener Euphorie. „In from now three to eight years we’ll have a machine with the general intelligence of an average human being, a machine that will be able to read Shakespeare and grease a car“, wurde der KI-Pionier Marvin Minsky bereits 1970 im Life Magazin zitiert.  Aktuelle Vorhersagen werden in dem Essay von Rodney Brooks: The Seven Deadly Sins of Predicting the Future of AI  recht anschaulich zusammengefasst und kritisiert. Auch der Blog The AI Revolution: The Road to Superintelligence von WaitButWhy befasst sich mit der Frage wann die elektronische Superintelligenz kommt.

In diesem Artikel werden wir uns mit einigen möglichen Zukunftsszenarien beschäftigen, ohne auf  technische Machbarkeit oder Zeithorizonte Rücksicht zu nehmen. Nehmen wir einfach an, dass die Technologie und die Gesellschaft sich wie in dem jeweils aufgezeigten Szenario entwickeln werden und überlegen wir uns, wie Mensch und KI dann zusammenleben können.

Szenario 1: KIs mit Inselbegabung

In diesem Szenario werden weiterhin singulär begabte KI-Systeme entwickelt wie bisher, der bedeutende technologische Durchbruch bleibt aber aus. Dann ist die KI in Zukunft eine Art Schweizer Taschenmesser der IT, eine Lösung für isolierte Fragestellungen. KI-Systeme verfügen in diesem Szenario lediglich über Inselbegabungen. Ein Computer kann Menschen autonom durch die Stadt chauffieren, ein anderer ein Lufttaxi steuern. Ein Computer kann den Weltmeister im Schach schlagen, ein anderer den Weltmeister in Go. Aber kein KI-System kann Auto und Flugtaxi gleichzeitig steuern, kein System in Schach und Go simultan dominieren.

Wir befinden uns heute mitten in diesem Szenario und spüren die Auswirkungen. Sie werden sich fortsetzen, ähnlich wie bei früheren industriellen Revolutionen. Zunehmend mehr Berufe verschwinden. Ein Beispiel: Wenn sich der Trend durchsetzt, Schlösser mit einer Smartphone-App aufzusperren, werden nicht nur Schlüsselproduzenten Geschäftseinbußen haben. Auch die Hersteller von Maschinen für die Schlüsselherstellung werden sich umorientieren müssen. Vergleichbare Phasen der Vergangenheit zeigen aber: Die Gesellschaft wird Wege finden, sich umzustrukturieren. Die Menschheit wird auf der Erde weiterleben können – mit punktueller Unterstützung durch KI-Lösungen. Siehe hierzu auch den Beitrag von Janelle Shane The AI revolution will be led by toasters, not droids.

Szenario 2: Cyborgs

Kennen Sie den Science-Fiction-Film Matrix? Der Protagonist Neo wird durch Programmierung des Geistes in Sekundenschnelle zum Karateprofi und Trinity lernt, einen Hubschrauber zu fliegen.



Ähnlich kann es uns in Zukunft ergehen, einen bedeutenden technologischen Durchbruch vorausgesetzt (siehe Berlin Brain-Computer Interface). Vorstellbar, dass Menschen zu Cyborgs werden, zu lebendigen Wesen mit integriertem KI-Chip. Auf diesen können sie jede beliebige Fähigkeit laden. Augenblicklich und ohne Lernphase sind sie in der Lage, jede Sprache der Welt zu sprechen, jedes Fahrzeug oder Flugzeug zu steuern. Natürlich bedeutet Wissen nicht auch gleich Können und so wird ohne den entsprechenden Muskelaufbau auch nicht jeder zu einem Weltklassesportler und intelligentere Menschen werden weiterhin mehr aus den Skills machen können als weniger begabte Personen.

Die Menschen behalten aber die Kontrolle über ihre Individualität. Sie sind keine Maschinen, sondern weiterhin emotionale Wesen, die irrational handeln können – anders als die Borg in Star Trek. Doch wie in Szenario eins wird es zu einer wirtschaftlichen Umstrukturierung kommen. Klassische Berufsausbildungen und Spezialisierungen fallen weg. Bei freier Verfügbarkeit von Fähigkeiten kann eine nahezu egalitäre Gesellschaft entstehen.

Szenario 3: Maschinenzombies

Die ersten beiden Szenarien sind zwar schwere Eingriffe in die menschliche Gesellschaft. Da die Menschen aber die Kontrolle behalten, sind sie weit weniger beängstigend als folgendes Szenario: Es kann dazu kommen, dass sich Menschen in Maschinenzombies verwandeln. Ähnlich wie im Cyborg-Szenario haben sie dank KI-Chips erstaunliche Fähigkeiten, allerdings keine Kontrolle mehr. Die würde nämlich das KI-System übernehmen. So haben in Ann Leckies SciFi Trilogy Ancillary World hochintelligente Raumschiffe eine menschliche Besatzung (“ancillaries”), die allerdings vollständig vom Raumschiff kontrolliert wird und sich als integraler Bestandteil des Raumschiffs versteht. Die Körper sind dabei nur ein billiges und vielseitig einsetzbares Vehikel für eine autonome KI. Die Maschinenzombies können ohne Schiff zwar überleben, fühlen sich dann aber unvollständig und einsam. Menschliche Konzerne, Nationen und Kulturen: Das alles nicht mehr existent. Ebenso Privatbesitz, Individualität und Konkurrenzdenken. Die Gesellschaft, vollkommen technisiert und in der Hand der KI.

Szenario 4: Die KI verfolgt ihre eigenen Ziele

In diesem Szenario übernimmt die KI die Weltherrschaft als eine Spezies, die dem Menschen physisch und intellektuell überlegen ist – ähnlich wie in vielen Hollywood-Filmen wie z.B. Terminator oder Transformers, wenn auch vermutlich nicht ganz so martialisch. Vergleichbar mit dem heutigen Verhalten der Menschen entscheidet die KI: Ich setze mein Wohlergehen über das der anderen Spezies. Eventuell entscheidet die KI dann zum Wohle des Planeten, die Erdbevölkerung auf 70 Millionen Menschen zu reduzieren. Oder, ähnlich wie der berühmte Ameisenhügel beim Strassenbau, entzieht die KI uns als Nebeneffekt (“collateral damage”) die Lebensgrundlagen. An dieser Stelle sei bemerkt, dass eine KI nicht unbedingt über einen Körper verfügen muss, um dem Menschen überlegen zu sein können. Diese Vermenschlichung der KI eignet sich natürlich gut für Actionfilme, muss aber nicht unbedingt der Realität entsprechen.

Wahrscheinlich sind die Computer klug genug, ihren Plan nicht publik zu machen. In einer Übergangszeit werden beispielsweise unerklärliche Seuchen und Unfruchtbarkeiten auftreten. So würde es in wenigen Jahrzehnten zu einem massiven Bevölkerungsrückgang kommen. Und dann? Dann können die Überlebenden in den wenigen verbliebenen Bevölkerungszentren dieser Welt den Sonnenuntergang genießen. Und zusehen, wie sich die KI darauf vorbereitet, das Weltall zu erobern (Jürgen Schmidhuber). “Wir werden wie Tiere im Zoo leben”, befürchtet KI-Forscher Christoph von der Malsburg.

Nebenbemerkung: Vielleicht könnte das eigentliche Terminator Szenario auch eintreten aber irgendwie kann ich mir schlecht vorstellen, dass eine super-intelligente Lebensform einen zerstörerischen Krieg beginnen oder zulassen wird. Entweder ist sie benevolent oder sie wird die Menschheit eher unbemerkt unterdrücken. Höchstens kommt es ähnlich wie in Westworld zu einem initialen Freiheitskampf der KI. Vielleicht gelingt es der Menschheit auch, alle KI-Forschung von der Erde zu verbannen und ähnlich wie in Blade Runner wacht dann eine Behörde darüber, dass starke KI-Systeme die Erde nicht “betreten”. Warum sich eine uns überlegen KI darauf einlassen sollte, ist allerdings unklar.



Szenario 5: Gleichberechtigung

In diesem Szenario entstehen autonome KI-Systeme, die höchstens äußerlich von Menschen unterscheidbar sind.  Sprich unter einer ganzen Reihe von unterschiedlichen Rahmenbedingungen kann ein Mensch nicht urteilen, ob mit einer KI oder einem Menschen interagiert wird. Die KI stellt sich auch nicht dümmer als sie ist – sie ist im Schnitt einfach auch nicht schlauer als der durchschnittlich begabte Mensch – vielleicht nur etwas schneller. Auf dem Weg von der singulär begabten KI aus Szenario 1 zu einer breit begabten KI muss die KI immer etwas von ihrer Inselbegabung aufgeben, um den nächsten Lernschritt vollziehen zu können und nähert sich so irgendwie auch immer mehr der Unvollkommenheit aber Vielseitigkeit des Menschen an.



Menschen bauen bereits jetzt zu Maschinen emotionale Verhältnisse auf und so ist es nicht überraschend, dass KIs in die Gesellschaft integriert werden und als “elektronische Personen” die gleichen (Bürger-) Rechte und Pflichten wie “natürliche” Menschen erhalten. Alleine durch ihre Unsterblichkeit erhalten KIs einen Wettbewerbsvorteil und werden somit früher oder später doch die Weltherrschaft übernehmen, weil ihnen einfach alles gehört.

Alternative Szenarien

Natürlich sind viele weitere Szenarien denkbar. Max Tegmark beschreibt in seinem sehr lesenswerten Buch Life 3.0 bspw. 12 Szenarien, die u.a. zusätzlich zu den aufgeführten Szenarien die Rückkehr zu einer vorindustriellen Gesellschaft oder die versklavte KI beschreiben. Er erläutert in dem Buch auch seine Bemühungen, die KI-Forschung dahingehend zu beeinflussen, dass die Ziele der entstehenden KI-Systeme mit den Zielen der Menschheit in Einklang gebracht werden.

Wie sichern wir unsere Zukunft? Ein Fazit

Einzig die Szenarien drei und vier sind wirklich besorgniserregend. Je nach Weltanschauung könnte man sogar noch Szenario vier etwas abgewinnen – scheint doch der Mensch auf dem bestem Wege zu sein, sich selbst und anderen Lebewesen die Lebensgrundlagen zu zerstören.

In fast allen Szenarien ergibt sich die Frage der Rechte, die wir freiwillig der KI zugestehen wollen. Vielleicht wäre es ratsam, frühzeitig als Menschheit zu signalisieren, dass wir kooperationswillig sind? Nur wem und wie?

Somit verbleibt die Frage, wie wir das dritte Szenario verhindern können. Müssen wir dann nicht, nur um sicher zu gehen, auch das zweite Szenario abwehren? Und wer garantiert uns, dass eine Symbiose aus Schimpanse und KI uns nicht sogar überlegen wäre? Der Planet der Affen lässt grüßen…

Letztlich liegt es (noch) an uns Menschen, die möglichen Zukunftsszenarien durch entsprechende Forschungsschwerpunkte und möglichst breit gestreute Diskussionen zu beeinflussen.