Interview – Data Science im Online Marketing
Interview mit Thomas Otzasek, Head of Data Science bei der Smarter Ecommerce GmbH
Thomas Otzasek ist Head of Data Science bei der Smarter Ecommerce GmbH in Linz, ein Unternehmen für die Automatisierung des professionellen Suchmaschinen Marketings. Herr Otzasek leitet das Data Science Team zur Automatisierung von operativen Prozessen im Suchmaschinen Marketing mit Machine Learning. Weitere interessante Blogposts von Thomas Otzasek zum Thema Suchmaschinen Marketing und Data Science finden Sie im Whoop! Blog.
Data Science Blog: Herr Otzasek, welcher Weg hat Sie zum Data Science für das Suchmaschinen Marketing geführt?
Ich war schon immer an Zahlen interessiert und begann daher im Jahr 2002 ein Masterstudium der Statistik an der Johannes Kepler Universität in Linz. Im Jahr 2006 wurde an dieser Uni dann erstmalig der Studiengang Bioinformatik mit Schwerpunkt Machine Learning angeboten, der mich ebenfalls angesprochen hat. Im Jahr 2009 habe ich beide Masterstudien erfolgreich abgeschlossen.
Nachdem ich in diversen Branchen u.a. als Business Analyst oder Software-Entwickler gearbeitet habe, überzeugte mich im Jahr 2015 die Firma Smarter Ecommerce mit einer innovativen Produktidee, für die ich den fehlenden Data Science Puzzleteil ideal ausfüllen konnte. Seitdem sind wir auf Wachstumskurs und konnten unsere Mitarbeiterzahl innerhalb von 15 Monaten auf derzeit 85 Mitarbeiter mehr als verdoppeln.
Data Science Blog: Welche Bedeutung hat Big Data und Data Science für Ihre Branche?
Im Suchmaschinen Marketing gibt es sehr viel manuelle Arbeit. Mit dem Einsatz von Data Science können wir diese manuelle Arbeit unterstützen oder automatisieren. Ist das Produktsortiment entsprechend groß, können wir die Platzierung in Online-Anzeigen soweit optimieren, wie es selbst dem besten Mitarbeiter ohne entsprechende Tools niemals möglich wäre.
Wir übernehmen das Aussteuern von Google Shopping, für welche Produkte wo genau Anzeigen zu welchen Konditionen geschaltet werden. Wir haben dafür Machine Learning Modelle entwickelt, die diese Anzeigenschaltung optimieren. Der dafür von meinem Data Science Team entwickelte Prototyp ist seit über einem Jahr produktiv im Einsatz.
Data Science Blog: Was optimieren diese Algorithmen des maschinellen Lernens?
Der vollautomatisierte Ansatz kommt bei unserem Produkt Whoop! für Google Shopping zum Einsatz. Google Shopping ist ein Teil von Google AdWords. Wir verwenden den Produkt-Datenfeed des Kunden, die Performance-Historie von Google AdWords, unsere jahrelange Google Shopping Erfahrung sowie die Ziele des Kunden bezüglich der Anzeigen um z. B. die Kosten-Umsatz-Relation oder die Kosten pro Akquisition zu optimieren.
Die Herausforderung ist, das richtige Gebot für das jeweilige Produkt zu wählen. Wenn Sie eine ganze Reihe von verschiedenen oder auch ähnlichen Produkten haben (z. B. verschiedene Farben oder Größen), müssen wir diese Gebote so tunen, dass die Reichweite und Zielgruppe ideal ist, ohne dass die Kosten explodieren.
Wird ein Produkt zu hoch geboten, sind nicht nur die Kosten für das bewerbende Unternehmen zu hoch, auch die Platzierung ist dann meistens nicht optimal. Google, unser Anzeigenpartner, verallgemeinert die Suchanfragen im hochpreisigen Segment tendenziell zu sehr, darunter leidet dann die Relevanz. Wird für die Anzeige zu niedrig geboten, wird sie hingegen gar nicht erst angezeigt. Neben der Conversion Rate spielt für unsere Kunden hauptsächlich die Kosten-Umsatz-Relation eine Rolle. Ein Mitarbeiter im Online Marketing könnte diese Optimierung für mehr als eine Hand voll Produkte nicht vornehmen. Denken Sie z. B. an die Mode-Branche, die ein sich schnell umschlagendes Produktsortiment mit vielen Produkten hat.
Data Science Blog: Welche datenwissenschaftlichen Herausforderungen spielen dabei eine Rolle?
Die Produktdaten sind sehr umfangreich, der Anzeigenmarkt und die Produkttrends extrem dynamisch. Außerdem gibt es für viele Produkte nur wenige Klicks, so dass wir ausgeklügelte Algorithmen brauchen, um trotzdem statistisch valide Aussagen treffen zu können.
Für die manuelle Aussteuerung ist die Produktanzahl meist zu groß um produktgenaue Gebote abgeben zu können. Bei einem großen und/oder schnell umschlagenden Produktsortiment haben wir es mit komplexen Strukturen zu tun, die wir in diesen Modellen berücksichtigen müssen, um stets die optimalen Gebote zu setzen.
Das Modell muss dabei jederzeit berücksichtigen, welche Produkte bzw. Anzeigen performen bzw. nicht performen, um jene entsprechend hoch- oder runter zu regeln. Eine einfache Regressionsanalyse reicht da nicht aus. Auch Änderungen des Kunden in den Einstellungen sowie externe Faktoren wie z. B. das Wetter müssen sofort berücksichtigt werden.
Data Science Blog: Welche Methoden des Data Science sind aktuell im Trend und spielen demnächst eine Rolle?
Aus meiner Sicht ist Deep Learning mit neuronalen Netzen der Trend. Vermutlich werden sie sich weiter durchsetzen, denn sie können noch komplexere Aufgaben bewältigen. Aktuell gibt es allerdings teilweise noch Akzeptanzprobleme, da neuronale Netze mit vielen versteckten Schichten eine Blackbox darstellen. Die Ergebnisse sind also im Gegensatz zu weniger komplexen Methoden nicht nachvollziehbar.
Data Science Blog: Auf welche Tools setzen Sie bei Ihrer Arbeit? Bevorzugen Sie Open Source oder proprietäre Lösungen?
Ich habe viel mit proprietären Lösungen gearbeitet, beispielsweise mit SAS oder IBM SPSS. Wir setzen derzeit allerdings auf Open Source, vor allem auf die Programmiersprache R. Neue Mitarbeiter im Data Science Bereich sollten daher zumindest über Grundkenntnisse in R verfügen und die Lust haben, sich tiefer mit dieser Programmiersprache zu befassen.
Wir verwenden unter anderem die Pakete ggplot und Shiny. Mit Shiny erstellen wir interne Web-Applikationen, um Kollegen Analysen zur Verfügung zu stellen. Für Eigenentwicklungen komplexer Visualisierungen ist ggplot perfekt geeignet.
Mit R können wir außerdem selbst eigene Packages erstellen um den Funktionsumfang nach unseren Wünschen zu erweitern. Wir haben daher keinen Grund, auf kostenintensive Lösungen zu setzen.
Data Science Blog: Was macht Ihrer Erfahrung nach einen guten Data Scientist aus?
Aus meiner Sicht sollte man ein Zahlenfreak sein und niemals aufhören Fragen zu stellen, denn darum geht es im Data Science. Gute Data Scientists sind meiner Meinung nach interdisziplinär ausgebildet, kommen also nicht nur aus einer Ecke, sondern besser aus zwei oder drei Fachbereichen. Man benötigt verschiedene Sichtweisen.
Aus welchem Fachbereich man ursprünglich kommt, ist dabei gar nicht so wichtig. Es muss also nicht unbedingt ein Mathematiker oder Statistiker sein.
Data Science Blog: Gibt es eigentlich aus Ihrer Erfahrung heraus einen Unterschied zwischen Mathematikern und Statistikern?
Ja. Mathematiker denken meiner Meinung nach sehr exakt und beweisorientiert. Statistik ist zwar ein Teilbereich der Mathematik, aber für einen Statistiker steht das Schätzen im Vordergrund. Statistiker denken in Verteilungen, Wahrscheinlichkeiten und Intervallen und können gut mit einer gewissen Unsicherheit leben, die reine Mathematiker manchmal unbefriedigt lässt.
Data Science Blog: Für alle diejenigen, die gerade ihr Studium der Statistik, Ingenieurwissenschaft oder was auch immer abschließen. Welchen Rat haben Sie, wie diese Menschen einen Schritt näher ans Data Science herankommen?
Ich würde empfehlen, einfach ein eigenes kleines Projekt zu starten – „Learning by doing“! Ob das Projekt um die eigenen Stromverbrauchsdaten, eine Wettervorhersage oder Fantasy-Football geht ist nicht wichtig. Man stößt dann zwangsläufig auf die verschiedenen Arbeitsschritte und Herausforderungen. Ein empfehlenswerter Workflow ist der Cross Industry Standard Process for Data Mining, kurz CRISP-DM.
Zuerst muss man ein Geschäftsverständnis aufbauen. Weiter geht es mit der Datensammlung und Datenintegration, danach folgt die Datenaufbereitung. Diese Schritte benötigen bereits ca. 80% der Projektzeit. Erst dann können explorative Analysen, Hypothesentests oder Modellierung aufgesetzt werden. Am Ende des Prozesses erfolgt das Deployment.