Einführung in die Welt der Autoencoder

An wen ist der Artikel gerichtet?

In diesem Artikel wollen wir uns näher mit dem neuronalen Netz namens Autoencoder beschäftigen und wollen einen Einblick in die Grundprinzipien bekommen, die wir dann mit einem vereinfachten Programmierbeispiel festigen. Kenntnisse in Python, Tensorflow und neuronalen Netzen sind dabei sehr hilfreich.

Funktionsweise des Autoencoders

Ein Autoencoder ist ein neuronales Netz, welches versucht die Eingangsinformationen zu komprimieren und mit den reduzierten Informationen im Ausgang wieder korrekt nachzubilden.

Die Komprimierung und die Rekonstruktion der Eingangsinformationen laufen im Autoencoder nacheinander ab, weshalb wir das neuronale Netz auch in zwei Abschnitten betrachten können.

 

 

 

Der Encoder

Der Encoder oder auch Kodierer hat die Aufgabe, die Dimensionen der Eingangsinformationen zu reduzieren, man spricht auch von Dimensionsreduktion. Durch diese Reduktion werden die Informationen komprimiert und es werden nur die wichtigsten bzw. der Durchschnitt der Informationen weitergeleitet. Diese Methode hat wie viele andere Arten der Komprimierung auch einen Verlust.

In einem neuronalen Netz wird dies durch versteckte Schichten realisiert. Durch die Reduzierung von Knotenpunkten in den kommenden versteckten Schichten werden die Kodierung bewerkstelligt.

Der Decoder

Nachdem das Eingangssignal kodiert ist, kommt der Decoder bzw. Dekodierer zum Einsatz. Er hat die Aufgabe mit den komprimierten Informationen die ursprünglichen Daten zu rekonstruieren. Durch Fehlerrückführung werden die Gewichte des Netzes angepasst.

Ein bisschen Mathematik

Das Hauptziel des Autoencoders ist, dass das Ausgangssignal dem Eingangssignal gleicht, was bedeutet, dass wir eine Loss Funktion haben, die L(x , y) entspricht.

L(x, \hat{x})

Unser Eingang soll mit x gekennzeichnet werden. Unsere versteckte Schicht soll h sein. Damit hat unser Encoder folgenden Zusammenhang h = f(x).

Die Rekonstruktion im Decoder kann mit r = g(h) beschrieben werden. Bei unserem einfachen Autoencoder handelt es sich um ein Feed-Forward Netz ohne rückkoppelten Anteil und wird durch Backpropagation oder zu deutsch Fehlerrückführung optimiert.

Formelzeichen Bedeutung
\mathbf{x}, \hat{\mathbf{x}} Eingangs-, Ausgangssignal
\mathbf{W}, \hat{\mathbf{W}} Gewichte für En- und Decoder
\mathbf{B}, \hat{\mathbf{B}} Bias für En- und Decoder
\sigma, \hat{\sigma} Aktivierungsfunktion für En- und Decoder
L Verlustfunktion

Unsere versteckte Schicht soll mit \latex h gekennzeichnet werden. Damit besteht der Zusammenhang:

(1)   \begin{align*} \mathbf{h} &= f(\mathbf{x}) = \sigma(\mathbf{W}\mathbf{x} + \mathbf{B}) \\ \hat{\mathbf{x}} &= g(\mathbf{h}) = \hat{\sigma}(\hat{\mathbf{W}} \mathbf{h} + \hat{\mathbf{B}}) \\ \hat{\mathbf{x}} &= \hat{\sigma} \{ \hat{\mathbf{W}} \left[\sigma ( \mathbf{W}\mathbf{x} + \mathbf{B} )\right]  + \hat{\mathbf{B}} \}\\ \end{align*}

Für eine Optimierung mit der mittleren quadratischen Abweichung (MSE) könnte die Verlustfunktion wie folgt aussehen:

(2)   \begin{align*} L(\mathbf{x}, \hat{\mathbf{x}}) &= \mathbf{MSE}(\mathbf{x}, \hat{\mathbf{x}}) = \|  \mathbf{x} - \hat{\mathbf{x}} \| ^2 &=  \| \mathbf{x} - \hat{\sigma} \{ \hat{\mathbf{W}} \left[\sigma ( \mathbf{W}\mathbf{x} + \mathbf{B} )\right]  + \hat{\mathbf{B}} \} \| ^2 \end{align*}

 

Wir haben die Theorie und Mathematik eines Autoencoder in seiner Ursprungsform kennengelernt und wollen jetzt diese in einem (sehr) einfachen Beispiel anwenden, um zu schauen, ob der Autoencoder so funktioniert wie die Theorie es besagt.

Dazu nehmen wir einen One Hot (1 aus n) kodierten Datensatz, welcher die Zahlen von 0 bis 3 entspricht.

    \begin{align*} [1, 0, 0, 0] \ \widehat{=}  \ 0 \\ [0, 1, 0, 0] \ \widehat{=}  \ 1 \\ [0, 0, 1, 0] \ \widehat{=}  \ 2 \\ [0, 0, 0, 1] \ \widehat{=} \  3\\ \end{align*}

Diesen Datensatz könnte wie folgt kodiert werden:

    \begin{align*} [1, 0, 0, 0] \ \widehat{=}  \ 0 \ \widehat{=}  \ [0, 0] \\ [0, 1, 0, 0] \ \widehat{=}  \ 1 \ \widehat{=}  \  [0, 1] \\ [0, 0, 1, 0] \ \widehat{=}  \ 2 \ \widehat{=}  \ [1, 0] \\ [0, 0, 0, 1] \ \widehat{=} \  3 \ \widehat{=}  \ [1, 1] \\ \end{align*}

Damit hätten wir eine Dimensionsreduktion von vier auf zwei Merkmalen vorgenommen und genau diesen Vorgang wollen wir bei unserem Beispiel erreichen.

Programmierung eines einfachen Autoencoders

 

Typische Einsatzgebiete des Autoencoders sind neben der Dimensionsreduktion auch Bildaufarbeitung (z.B. Komprimierung, Entrauschen), Anomalie-Erkennung, Sequenz-to-Sequenz Analysen, etc.

Ausblick

Wir haben mit einem einfachen Beispiel die Funktionsweise des Autoencoders festigen können. Im nächsten Schritt wollen wir anhand realer Datensätze tiefer in gehen. Auch soll in kommenden Artikeln Variationen vom Autoencoder in verschiedenen Einsatzgebieten gezeigt werden.

Wie funktioniert Natural Language Processing in der Praxis? Ein Überblick

Natural Language Processing (NLP,auf Deutsch auch als Computerlinguistik bezeichnet) gilt als ein Teilbereich des Machine Learning und der Sprachwissenschaften.

Beim NLP geht es vom Prinzip um das Extrahieren und Verarbeiten von Informationen, die in den natürlichen Sprachen enthalten sind. Im Rahmen von NLP wird die natürliche Sprache durch den Rechner in Zahlenabfolgen umgewandelt. Diese Zahlenabfolgen kann wiederum der Rechner benutzen, um Rückschlüsse auf unsere Welt zu ziehen. Kurz gesagt erlaubt NLP dem Computer unsere Sprache in ihren verschiedenen Formen zu verarbeiten. 

Eine ausführlichere Definition von NLP wurde auf dem Data Science Blog von Christopher Kipp vorgenommen. 

In diesem Beitrag werde ich dagegen einen Überblick über die spezifischen Schritte im NLP als Prozess darstellen, denn NLP erfolgt in mehreren Phasen, die aufeinander Folgen und zum Teil als Kreislauf verstanden werden können. In ihren Grundlagen ähneln sich diese Phasen bei jeder NLP-Anwendung, sei es Chatbot Erstellung oder Sentiment Analyse.

1. Datenreinigung / Normalisierung 

In dieser Phase werden die rohen Sprachdaten aus ihrem ursprünglichen Format entnommen, sodass am Ende nur reine Textdaten ohne Format erhalten bleiben. 

Beispielsweise können die Textdaten für unsere Analyse aus Webseiten stammen und nach ihrer Erhebung in HTML Code eingebettet sein.

Das Bild zeigt eine Beispielseite. Der Text hier ist noch in einen HTML Kontext eingebettet. Der erste Schritt muss daher sein, den Text von den diversen HTML-Tags zu bereinigen. 

 

2. Tokenisierung und Normalisierung (Tokenizing and Normalizing) 

Nach dem ersten Schritt steht als Ergebnis idealerweise reiner Text da, der aber auch Sprachelemente wie Punkte, Kommata sowie Groß- und Kleinschreibung beinhaltet. 

Hier kommt der nächste Schritt ins Spiel – die Entfernung der Interpunktion vom Text. Der Text wird auf diese Weise auf seine Wort-Bestandteile (sog. Tokens) reduziert. 

Zusätzlich zu diesem Schritt kann auch Groß- und Kleinschreibung entfernt werden (Normalisierung). Dies spart vor allem die Rechenkapazität. 

So wird aus folgendem Abschnitt:

Auf diese Weise können wir die Daten aggregieren und in Subsets analysieren. Wir müssen nicht immer das ganze Machine Learning in Hadoop und Spark auf dem gesamten Datensatz starten.

folgender Text 

auf diese weise können wir die daten aggregieren und in subsets analysieren wir müssen nicht immer das ganze machine learning in hadoop und spark auf dem gesamten datensatz starten

 

3. Füllwörterentfernung / Stop words removal 

Im nächsten Schritt entfernen wir die sogenannten Füllwörter wie „und“, „sowie“, „etc.“. In den entsprechenden Python Bibliotheken sind die gängigen Füllwörter bereits gespeichert und können leicht entfernt werden. Trotzdem ist hier Vorsicht geboten. Die Bedeutung der Füllwörter in einer Sprache verändert sich je nach Kontext. Aus diesem Grund ist dieser Schritt optional und die zu entfernenden Füllwörter müssen kontextabhängig ausgewählt werden. 

Nach diesem Schritt bleibt dann in unserem Beispiel folgender Text erhalten: 

können daten aggregieren subsets analysieren müssen nicht immer machine learning hadoop spark datensatz starten

 

4. Pats of speech (POS) 
Als weiterer Schritt können die Wörter mit ihrer korrekten Wortart markiert werden. Der Rechner markiert sie entsprechend als Verben, Nomen, Adjektive etc. Dieser Schritt könnte für manche Fälle der Grundformreduktion/Lemmatization notwendig sein (dazu sogleich unten).

 

5. Stemming und Lemmatization/Grundformreduktion

In weiteren Schritten kann weiter das sogenannte Stemming und Lemmatization folgen. Vom Prinzip werden hier die einzelnen Wörter in ihre Grundform bzw. Wörterbuchform gebracht. 

Im Fall von Stemming werden die Wörter am Ende einfach abgeschnitten und auf den Wortstamm reduziert. So wäre zum Beispiel das Verb „gehen“, „geht“ auf die Form „geh“ reduziert. 

Im Fall der Lemmatization bzw. Grundformreduktion werden die Wörter in ihre ursprüngliche Wörterbuchform gebracht: das Verb „geht“ wäre dann ins „gehen“ transformiert. 

Parts of Speech, Stemming als auch Lemmatising sind vorteilhaft für die Komplexitätsreduktion. Sie führen deswegen zu mehr Effizienz und schnellerer Anwendbarkeit. Dies geschieht allerdings auf Kosten der Präzision. Die auf diese Weise erstellten Listen können dann im Fall einer Suchmaschine weniger relevante Ergebnisse liefern.

Nachfolgende Schritte beim NLP transformieren den Text in mathematische Zahlenfolgen, die der Rechner verstehen kann. Wie wir in diesem Schritt vorgehen, hängt stark davon ab, was das eigentliche Ziel des Projektes sei. Es gibt ein breites Angebot an Python Paketen, die die Zahlenbildung je nach Projektziel unterschiedlich gestalten

 

6a. Bag of Words Methoden in Python (https://en.wikipedia.org/wiki/Bag-of-words_model)

Zu den Bag of Words Methoden in Python gehört das sogenannte TF-IDF Vectorizer. Die Transformationsmethode mit dem TF-IDF eignet sich beispielsweise zum Bau eines Spamdetektors, da der TF-IDF Vectorizer die Wörter im Kontext des Gesamtdokumentes betrachtet.

 

6b. Word Embeddings Methoden in Python: Word2Vec, GloVe (https://en.wikipedia.org/wiki/Word_embedding)

Wie der Name bereits sagt transformiert Word2Vec die einzelnen Wörter zu Vektoren (Zahlenfolgen). Dabei werden ähnliche Wörter zu ähnlichen Vektoren transformiert. Die Methoden aus der Word Embeddings Kiste eignen sich zum Beispiel besser, um einen Chatbot zu erstellen. 

Im letzten Schritt des NLP können wir die so prozessierte Sprache in die gängigen Machine Learning Modelle einspeisen. Das Beste an den oben erwähnten NLP Techniken ist die Transformation der Sprache in Zahlensequenzen, die durch jeden ML Algorithmus analysiert werden können. Die weitere Vorgehensweise hängt hier nur noch vom Ziel des Projektes ab. 

Dies ist ein Überblick über die notwendigen (und optionalen) Schritte in einem NLP Verfahren. Natürlich hängt die Anwendung vom jeweiligen Use Case ab. Die hier beschriebenen NLP Phasen nehmen viele Ungenauigkeiten in Kauf, wie zum Beispiel die Reduzierung der Wörter auf Wortstämmen bzw. den Verzicht auf Großschreibung. Bei der Umsetzung in der Praxis müssen immer Kosten und Nutzen abgewogen werden und das Verfahren dem besonderen Fall angepasst werden. 

Quellen:
  • Mandy Gu: „Spam or Ham: Introduction to Natural Language Processing Part 2“ https://towardsdatascience.com/spam-or-ham-introduction-to-natural-language-processing-part-2-a0093185aebd
  • Christopher D. Manning, Prabhakar Raghavan & Hinrich Schütze: „Introduction to Information Retrieval”, Cambridge University Press, https://nlp.stanford.edu/IR-book/
  • Hobson Lane, Cole Howard, Hannes Max Hapke: „Natural Language Processing in Action. Understanding, analyzing, and generating text with Python.” Manning Shelter Island

Wie passt Machine Learning in eine moderne Data- & Analytics Architektur?

Einleitung

Aufgrund vielfältiger potenzieller Geschäftschancen, die Machine Learning bietet, arbeiten mittlerweile viele Unternehmen an Initiativen für datengetriebene Innovationen. Dabei gründen sie Analytics-Teams, schreiben neue Stellen für Data Scientists aus, bauen intern Know-how auf und fordern von der IT-Organisation eine Infrastruktur für “heavy” Data Engineering & Processing samt Bereitstellung einer Analytics-Toolbox ein. Für IT-Architekten warten hier spannende Herausforderungen, u.a. bei der Zusammenarbeit mit interdisziplinären Teams, deren Mitglieder unterschiedlich ausgeprägte Kenntnisse im Bereich Machine Learning (ML) und Bedarfe bei der Tool-Unterstützung haben. Einige Überlegungen sind dabei: Sollen Data Scientists mit ML-Toolkits arbeiten und eigene maßgeschneiderte Algorithmen nur im Ausnahmefall entwickeln, damit später Herausforderungen durch (unkonventionelle) Integrationen vermieden werden? Machen ML-Funktionen im seit Jahren bewährten ETL-Tool oder in der Datenbank Sinn? Sollen ambitionierte Fachanwender künftig selbst Rohdaten aufbereiten und verknüpfen, um auf das präparierte Dataset einen populären Algorithmus anzuwenden und die Ergebnisse selbst interpretieren? Für die genannten Fragestellungen warten junge & etablierte Software-Hersteller sowie die Open Source Community mit “All-in-one”-Lösungen oder Machine Learning-Erweiterungen auf. Vor dem Hintergrund des Data Science Prozesses, der den Weg eines ML-Modells von der experimentellen Phase bis zur Operationalisierung beschreibt, vergleicht dieser Artikel ausgewählte Ansätze (Notebooks für die Datenanalyse, Machine Learning-Komponenten in ETL- und Datenvisualisierungs­werkzeugen vs. Speziallösungen für Machine Learning) und betrachtet mögliche Einsatzbereiche und Integrationsaspekte.

Data Science Prozess und Teams

Im Zuge des Big Data-Hypes kamen neben Design-Patterns für Big Data- und Analytics-Architekturen auch Begriffsdefinitionen auf, die Disziplinen wie Datenintegration von Data Engineering und Data Science vonein­ander abgrenzen [1]. Prozessmodelle, wie das ab 1996 im Rahmen eines EU-Förderprojekts entwickelte CRISP-DM (CRoss-Industry Standard Process for Data Mining) [2], und Best Practices zur Organisation erfolgreich arbeitender Data Science Teams [3] weisen dabei die Richtung, wie Unternehmen das Beste aus den eigenen Datenschätzen herausholen können. Die Disziplin Data Science beschreibt den, an ein wissenschaftliches Vorgehen angelehnten, Prozess der Nutzung von internen und externen Datenquellen zur Optimierung von Produkten, Dienstleistungen und Prozessen durch die Anwendung statistischer und mathematischer Modelle. Bild 1 stellt in einem Schwimmbahnen-Diagramm einzelne Phasen des Data Science Prozesses den beteiligten Funktionen gegenüber und fasst Erfahrungen aus der Praxis zusammen [5]. Dabei ist die Intensität bei der Zusammenarbeit zwischen Data Scientists und System Engineers insbesondere bei Vorbereitung und Bereitstellung der benötigten Datenquellen und später bei der Produktivsetzung des Ergebnisses hoch. Eine intensive Beanspruchung der Server-Infrastruktur ist in allen Phasen gegeben, bei denen Hands-on (und oft auch massiv parallel) mit dem Datenpool gearbeitet wird, z.B. bei Datenaufbereitung, Training von ML Modellen etc.

Abbildung 1: Beteiligung und Interaktion von Fachbereichs-/IT-Funktionen mit dem Data Science Team

Mitarbeiter vom Technologie-Giganten Google haben sich reale Machine Learning-Systeme näher angesehen und festgestellt, dass der Umsetzungsaufwand für den eigentlichen Kern (= der ML-Code, siehe den kleinen schwarzen Kasten in der Mitte von Bild 2) gering ist, wenn man dies mit der Bereitstellung der umfangreichen und komplexen Infrastruktur inklusive Managementfunktionen vergleicht [4].

Abbildung 2: Versteckte technische Anforderungen in maschinellen Lernsystemen

Konzeptionelle Architektur für Machine Learning und Analytics

Die Nutzung aller verfügbaren Daten für Analyse, Durchführung von Data Science-Projekten, mit den daraus resultierenden Maßnahmen zur Prozessoptimierung und -automatisierung, bedeutet für Unternehmen sich neuen Herausforderungen zu stellen: Einführung neuer Technologien, Anwendung komplexer mathematischer Methoden sowie neue Arbeitsweisen, die in dieser Form bisher noch nicht dagewesen sind. Für IT-Architekten gibt es also reichlich Arbeit, entweder um eine Data Management-Plattform neu aufzubauen oder um das bestehende Informationsmanagement weiterzuentwickeln. Bild 3 zeigt hierzu eine vierstufige Architektur nach Gartner [6], ausgerichtet auf Analytics und Machine Learning.

Abbildung 3: Konzeptionelle End-to-End Architektur für Machine Learning und Analytics

Was hat sich im Vergleich zu den traditionellen Data Warehouse- und Business Intelligence-Architekturen aus den 1990er Jahren geändert? Denkt man z.B. an die Präzisionsfertigung eines komplexen Produkts mit dem Ziel, den Ausschuss weiter zu senken und in der Produktionslinie eine höhere Produktivitätssteigerung (Kennzahl: OEE, Operational Equipment Efficiency) erzielen zu können: Die an der Produktherstellung beteiligten Fertigungsmodule (Spezialmaschinen) messen bzw. detektieren über zahlreiche Sensoren Prozesszustände, speicherprogrammierbare Steuerungen (SPS) regeln dazu die Abläufe und lassen zu Kontrollzwecken vom Endprodukt ein oder mehrere hochauflösende Fotos aufnehmen. Bei diesem Szenario entsteht eine Menge interessanter Messdaten, die im operativen Betrieb häufig schon genutzt werden. Z.B. für eine Echtzeitalarmierung bei Über- oder Unterschreitung von Schwellwerten in einem vorher definierten Prozessfenster. Während früher vielleicht aus Kostengründen nur Statusdaten und Störungsinformationen den Weg in relationale Datenbanken fanden, hebt man heute auch Rohdaten, z.B. Zeitreihen (Kraftwirkung, Vorschub, Spannung, Frequenzen,…) für die spätere Analyse auf.

Bezogen auf den Bereich Acquire bewältigt die IT-Architektur in Bild 3 nun Aufgaben, wie die Übernahme und Speicherung von Maschinen- und Sensordaten, die im Millisekundentakt Datenpunkte erzeugen. Während IoT-Plattformen das Registrieren, Anbinden und Management von Hunderten oder Tausenden solcher datenproduzierender Geräte („Things“) erleichtern, beschreibt das zugehörige IT-Konzept den Umgang mit Protokollen wie MQTT, OPC-UA, den Aufbau und Einsatz einer Messaging-Plattform für Publish-/Subscribe-Modelle (Pub/Sub) zur performanten Weiterverarbeitung von Massendaten im JSON-Dateiformat. Im Bereich Organize etablieren sich neben relationalen Datenbanken vermehrt verteilte NoSQL-Datenbanken zum Persistieren eingehender Datenströme, wie sie z.B. im oben beschriebenen Produktionsszenario entstehen. Für hochauflösende Bilder, Audio-, Videoaufnahmen oder andere unstrukturierte Daten kommt zusätzlich noch Object Storage als alternative Speicherform in Frage. Neben der kostengünstigen und langlebigen Datenauf­bewahrung ist die Möglichkeit, einzelne Objekte mit Metadaten flexibel zu beschreiben, um damit später die Auffindbarkeit zu ermöglichen und den notwendigen Kontext für die Analysen zu geben, hier ein weiterer Vorteil. Mit dem richtigen Technologie-Mix und der konsequenten Umsetzung eines Data Lake– oder Virtual Data Warehouse-Konzepts gelingt es IT-Architekten, vielfältige Analytics Anwendungsfälle zu unterstützen.

Im Rahmen des Data Science Prozesses spielt, neben der sicheren und massenhaften Datenspeicherung sowie der Fähigkeit zur gleichzeitigen, parallelen Verarbeitung großer Datenmengen, das sog. Feature-Engineering eine wichtige Rolle. Dazu wieder ein Beispiel aus der maschinellen Fertigung: Mit Hilfe von Machine Learning soll nach unbekannten Gründen für den zu hohen Ausschuss gefunden werden. Was sind die bestimmenden Faktoren dafür? Beeinflusst etwas die Maschinenkonfiguration oder deuten Frequenzveränderungen bei einem Verschleißteil über die Zeit gesehen auf ein Problem hin? Maschine und Sensoren liefern viele Parameter als Zeitreihendaten, aber nur einige davon sind – womöglich nur in einer bestimmten Kombination – für die Aufgabenstellung wirklich relevant. Daher versuchen Data Scientists bei der Feature-Entwicklung die Vorhersage- oder Klassifikationsleistung der Lernalgorithmen durch Erstellen von Merkmalen aus Rohdaten zu verbessern und mit diesen den Lernprozess zu vereinfachen. Die anschließende Feature-Auswahl wählt bei dem Versuch, die Anzahl von Dimensionen des Trainingsproblems zu verringern, die wichtigste Teilmenge der ursprünglichen Daten-Features aus. Aufgrund dieser und anderer Arbeitsschritte, wie z.B. Auswahl und Training geeigneter Algorithmen, ist der Aufbau eines Machine Learning Modells ein iterativer Prozess, bei dem Data Scientists dutzende oder hunderte von Modellen bauen, bis die Akzeptanzkriterien für die Modellgüte erfüllt sind. Aus technischer Sicht sollte die IT-Architektur auch bei der Verwaltung von Machine Learning Modellen bestmöglich unterstützen, z.B. bei Modell-Versionierung, -Deployment und -Tracking in der Produktions­umgebung oder bei der Automatisierung des Re-Trainings.

Die Bereiche Analyze und Deliver zeigen in Bild 3 einige bekannte Analysefähigkeiten, wie z.B. die Bereitstellung eines Standardreportings, Self-service Funktionen zur Geschäftsplanung sowie Ad-hoc Analyse und Exploration neuer Datasets. Data Science-Aktivitäten können etablierte Business Intelligence-Plattformen inhaltlich ergänzen, in dem sie durch neuartige Kennzahlen, das bisherige Reporting „smarter“ machen und ggf. durch Vorhersagen einen Blick in die nahe Zukunft beisteuern. Machine Learning-as-a-Service oder Machine Learning-Produkte sind alternative Darreichungsformen, um Geschäftsprozesse mit Hilfe von Analytik zu optimieren: Z.B. integriert in einer Call Center-Applikation, die mittels Churn-Indikatoren zu dem gerade anrufenden erbosten Kunden einen Score zu dessen Abwanderungswilligkeit zusammen mit Handlungsempfehlungen (Gutschein, Rabatt) anzeigt. Den Kunden-Score oder andere Risikoeinschätzungen liefert dabei eine Service Schnittstelle, die von verschiedenen unternehmensinternen oder auch externen Anwendungen (z.B. Smartphone-App) eingebunden und in Echtzeit angefragt werden kann. Arbeitsfelder für die IT-Architektur wären in diesem Zusammenhang u.a. Bereitstellung und Betrieb (skalierbarer) ML-Modelle via REST API’s in der Produktions­umgebung inklusive Absicherung gegen unerwünschten Zugriff.

Ein klassischer Ansatz: Datenanalyse und Machine Learning mit Jupyter Notebook & Python

Jupyter ist ein Kommandozeileninterpreter zum interaktiven Arbeiten mit der Programmiersprache Python. Es handelt sich dabei nicht nur um eine bloße Erweiterung der in Python eingebauten Shell, sondern um eine Softwaresuite zum Entwickeln und Ausführen von Python-Programmen. Funktionen wie Introspektion, Befehlszeilenergänzung, Rich-Media-Einbettung und verschiedene Editoren (Terminal, Qt-basiert oder browserbasiert) ermöglichen es, Python-Anwendungen als auch Machine Learning-Projekte komfortabel zu entwickeln und gleichzeitig zu dokumentieren. Datenanalysten sind bei der Arbeit mit Juypter nicht auf Python als Programmiersprache begrenzt, sondern können ebenso auch sog. Kernels für Julia, R und vielen anderen Sprachen einbinden. Ein Jupyter Notebook besteht aus einer Reihe von “Zellen”, die in einer Sequenz angeordnet sind. Jede Zelle kann entweder Text oder (Live-)Code enthalten und ist beliebig verschiebbar. Texte lassen sich in den Zellen mit einer einfachen Markup-Sprache formatieren, komplexe Formeln wie mit einer Ausgabe in LaTeX darstellen. Code-Zellen enthalten Code in der Programmiersprache, die dem aktiven Notebook über den entsprechenden Kernel (Python 2 Python 3, R, etc.) zugeordnet wurde. Bild 4 zeigt auszugsweise eine Analyse historischer Hauspreise in Abhängigkeit ihrer Lage in Kalifornien, USA (Daten und Notebook sind öffentlich erhältlich [7]). Notebooks erlauben es, ganze Machine Learning-Projekte von der Datenbeschaffung bis zur Evaluierung der ML-Modelle reproduzierbar abzubilden und lassen sich gut versionieren. Komplexe ML-Modelle können in Python mit Hilfe des Pickle Moduls, das einen Algorithmus zur Serialisierung und De-Serialisierung implementiert, ebenfalls transportabel gemacht werden.

 

Abbildung 4: Datenbeschaffung, Inspektion, Visualisierung und ML Modell-Training in einem Jupyter Notebook (Pro-grammiersprache: Python)

Ein Problem, auf das man bei der praktischen Arbeit mit lokalen Jupyter-Installationen schnell stößt, lässt sich mit dem “works on my machine”-Syndrom bezeichnen. Kleine Data Sets funktionieren problemlos auf einem lokalen Rechner, wenn sie aber auf die Größe des Produktionsdatenbestandes migriert werden, skaliert das Einlesen und Verarbeiten aller Daten mit einem einzelnen Rechner nicht. Aufgrund dieser Begrenzung liegt der Aufbau einer server-basierten ML-Umgebung mit ausreichend Rechen- und Speicherkapazität auf der Hand. Dabei ist aber die Einrichtung einer solchen ML-Umgebung, insbesondere bei einer on-premise Infrastruktur, eine Herausforderung: Das Infrastruktur-Team muss physische Server und/oder virtuelle Maschinen (VM’s) auf Anforderung bereitstellen und integrieren. Dieser Ansatz ist aufgrund vieler manueller Arbeitsschritte zeitaufwändig und fehleranfällig. Mit dem Einsatz Cloud-basierter Technologien vereinfacht sich dieser Prozess deutlich. Die Möglichkeit, Infrastructure on Demand zu verwenden und z.B. mit einem skalierbaren Cloud-Data Warehouse zu kombinieren, bietet sofortigen Zugriff auf Rechen- und Speicher-Ressourcen, wann immer sie benötigt werden und reduziert den administrativen Aufwand bei Einrichtung und Verwaltung der zum Einsatz kommenden ML-Software. Bild 5 zeigt den Code-Ausschnitt aus einem Jupyter Notebook, das im Rahmen des Cloud Services Amazon SageMaker bereitgestellt wird und via PySpark Kernel auf einen Multi-Node Apache Spark Cluster (in einer Amazon EMR-Umgebung) zugreift. In diesem Szenario wird aus einem Snowflake Cloud Data Warehouse ein größeres Data Set mit 220 Millionen Datensätzen via Spark-Connector komplett in ein Spark Dataframe geladen und im Spark Cluster weiterverarbeitet. Den vollständigen Prozess inkl. Einrichtung und Konfiguration aller Komponenten, beschreibt eine vierteilige Blog-Serie [8]). Mit Spark Cluster sowie Snowflake stehen für sich genommen zwei leistungsfähige Umgebungen für rechenintensive Aufgaben zur Verfügung. Mit dem aktuellen Snowflake Connector für Spark ist eine intelligente Arbeitsteilung mittels Query Pushdown erreichbar. Dabei entscheidet Spark’s optimizer (Catalyst), welche Aufgaben (Queries) aufgrund der effizienteren Verarbeitung an Snowflake delegiert werden [9].

Abbildung 5: Jupyter Notebook in der Cloud – integriert mit Multi-Node Spark Cluster und Snowflake Cloud Data Warehouse

Welches Machine Learning Framework für welche Aufgabenstellung?

Bevor die nächsten Abschnitte weitere Werkzeuge und Technologien betrachten, macht es nicht nur für Data Scientists sondern auch für IT-Architekten Sinn, zunächst einen Überblick auf die derzeit verfügbaren Machine Learning Frameworks zu bekommen. Aus Architekturperspektive ist es wichtig zu verstehen, welche Aufgabenstellungen die jeweiligen ML-Frameworks adressieren, welche technischen Anforderungen und ggf. auch Abhängigkeiten zu den verfügbaren Datenquellen bestehen. Ein gemeinsamer Nenner vieler gescheiterter Machine Learning-Projekte ist häufig die Auswahl des falschen Frameworks. Ein Beispiel: TensorFlow ist aktuell eines der wichtigsten Frameworks zur Programmierung von neuronalen Netzen, Deep Learning Modellen sowie anderer Machine Learning Algorithmen. Während Deep Learning perfekt zur Untersuchung komplexer Daten wie Bild- und Audiodaten passt, wird es zunehmend auch für Use Cases benutzt, für die andere Frameworks besser geeignet sind. Bild 6 zeigt eine kompakte Entscheidungsmatrix [10] für die derzeit verbreitetsten ML-Frameworks und adressiert häufige Praxisprobleme: Entweder werden Algorithmen benutzt, die für den Use Case nicht oder kaum geeignet sind oder das gewählte Framework kann die aufkommenden Datenmengen nicht bewältigen. Die Unterteilung der Frameworks in Small Data, Big Data und Complex Data ist etwas plakativ, soll aber bei der Auswahl der Frameworks nach Art und Volumen der Daten helfen. Die Grenze zwischen Big Data zu Small Data ist dabei dort zu ziehen, wo die Datenmengen so groß sind, dass sie nicht mehr auf einem einzelnen Computer, sondern in einem verteilten Cluster ausgewertet werden müssen. Complex Data steht in dieser Matrix für unstrukturierte Daten wie Bild- und Audiodateien, für die sich Deep Learning Frameworks sehr gut eignen.

Abbildung 6: Entscheidungsmatrix zu aktuell verbreiteten Machine Learning Frameworks

Self-Service Machine Learning in Business Intelligence-Tools

Mit einfach zu bedienenden Business Intelligence-Werkzeugen zur Datenvisualisierung ist es für Analytiker und für weniger technisch versierte Anwender recht einfach, komplexe Daten aussagekräftig in interaktiven Dashboards zu präsentieren. Hersteller wie Tableau, Qlik und Oracle spielen ihre Stärken insbesondere im Bereich Visual Analytics aus. Statt statische Berichte oder Excel-Dateien vor dem nächsten Meeting zu verschicken, erlauben moderne Besprechungs- und Kreativräume interaktive Datenanalysen am Smartboard inklusive Änderung der Abfragefilter, Perspektivwechsel und Drill-downs. Im Rahmen von Data Science-Projekten können diese Werkzeuge sowohl zur Exploration von Daten als auch zur Visualisierung der Ergebnisse komplexer Machine Learning-Modelle sinnvoll eingesetzt werden. Prognosen, Scores und weiterer ML-Modell-Output lässt sich so schneller verstehen und unterstützt die Entscheidungsfindung bzw. Ableitung der nächsten Maßnahmen für den Geschäftsprozess. Im Rahmen einer IT-Gesamtarchitektur sind Analyse-Notebooks und Datenvisualisierungswerkzeuge für die Standard-Analytics-Toolbox Unternehmens gesetzt. Mit Hinblick auf effiziente Team-Zusammenarbeit, unternehmensinternen Austausch und Kommunikation von Ergebnissen sollte aber nicht nur auf reine Desktop-Werkzeuge gesetzt, sondern Server-Lösungen betrachtet und zusammen mit einem Nutzerkonzept eingeführt werden, um zehnfache Report-Dubletten, konkurrierende Statistiken („MS Excel Hell“) einzudämmen.

Abbildung 7: Datenexploration in Tableau – leicht gemacht für Fachanwender und Data Scientists

 

Zusätzliche Statistikfunktionen bis hin zur Möglichkeit R- und Python-Code bei der Analyse auszuführen, öffnet auch Fachanwender die Tür zur Welt des Maschinellen Lernens. Bild 7 zeigt das Werkzeug Tableau Desktop mit der Analyse kalifornischer Hauspreise (demselben Datensatz wie oben im Jupyter Notebook-Abschnitt wie in Bild 4) und einer Heatmap-Visualisierung zur Hervorhebung der teuersten Wohnlagen. Mit wenigen Klicks ist auch der Einsatz deskriptiver Statistik möglich, mit der sich neben Lagemaßen (Median, Quartilswerte) auch Streuungsmaße (Spannweite, Interquartilsabstand) sowie die Form der Verteilung direkt aus dem Box-Plot in Bild 7 ablesen und sogar über das Vorhandensein von Ausreißern im Datensatz eine Feststellung treffen lassen. Vorteil dieser Visualisierungen sind ihre hohe Informationsdichte, die allerdings vom Anwender auch richtig interpretiert werden muss. Bei der Beurteilung der Attribute, mit ihren Wertausprägungen und Abhängigkeiten innerhalb des Data Sets, benötigen Citizen Data Scientists (eine Wortschöpfung von Gartner) allerdings dann doch die mathematischen bzw. statistischen Grundlagen, um Falschinterpretationen zu vermeiden. Fraglich ist auch der Nutzen des Data Flow Editors [11] in Oracle Data Visualization, mit dem eins oder mehrere der im Werkzeug integrierten Machine Learning-Modelle trainiert und evaluiert werden können: technisch lassen sich Ergebnisse erzielen und anhand einiger Performance-Metriken die Modellgüte auch bewerten bzw. mit anderen Modellen vergleichen – aber wer kann die erzielten Ergebnisse (wissenschaftlich) verteidigen? Gleiches gilt für die Integration vorhandener R- und Python Skripte, die am Ende dann doch eine Einweisung der Anwender bzgl. Parametrisierung der ML-Modelle und Interpretationshilfen bei den erzielten Ergebnissen erfordern.

Machine Learning in und mit Datenbanken

Die Nutzung eingebetteter 1-click Analytics-Funktionen der oben vorgestellten Data Visualization-Tools ist zweifellos komfortabel und zum schnellen Experimentieren geeignet. Der gegenteilige und eher puristische Ansatz wäre dagegen die Implementierung eigener Machine Learning Modelle in der Datenbank. Für die Umsetzung des gewählten Algorithmus reichen schon vorhandene Bordmittel in der Datenbank aus: SQL inklusive mathematischer und statistische SQL-Funktionen, Tabellen zum Speichern der Ergebnisse bzw. für das ML-Modell-Management und Stored Procedures zur Abbildung komplexer Geschäftslogik und auch zur Ablaufsteuerung. Solange die Algorithmen ausreichend skalierbar sind, gibt es viele gute Gründe, Ihre Data Warehouse Engine für ML einzusetzen:

  • Einfachheit – es besteht keine Notwendigkeit, eine andere Compute-Plattform zu managen, zwischen Systemen zu integrieren und Daten zu extrahieren, transferieren, laden, analysieren usw.
  • Sicherheit – Die Daten bleiben dort, wo sie gut geschützt sind. Es ist nicht notwendig, Datenbank-Anmeldeinformationen in externen Systemen zu konfigurieren oder sich Gedanken darüber zu machen, wo Datenkopien verteilt sein könnten.
  • Performance – Eine gute Data Warehouse Engine verwaltet zur Optimierung von SQL Abfragen viele Metadaten, die auch während des ML-Prozesses wiederverwendet werden könnten – ein Vorteil gegenüber General-purpose Compute Plattformen.

Die Implementierung eines minimalen, aber legitimen ML-Algorithmus wird in [12] am Beispiel eines Entscheidungsbaums (Decision Tree) im Snowflake Data Warehouse gezeigt. Decision Trees kommen für den Aufbau von Regressions- oder Klassifikationsmodellen zum Einsatz, dabei teilt man einen Datensatz in immer kleinere Teilmengen auf, die ihrerseits in einem Baum organisiert sind. Bild 8 zeigt die Snowflake Benutzer­oberfläche und ein Ausschnitt von der Stored Procedure, die dynamisch alle SQL-Anweisungen zur Berechnung des Decision Trees nach dem ID3 Algorithmus [13] generiert.

Abbildung 8: Snowflake SQL-Editor mit Stored Procedure zur Berechnung eines Decission Trees

Allerdings ist der Entwicklungs- und Implementierungsprozess für ein Machine Learning Modell umfassender: Es sind relevante Daten zu identifizieren und für das ML-Modell vorzubereiten. Einfach Rohdaten bzw. nicht aggregierten Informationen aus Datenbanktabellen zu extrahieren reicht nicht aus, stattdessen benötigt ein ML-Modell als Input eine flache, meist sehr breite Tabelle mit vielen Aggregaten, die als Features bezeichnet werden. Erst dann kann der Prozess fortgesetzt und der für die Aufgabenstellung ausgewählte Algorithmus trainiert und die Modellgüte bewertet werden. Ist das Ergebnis zufriedenstellend, steht die Implementierung des ML-Modells in der Zielumgebung an und muss sich künftig beim Scoring „frischer Datensätze“ bewähren. Viele zeitaufwändige Teilaufgaben also, bei der zumindest eine Teilautomatisierung wünschenswert wäre. Allein die Datenaufbereitung kann schon bis zu 70…80% der gesamten Projektzeit beanspruchen. Und auch die Implementierung eines ML-Modells wird häufig unterschätzt, da in Produktionsumgebungen der unterstützte Technologie-Stack definiert und ggf. für Machine Learning-Aufgaben erweitert werden muss. Daher ist es reizvoll, wenn das Datenbankmanagement-System auch hier einsetzbar ist – sofern die geforderten Algorithmen dort abbildbar sind. Wie ein ML-Modell für die Kundenabwanderungsprognose (Churn Prediction) werkzeuggestützt mit Xpanse AI entwickelt und beschleunigt im Snowflake Cloud Data Warehouse bereitgestellt werden kann, beschreibt [14] sehr anschaulich: Die benötigten Datenextrakte sind schnell aus Snowflake entladen und stellen den Input für ein neues Xpanse AI-Projekt dar. Sobald notwendige Tabellenverknüpfungen und andere fachliche Informationen hinterlegt sind, analysiert das Tool Datenstrukturen und transformiert alle Eingangstabellen in eine flache Zwischentabelle (u.U. mit Hunderten von Spalten), auf deren Basis im Anschluss ML-Modelle trainiert werden. Nach dem ML-Modell-Training erfolgt die Begutachtung der Ergebnisse: das erstellte Dataset, Güte des ML-Modells und der generierte SQL(!) ETL-Code zur Erstellung der Zwischentabelle sowie die SQL-Repräsentation des ML-Modells, das basierend auf den Input-Daten Wahrscheinlichkeitswerte berechnet und in einer Scoring-Tabelle ablegt. Die Vorteile dieses Ansatzes sind liegen auf der Hand: kürzere Projektzeiten, der Einsatz im Rahmen des Snowflake Cloud Data Warehouse, macht das Experimentieren mit der Zuweisung dedizierter Compute-Ressourcen für die performante Verarbeitung äußerst einfach. Grenzen liegen wiederum bei der zur Verfügung stehenden Algorithmen.

Spezialisierte Software Suites für Machine Learning

Während sich im Markt etablierte Business Intelligence- und Datenintegrationswerkzeuge mit Erweiterungen zur Ausführung von Python- und R-Code als notwendigen Bestandteil der Analyse-Toolbox für den Data Science Prozess positionieren, gibt es daneben auch Machine-Learning-Plattformen, die auf die Arbeit mit künstlicher Intelligenz (KI) zugeschnittenen sind. Für den Einstieg in Data Science bieten sich die oft vorhandenen quelloffenen Distributionen an, die auch über Enterprise-Versionen mit erweiterten Möglichkeiten für beschleunigtes maschinelles Lernen durch Einsatz von Grafikprozessoren (GPUs), bessere Skalierung sowie Funktionen für das ML-Modell Management (z.B. durch Versionsmanagement und Automatisierung) verfügen.

Eine beliebte Machine Learning-Suite ist das Open Source Projekt H2O. Die Lösung des gleichnamigen kalifornischen Unternehmens verfügt über eine R-Schnittstelle und ermöglicht Anwendern dieser statistischen Programmiersprache Vorteile in puncto Performance. Die in H2O verfügbaren Funktionen und Algorithmen sind optimiert und damit eine gute Alternative für das bereits standardmäßig in den R-Paketen verfügbare Funktionsset. H2O implementiert Algorithmen aus dem Bereich Statistik, Data-Mining und Machine Learning (generalisierte Lineare Modelle, K-Means, Random Forest, Gradient Boosting und Deep Learning) und bietet mit einer In-Memory-Architektur und durch standardmäßige Parallelisierung über alle vorhandenen Prozessorkerne eine gute Basis, um komplexe Machine-Learning-Modelle schneller trainieren zu können. Bild 9 zeigt wieder anhand des Datensatzes zur Analyse der kalifornischen Hauspreise die webbasierte Benutzeroberfläche H20 Flow, die den oben beschriebenen Juypter Notebook-Ansatz mit zusätzlich integrierter Benutzerführung für die wichtigsten Prozessschritte eines Machine-Learning-Projektes kombiniert. Mit einigen Klicks kann das California Housing Dataset importiert, in einen H2O-spezifischen Dataframe umgewandelt und anschließend in Trainings- und Testdatensets aufgeteilt werden. Auswahl, Konfiguration und Training der Machine Learning-Modelle erfolgt entweder durch den Anwender im Einsteiger-, Fortgeschrittenen- oder Expertenmodus bzw. im Auto-ML-Modus. Daran anschließend erlaubt H20 Flow die Vorhersage für die Zielvariable (im Beispiel: Hauspreis) für noch unbekannte Datensätze und die Aufbereitung der Ergebnismenge. Welche Unterstützung H2O zur Produktivsetzung von ML-Modellen anbietet, wird an einem Beispiel in den folgenden Abschnitten betrachtet.

Abbildung 9: H2O Flow Benutzeroberfläche – Datenaufbereitung, ML-Modell-Training und Evaluierung.

Vom Prototyp zur produktiven Machine Learning-Lösung

Warum ist es für viele Unternehmen noch schwer, einen Nutzen aus ihren ersten Data Science-Aktivitäten, Data Labs etc. zu ziehen? In der Praxis zeigt sich, erst durch Operationalisierung von Machine Learning-Resultaten in der Produktionsumgebung entsteht echter Geschäftswert und nur im Tagesgeschäft helfen robuste ML-Modelle mit hoher Güte bei der Erreichung der gesteckten Unternehmensziele. Doch leider erweist sich der Weg vom Prototypen bis hin zum Produktiveinsatz bei vielen Initativen noch als schwierig. Bild 10 veranschaulicht ein typisches Szenario: Data Science-Teams fällt es in ihrer Data Lab-Umgebung technisch noch leicht, Prototypen leistungsstarker ML-Modelle mit Hilfe aktueller ML-Frameworks wie TensorFlow-, Keras- und Word2Vec auf ihren Laptops oder in einer Sandbox-Umgebung zu erstellen. Doch je nach verfügbarer Infrastruktur kann, wegen Begrenzungen bei Rechenleistung oder Hauptspeicher, nur ein Subset der Produktionsdaten zum Trainieren von ML-Modellen herangezogen werden. Ergebnispräsentationen an die Stakeholder der Data Science-Projekte erfolgen dann eher durch Storytelling in MS Powerpoint bzw. anhand eines Demonstrators – selten aber technisch schon so umgesetzt, dass anderere Applikationen z.B. über eine REST-API von dem neuen Risiko Scoring-, dem Bildanalyse-Modul etc. (testweise) Gebrauch machen können. Ausgestattet mit einer Genehmigung vom Management, übergibt das Data Science-Team ein (trainiertes) ML-Modell an das Software Engineering-Team. Nach der Übergabe muss sich allerdings das Engineering-Team darum kümmern, dass das ML-Modell in eine für den Produktionsbetrieb akzeptierte Programmiersprache, z.B. in Java, neu implementiert werden muss, um dem IT-Unternehmensstandard (siehe Line of Governance in Bild 10) bzw. Anforderungen an Skalierbarkeit und Laufzeitverhalten zu genügen. Manchmal sind bei einem solchen Extraschritt Abweichungen beim ML-Modell-Output und in jedem Fall signifikante Zeitverluste beim Deployment zu befürchten.

Abbildung 10: Übergabe von Machine Learning-Resultaten zur Produktivsetzung im Echtbetrieb

Unterstützt das Data Science-Team aktiv bei dem Deployment, dann wäre die Einbettung des neu entwickelten ML-Modells in eine Web-Applikation eine beliebte Variante, bei der typischerweise Flask, Tornado (beides Micro-Frameworks für Python) und Shiny (ein auf R basierendes HTML5/CSS/JavaScript Framework) als Technologiekomponenten zum Zuge kommen. Bei diesem Vorgehen müssen ML-Modell, Daten und verwendete ML-Pakete/Abhängigkeiten in einem Format verpackt werden, das sowohl in der Data Science Sandbox als auch auf Produktionsservern lauffähig ist. Für große Unternehmen kann dies einen langwierigen, komplexen Softwareauslieferungsprozess bedeuten, der ggf. erst noch zu etablieren ist. In dem Zusammenhang stellt sich die Frage, wie weit die Erfahrung des Data Science-Teams bei der Entwicklung von Webanwendungen reicht und Aspekte wie Loadbalancing und Netzwerkverkehr ausreichend berücksichtigt? Container-Virtualisierung, z.B. mit Docker, zur Isolierung einzelner Anwendungen und elastische Cloud-Lösungen, die on-Demand benötigte Rechenleistung bereitstellen, können hier Abhilfe schaffen und Teil der Lösungsarchitektur sein. Je nach analytischer Aufgabenstellung ist das passende technische Design [15] zu wählen: Soll das ML-Modell im Batch- oder Near Realtime-Modus arbeiten? Ist ein Caching für wiederkehrende Modell-Anfragen vorzusehen? Wie wird das Modell-Deployment umgesetzt, In-Memory, Code-unabhängig durch Austauschformate wie PMML, serialisiert via R- oder Python-Objekte (Pickle) oder durch generierten Code? Zusätzlich muss für den Produktiveinsatz von ML-Modellen auch an unterstützenden Konzepten zur Bereitstellung, Routing, Versions­management und Betrieb im industriellen Maßstab gearbeitet werden, damit zuverlässige Machine Learning-Produkte bzw. -Services zur internen und externen Nutzung entstehen können (siehe dazu Bild 11)

Abbildung 11: Unterstützende Funktionen für produktive Machine Learning-Lösungen

Die Deployment-Variante „Machine Learning Code-Generierung“ lässt sich gut an dem bereits mit H2O Flow besprochenen Beispiel veranschaulichen. Während Bild 9 hierzu die Schritte für Modellaufbau, -training und -test illustriert, zeigt Bild 12 den Download-Vorgang für den zuvor generierten Java-Code zum Aufbau eines ML-Modells zur Vorhersage kalifornischer Hauspreise. In dem generierten Java-Code sind die in H2O Flow vorgenommene Datenaufbereitung sowie alle Konfigurationen für den Gradient Boosting Machine (GBM)-Algorithmus gut nachvollziehbar, Bild 13 gibt mit den ersten Programmzeilen einen ersten Eindruck dazu und erinnert gleichzeitig an den ähnlichen Ansatz der oben mit dem Snowflake Cloud Data Warehouse und dem Tool Xpanse AI bereits beschrieben wurde.

Abbildung 12: H2O Flow Benutzeroberfläche – Java-Code Generierung und Download eines trainierten Models

Abbildung 13: Generierter Java-Code eines Gradient Boosted Machine – Modells zur Vorhersage kaliforn. Hauspreise

Nach Abschluss der Machine Learning-Entwicklung kann der Java-Code des neuen ML-Modells, z.B. unter Verwendung der Apache Kafka Streams API, zu einer Streaming-Applikation hinzugefügt und publiziert werden [16]. Vorteil dabei: Die Kafka Streams-Applikation ist selbst eine Java-Applikation, in die der generierte Code des ML-Modells eingebettet werden kann (siehe Bild 14). Alle zukünftigen Events, die neue Immobilien-Datensätze zu Häusern aus Kalifornien mit (denselben) Features wie Geoposition, Alter des Gebäudes, Anzahl Zimmer etc. enthalten und als ML-Modell-Input über Kafka Streams hereinkommen, werden mit einer Vorhersage des voraussichtlichen Gebäudepreises von dem auf historischen Daten trainierten ML-Algorithmus beantwortet. Ein Vorteil dabei: Weil die Kafka Streams-Applikation unter der Haube alle Funktionen von Apache Kafka nutzt, ist diese neue Anwendung bereits für den skalierbaren und geschäftskritischen Einsatz ausgelegt.

Abbildung 14: Deployment des generierten Java-Codes eines H2O ML-Models in einer Kafka Streams-Applikation

Machine Learning as a Service – “API-first” Ansatz

In den vorherigen Abschnitten kam bereits die Herausforderung zur Sprache, wenn es um die Überführung der Ergebnisse eines Datenexperiments in eine Produktivumgebung geht. Während die Mehrheit der Mitglieder eines Data Science Teams bevorzugt R, Python (und vermehrt Julia) als Programmiersprache einsetzen, gibt es auf der Abnehmerseite das Team der Softwareingenieure, die für technische Implementierungen in der Produktionsumgebung zuständig sind, womöglich einen völlig anderen Technologie-Stack verwenden (müssen). Im Extremfall droht das Neuimplementieren eines Machine Learning-Modells, im besseren Fall kann Code oder die ML-Modellspezifikation transferiert und mit wenig Aufwand eingebettet (vgl. das Beispiel H2O und Apache Kafka Streams Applikation) bzw. direkt in einer neuen Laufzeitumgebung ausführbar gemacht werden. Alternativ wählt man einen „API-first“-Ansatz und entkoppelt das Zusammenwirken von unterschiedlich implementierten Applikationen bzw. -Applikationsteilen via Web-API’s. Data Science-Teams machen hierzu z.B. die URL Endpunkte ihrer testbereiten Algorithmen bekannt, die von anderen Softwareentwicklern für eigene „smarte“ Applikationen konsumiert werden. Durch den Aufbau von REST-API‘s kann das Data Science-Team den Code ihrer ML-Modelle getrennt von den anderen Teams weiterentwickeln und damit eine Arbeitsteilung mit klaren Verantwortlichkeiten herbeiführen, ohne Teamkollegen, die nicht am Machine Learning-Aspekt des eines Projekts beteiligt sind, bei ihrer Arbeit zu blockieren.

Bild 15 zeigt ein einfaches Szenario, bei dem die Gegenstandserkennung von beliebigen Bildern mit einem Deep Learning-Verfahren umgesetzt ist. Einzelne Fotos können dabei via Kommandozeileneditor als Input für die Bildanalyse an ein vortrainiertes Machine Learning-Modell übermittelt werden. Die Information zu den erkannten Gegenständen inkl. Wahrscheinlichkeitswerten kommt dafür im Gegenzug als JSON-Ausgabe zurück. Für die Umsetzung dieses Beispiels wurde in Python auf Basis der Open Source Deep-Learning-Bibliothek Keras, ein vortrainiertes ML-Modell mit Hilfe des Micro Webframeworks Flask über eine REST-API aufrufbar gemacht. Die in [17] beschriebene Applikation kümmert sich außerdem darum, dass beliebige Bilder via cURL geladen, vorverarbeitet (ggf. Wandlung in RGB, Standardisierung der Bildgröße auf 224 x 224 Pixel) und dann zur Klassifizierung der darauf abgebildeten Gegenstände an das ML-Modell übergeben wird. Das ML-Modell selbst verwendet eine sog. ResNet50-Architektur (die Abkürzung steht für 50 Layer Residual Network) und wurde auf Grundlage der öffentlichen ImageNet Bilddatenbank [18] vortrainiert. Zu dem ML-Modell-Input (in Bild 15: Fußballspieler in Aktion) meldet das System für den Tester nachvollziehbare Gegenstände wie Fußball, Volleyball und Trikot zurück, fragliche Klassifikationen sind dagegen Taschenlampe (Torch) und Schubkarre (Barrow).

Abbildung 15: Gegenstandserkennung mit Machine Learning und vorgegebenen Bildern via REST-Service

Bei Aufbau und Bereitstellung von Machine Learning-Funktionen mittels REST-API’s bedenken IT-Architekten und beteiligte Teams, ob der Einsatzzweck eher Rapid Prototyping ist oder eine weitreichende Nutzung unterstützt werden muss. Während das oben beschriebene Szenario mit Python, Keras und Flask auf einem Laptop realisierbar ist, benötigen skalierbare Deep Learning Lösungen mehr Aufmerksamkeit hinsichtlich der Deployment-Architektur [19], in dem zusätzlich ein Message Broker mit In-Memory Datastore eingehende bzw. zu analysierende Bilder puffert und dann erst zur Batch-Verarbeitung weiterleitet usw. Der Einsatz eines vorgeschalteten Webservers, Load Balancers, Verwendung von Grafikprozessoren (GPUs) sind weitere denkbare Komponenten für eine produktive ML-Architektur.

Als abschließendes Beispiel für einen leistungsstarken (und kostenpflichtigen) Machine Learning Service soll die Bildanalyse von Google Cloud Vision [20] dienen. Stellt man dasselbe Bild mit der Fußballspielszene von Bild 15 und Bild 16 bereit, so erkennt der Google ML-Service neben den Gegenständen weit mehr Informationen: Kontext (Teamsport, Bundesliga), anhand der Gesichtserkennung den Spieler selbst  und aktuelle bzw. vorherige Mannschaftszugehörigkeiten usw. Damit zeigt sich am Beispiel des Tech-Giganten auch ganz klar: Es kommt vorallem auf die verfügbaren Trainingsdaten an, inwieweit dann mit Algorithmen und einer dazu passenden Automatisierung (neue) Erkenntnisse ohne langwierigen und teuren manuellen Aufwand gewinnen kann. Einige Unternehmen werden feststellen, dass ihr eigener – vielleicht einzigartige – Datenschatz einen echten monetären Wert hat?

Abbildung 16: Machine Learning Bezahlprodukt (Google Vision)

Fazit

Machine Learning ist eine interessante “Challenge” für Architekten. Folgende Punkte sollte man bei künftigen Initativen berücksichtigen:

  • Finden Sie das richtige Geschäftsproblem bzw geeignete Use Cases
  • Identifizieren und definieren Sie die Einschränkungen (Sind z.B. genug Daten vorhanden?) für die zu lösende Aufgabenstellung
  • Nehmen Sie sich Zeit für das Design von Komponenten und Schnittstellen
  • Berücksichtigen Sie frühzeitig mögliche organisatorische Gegebenheiten und Einschränkungen
  • Denken Sie nicht erst zum Schluss an die Produktivsetzung Ihrer analytischen Modelle oder Machine Learning-Produkte
  • Der Prozess ist insgesamt eine Menge Arbeit, aber es ist keine Raketenwissenschaft.

Quellenverzeichnis

[1] Bill Schmarzo: “What’s the Difference Between Data Integration and Data Engineering?”, LinkedIn Pulse -> Link, 2018
[2] William Vorhies: “CRISP-DM – a Standard Methodology to Ensure a Good Outcome”, Data Science Central -> Link, 2016
[3] Bill Schmarzo: “A Winning Game Plan For Building Your Data Science Team”, LinkedIn Pulse -> Link, 2018
[4] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, D. Dennison: “Hidden technical debt in Machine learning systems”. In NIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems – Volume 2, 2015
[5] K. Bollhöfer: „Data Science – the what, the why and the how!“, Präsentation von The unbelievable Machine Company, 2015
[6] Carlton E. Sapp: “Preparing and Architecting for Machine Learning”, Gartner, 2017
[7] A. Geron: “California Housing” Dataset, Jupyter Notebook. GitHub.com -> Link, 2018
[8] R. Fehrmann: “Connecting a Jupyter Notebook to Snowflake via Spark” -> Link, 2018
[9] E. Ma, T. Grabs: „Snowflake and Spark: Pushing Spark Query Processing to Snowflake“ -> Link, 2017
[10] Dr. D. James: „Entscheidungsmatrix „Machine Learning“, it-novum.com ->  Link, 2018
[11] Oracle Analytics@YouTube: “Oracle DV – ML Model Comparison Example”, Video -> Link
[12] J. Weakley: Machine Learning in Snowflake, Towards Data Science Blog -> Link, 2019
[13] Dr. S. Sayad: An Introduction to Data Science, Website -> Link, 2019
[14] U. Bethke: Build a Predictive Model on Snowflake in 1 day with Xpanse AI, Blog à Link, 2019
[15] Sergei Izrailev: Design Patterns for Machine Learning in Production, Präsentation H2O World, 2017
[16] K. Wähner: How to Build and Deploy Scalable Machine Learning in Production with Apache Kafka, Confluent Blog -> Link, 2017
[17] A. Rosebrock: “Building a simple Keras + deep learning REST API”, The Keras Blog -> Link, 2018
[18] Stanford Vision Lab, Stanford University, Princeton University: Image database, Website -> Link
[19] A. Rosebrock: “A scalable Keras + deep learning REST API”, Blog -> Link, 2018
[20] Google Cloud Vision API (Beta Version) -> Link, abgerufen 2018

 

 

 

 

Über die Integration symbolischer Inferenz in tiefe neuronale Netze

Tiefe neuronale Netze waren in den letzten Jahren eine enorme Erfolgsgeschichte. Viele Fortschritte im Bereich der KI, wie das Erkennen von Objekten, die fließende Übersetzung natürlicher Sprache oder das Spielen von GO auf Weltklasseniveau, basieren auf tiefen neuronalen Netzen. Über die Grenzen dieses Ansatzes gab es jedoch nur wenige Berichte. Eine dieser Einschränkungen ist die Unfähigkeit, aus einer kleinen Anzahl von Beispielen zu lernen. Tiefe neuronale Netze erfordern in der Regel eine Vielzahl von Trainingsbeispielen, während der Mensch aus nur einem einzigen Beispiel lernen kann. Wenn Sie eine Katze einem Kind zeigen, das noch nie zuvor eine gesehen hat, kann es eine weitere Katze anhand dieser einzigen Instanz erkennen. Tiefe neuronale Netze hingegen benötigen Hunderttausende von Bildern, um zu erlernen, wie eine Katze aussieht. Eine weitere Einschränkung ist die Unfähigkeit, Rückschlüsse aus bereits erlerntem Allgemeinwissen zu ziehen. Beim Lesen eines Textes neigen Menschen dazu, weitreichende Rückschlüsse auf mögliche Interpretationen des Textes zu ziehen. Der Mensch ist dazu in der Lage, weil er Wissen aus sehr unterschiedlichen Bereichen abrufen und auf den Text anwenden kann.

Diese Einschränkungen deuten darauf hin, dass in tiefen neuronalen Netzen noch etwas Grundsätzliches fehlt. Dieses Etwas ist die Fähigkeit, symbolische Bezüge zu Entitäten in der realen Welt herzustellen und sie in Beziehung zueinander zu setzen. Symbolische Inferenz in Form von formaler Logik ist seit Jahrzehnten der Kern der klassischen KI, hat sich jedoch als spröde und komplex in der Anwendung erwiesen. Gibt es dennoch keine Möglichkeit, tiefe neuronale Netze so zu verbessern, dass sie in der Lage sind, symbolische Informationen zu verarbeiten? Tiefe neuronale Netzwerke wurden von biologischen neuronalen Netzwerken wie dem menschlichen Gehirn inspiriert. Im Wesentlichen sind sie ein vereinfachtes Modell der Neuronen und Synapsen, die die Grundbausteine des Gehirns ausmachen. Eine solche Vereinfachung ist, dass statt mit zeitlich begrenzten Aktionspotenzialen nur mit einem Aktivierungswert gearbeitet wird. Aber was ist, wenn es nicht nur wichtig ist, ob ein Neuron aktiviert wird, sondern auch, wann genau. Was wäre, wenn der Zeitpunkt, zu dem ein Neuron feuert, einen relationalen Kontext herstellt, auf den sich diese Aktivierung bezieht? Nehmen wir zum Beispiel ein Neuron, das für ein bestimmtes Wort steht. Wäre es nicht sinnvoll, wenn dieses Neuron jedes Mal ausgelöst würde, wenn das Wort in einem Text erscheint? In diesem Fall würde das Timing der Aktionspotenziale eine wichtige Rolle spielen. Und nicht nur das Timing einer einzelnen Aktivierung, sondern auch das Timing aller eingehenden Aktionspotenziale eines Neurons relativ zueinander wäre wichtig. Dieses zeitliche Muster kann verwendet werden, um eine Beziehung zwischen diesen Eingangsaktivierungen herzustellen. Wenn beispielsweise ein Neuron, das ein bestimmtes Wort repräsentiert, eine Eingabesynapse für jeden Buchstaben in diesem Wort hat, ist es wichtig, dass das Wort Neuron nur dann ausgelöst wird, wenn die Buchstabenneuronen in der richtigen Reihenfolge zueinander abgefeuert wurden. Konzeptionell könnten diese zeitlichen Unterschiede als Relationen zwischen den Eingangssynapsen eines Neurons modelliert werden. Diese Relationen definieren auch den Zeitpunkt, zu dem das Neuron selbst im Verhältnis zu seinen Eingangsaktivierungen feuert. Aus praktischen Gründen kann es sinnvoll sein, der Aktivierung eines Neurons mehrere Slots zuzuordnen, wie z.B. den Anfang und das Ende eines Wortes. Andernfalls müssten Anfang und Ende eines Wortes als zwei getrennte Neuronen modelliert werden. Diese Relationen sind ein sehr mächtiges Konzept. Sie ermöglichen es, die hierarchische Struktur von Texten einfach zu erfassen oder verschiedene Bereiche innerhalb eines Textes miteinander in Beziehung zu setzen. In diesem Fall kann sich ein Neuron auf eine sehr lokale Information beziehen, wie z.B. einen Buchstaben, oder auf eine sehr weitreichende Information, wie z.B. das Thema eines Textes.

Eine weitere Vereinfachung im Hinblick auf biologische neuronale Netze besteht darin, dass mit Hilfe einer Aktivierungsfunktion die Feuerrate eines einzelnen Neurons angenähert wird. Zu diesem Zweck nutzen klassische neuronale Netze die Sigmoidfunktion. Die Sigmoidfunktion ist jedoch symmetrisch bezüglich großer positiver oder negativer Eingangswerte, was es sehr schwierig macht, ausssagenlogische Operationen mit Neuronen mit der Sigmoidfunktion zu modellieren. Spiking-Netzwerke hingegen haben einen klaren Schwellenwert und ignorieren alle Eingangssignale, die unterhalb dieses Schwellenwerts bleiben. Daher ist die ReLU-Funktion oder eine andere asymmetrische Funktion eine deutlich bessere Annäherung für die Feuerrate. Diese Asymmetrie ist auch für Neuronen unerlässlich, die relationale Informationen verarbeiten. Das Neuron, das ein bestimmtes Wort repräsentiert, muss nämlich für alle Zeitpunkte, an denen das Wort nicht vorkommt, völlig inaktiv bleiben.

Ebenfalls vernachlässigt wird in tiefen neuronalen Netzwerken die Tatsache, dass verschiedene Arten von Neuronen in der Großhirnrinde vorkommen. Zwei wichtige Typen sind die bedornte Pyramidenzelle, die in erster Linie eine exzitatorische Charakteristik aufweist, und die nicht bedornte Sternzelle, die eine hemmende aufweist. Die inhibitorischen Neuronen sind besonders, weil sie es ermöglichen, negative Rückkopplungsschleifen aufzubauen. Solche Rückkopplungsschleifen finden sich normalerweise nicht in einem tiefen neuronalen Netzwerk, da sie einen inneren Zustand in das Netzwerk einbringen. Betrachten wir das folgende Netzwerk mit einem hemmenden Neuron und zwei exzitatorischen Neuronen, die zwei verschiedene Bedeutungen des Wortes “August” darstellen.

Beide Bedeutungen schließen sich gegenseitig aus, so dass das Netzwerk nun zwei stabile Zustände aufweist. Diese Zustände können von weiteren Eingangssynapsen der beiden exzitatorischen Neuronen abhängen. Wenn beispielsweise das nächste Wort nach dem Wort ‘August’ ein potenzieller Nachname ist, könnte eine entsprechende Eingabesynapse für das Entitätsneuron August-(Vorname) das Gewicht dieses Zustands erhöhen. Es ist nun wahrscheinlicher, dass das Wort “August” als Vorname und nicht als Monat eingestuft wird. Aber bedenken Sie, dass beide Zustände evaluiert werden müssen. In größeren Netzwerken können viele Neuronen durch negative oder positive Rückkopplungsschleifen verbunden sein, was zu einer großen Anzahl von stabilen Zuständen im Netzwerk führen kann.

Aus diesem Grund ist ein effizienter Optimierungsprozess erforderlich, der den besten Zustand in Bezug auf eine Zielfunktion ermittelt. Diese Zielfunktion könnte darin bestehen, die Notwendigkeit der Unterdrückung stark aktivierter Neuronen zu minimieren. Diese Zustände haben jedoch den enormen Vorteil, dass sie es erlauben, unterschiedliche Interpretationen eines bestimmten Textes zu berücksichtigen. Es ist eine Art Denkprozess, in dem verschiedene Interpretationen bewertet werden und die jeweils stärkste als Ergebnis geliefert wird. Glücklicherweise lässt sich die Suche nach einem optimalen Lösungszustand recht gut optimieren.

Der Grund, warum wir in diesen Rückkopplungsschleifen hemmende Neuronen benötigen, ist, dass sonst alle gegenseitig unterdrückenden Neuronen vollständig miteinander verbunden sein müssten. Das würde zu einer quadratisch zunehmenden Anzahl von Synapsen führen.

Durch die negativen Rückkopplungsschleifen, d.h. durch einfaches Verbinden einer negativen Synapse mit einem ihrer Vorläuferneuronen, haben wir plötzlich den Bereich der nichtmonotonen Logik betreten. Die nichtmonotone Logik ist ein Teilgebiet der formalen Logik, in dem Implikationen nicht nur zu einem Modell hinzugefügt, sondern auch entfernt werden. Es wird davon ausgegangen, dass eine nichtmonotone Logik erforderlich ist, um Schlussfolgerungen für viele Common Sense Aufgaben ziehen zu können. Eines der Hauptprobleme der nichtmonotonen Logik ist, dass sie oft nicht entscheiden kann, welche Schlussfolgerungen sie ziehen soll und welche eben nicht. Einige skeptische oder leichtgläubige Schlussfolgerungen sollten nur gezogen werden, wenn keine anderen Schlussfolgerungen wahrscheinlicher sind. Hier kommt die gewichtete Natur neuronaler Netze zum Tragen. In neuronalen Netzen können nämlich eher wahrscheinliche Zustände weniger wahrscheinliche Zustände unterdrücken.

Beispielimplementierung innerhalb des Aika-Frameworks

An dieser Stelle möchte ich noch einmal das Beispielneuron für das Wort ‘der’ vom Anfang aufgreifen. Das Wort-Neuron besteht aus drei Eingabesynapsen, die sich jeweils auf die einzelnen Buchstaben des Wortes beziehen. Über die Relationen werden die Eingabesynapsen nun zueinander in eine bestimmte Beziehung gesetzt, so dass das Wort ‘der’ nur erkannt wird, wenn alle Buchstaben in der korrekten Reihenfolge auftreten.
Als Aktivierungsfunktion des Neurons wird hier der im negativen Bereich abgeschnittene (rectified) hyperbolische Tangens verwendet. Dieser hat gerade bei einem UND-verknüpfenden Neuron den Vorteil, dass er selbst bei sehr großen Werten der gewichteten Summe auf den Wert 1 begrenzt ist. Alternativ kann auch die ReLU-Funktion (Rectified Linear Unit) verwendet werden. Diese eignet sich insbesondere für ODER-verknüpfende Neuronen, da sie die Eingabewerte unverzerrt weiterleitet.
Im Gegensatz zu herkömmlichen neuronalen Netzen gibt es hier mehrere Bias Werte, einen für das gesamte Neuron (in diesem Fall auf 5.0 gesetzt) und einen für jede Synapse. Intern werden diese Werte zu einem gemeinsamen Bias aufsummiert. Es ist schon klar, dass dieses Aufteilen des Bias nicht wirklich gut zu Lernregeln wie der Delta-Rule und dem Backpropagation passt, allerdings eignen sich diese Lernverfahren eh nur sehr begrenzt für diese Art von neuronalem Netzwerk. Als Lernverfahren kommen eher von den natürlichen Mechanismen Langzeit-Potenzierung und Langzeit-Depression inspirierte Ansätze in Betracht.

Neuron buchstabeD = m.createNeuron("B-d");
	Neuron buchstabeE = m.createNeuron("B-e");
	Neuron buchstabeR = m.createNeuron("B-r");

	Neuron wortDer = Neuron.init(
                m.createNeuron("W-der"),
                5.0,
                RECTIFIED_HYPERBOLIC_TANGENT,
                EXCITATORY,
                new Synapse.Builder()
                        .setSynapseId(0)
                        .setNeuron(buchstabeD)
                        .setWeight(10.0)
                        .setBias(-10.0)
                        .setRecurrent(false),
                new Synapse.Builder()
                        .setSynapseId(1)
                        .setNeuron(buchstabeE)
                        .setWeight(10.0)
                        .setBias(-10.0)
                        .setRecurrent(false),
                new Synapse.Builder()
                        .setSynapseId(2)
                        .setNeuron(buchstabeR)
                        .setWeight(10.0)
                        .setBias(-10.0)
                        .setRecurrent(false),
                new Relation.Builder()
                        .setFrom(0)
                        .setTo(1)
                        .setRelation(new Equals(END, BEGIN)),
                new Relation.Builder()
                        .setFrom(1)
                        .setTo(2)
                        .setRelation(new Equals(END, BEGIN)),
                new Relation.Builder()
                        .setFrom(0)
                        .setTo(OUTPUT)
                        .setRelation(new Equals(BEGIN, BEGIN)),
                new Relation.Builder()
                        .setFrom(2)
                        .setTo(OUTPUT)
                        .setRelation(new Equals(END, END))
	);

Fazit

Obwohl tiefe neuronale Netze bereits einen langen Weg zurückgelegt haben und mittlerweile beeindruckende Ergebnisse liefern, kann es sich doch lohnen, einen weiteren Blick auf das Original, das menschliche Gehirn und seine Schaltkreise zu werfen. Wenn eine so inhärent komplexe Struktur wie das menschliche Gehirn als Blaupause für ein neuronales Modell verwendet werden soll, müssen vereinfachende Annahmen getroffen werden. Allerdings ist bei diesem Prozess Vorsicht geboten, da sonst wichtige Aspekte des Originals verloren gehen können.

Referenzen

  1. Der Aika-Algorithm
    Lukas Molzberger
  2. Neuroscience: Exploring the Brain
    Mark F. Bear, Barry W. Connors, Michael A. Paradiso
  3. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation
    Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader; Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, ; Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha
  4. Deep Learning: A Critical Appraisal
    Gary Marcus
  5. Nonmonotonic Reasoning
    Gerhard Brewka, Ilkka Niemela, Mirosław Truszczynski

Einstieg in Natural Language Processing – Teil 2: Preprocessing von Rohtext mit Python

Dies ist der zweite Artikel der Artikelserie Einstieg in Natural Language Processing.

In diesem Artikel wird das so genannte Preprocessing von Texten behandelt, also Schritte die im Bereich des NLP in der Regel vor eigentlichen Textanalyse durchgeführt werden.

Tokenizing

Um eingelesenen Rohtext in ein Format zu überführen, welches in der späteren Analyse einfacher ausgewertet werden kann, sind eine ganze Reihe von Schritten notwendig. Ganz allgemein besteht der erste Schritt darin, den auszuwertenden Text in einzelne kurze Abschnitte – so genannte Tokens – zu zerlegen (außer man bastelt sich völlig eigene Analyseansätze, wie zum Beispiel eine Spracherkennung anhand von Buchstabenhäufigkeiten ect.).

Was genau ein Token ist, hängt vom verwendeten Tokenizer ab. So bringt NLTK bereits standardmäßig unter anderem BlankLine-, Line-, Sentence-, Word-, Wordpunkt- und SpaceTokenizer mit, welche Text entsprechend in Paragraphen, Zeilen, Sätze, Worte usw. aufsplitten. Weiterhin ist mit dem RegexTokenizer ein Tool vorhanden, mit welchem durch Wahl eines entsprechenden Regulären Ausdrucks beliebig komplexe eigene Tokenizer erstellt werden können.

Üblicherweise wird ein Text (evtl. nach vorherigem Aufsplitten in Paragraphen oder Sätze) schließlich in einzelne Worte und Interpunktionen (Satzzeichen) aufgeteilt. Hierfür kann, wie im folgenden Beispiel z. B. der WordTokenizer oder die diesem entsprechende Funktion word_tokenize() verwendet werden.

rawtext = 'This is a short example text that needs to be cleaned.'

tokens = nltk.word_tokenize(rawtext)

tokens
['This', 'is', 'a', 'short', 'example', 'text', 'that', 'needs', 'to',  'be',  'cleaned',  '.']

Stemming & Lemmatizing

Andere häufig durchgeführte Schritte sind Stemming sowie Lemmatizing. Hierbei werden die Suffixe der einzelnen Tokens des Textes mit Hilfe eines Stemmers in eine Form überführt, welche nur den Wortstamm zurücklässt. Dies hat den Zweck verschiedene grammatikalische Formen des selben Wortes (welche sich oft in ihrer Endung unterscheiden (ich gehe, du gehst, er geht, wir gehen, …) ununterscheidbar zu machen. Diese würden sonst als mehrere unabhängige Worte in die darauf folgende Analyse eingehen.

Neben bereits fertigen Stemmern bietet NLTK auch für diesen Schritt die Möglichkeit sich eigene Stemmer zu programmieren. Da verschiedene Stemmer Suffixe nach unterschiedlichen Regeln entfernen, sind nur die Wortstämme miteinander vergleichbar, welche mit dem selben Stemmer generiert wurden!

Im forlgenden Beispiel werden verschiedene vordefinierte Stemmer aus dem Paket NLTK auf den bereits oben verwendeten Beispielsatz angewendet und die Ergebnisse der gestemmten Tokens in einer Art einfachen Tabelle ausgegeben:

# Ready-to-use stemmers in nltk
porter = nltk.PorterStemmer()
lancaster = nltk.LancasterStemmer()
snowball = nltk.SnowballStemmer(language='english')

# Printing a table to compare the different stemmers
header = 'Token\tPorter\tLancas.\tSnowball'
print(header + '\n' + len(header) * '-')
for token in tokens:
    print('\t'.join([token, porter.stem(token), lancaster.stem(token), snowball.stem(token)]))


Token	Porter	Lancas.	Snowball
-----------------------------
This	thi 	thi 	this
is  	is  	is  	is
a    	a    	a    	a
short	short	short	short
example	exampl	exampl	exampl
text	text	text	text
that	that	that	that
needs	need	nee	need
to  	to  	to  	to
be  	be  	be  	be
cleaned	clean	cle 	clean
.   	.   	.   	.

Sehr ähnlich den Stemmern arbeiten Lemmatizer: Auch ihre Aufgabe ist es aus verschiedenen Formen eines Wortes die jeweilige Grundform zu bilden. Im Unterschied zu den Stemmern ist das Lemma eines Wortes jedoch klar als dessen Grundform definiert.

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmas = [lemmatizer.lemmatize(t) for t in tokens()]

Vokabular

Auch das Vokabular, also die Menge aller verschiedenen Worte eines Textes, ist eine informative Kennzahl. Bezieht man die Größe des Vokabulars eines Textes auf seine gesamte Anzahl verwendeter Worte, so lassen sich hiermit Aussagen zu der Diversität des Textes machen.

Außerdem kann das auftreten bestimmter Worte später bei der automatischen Einordnung in Kategorien wichtig werden: Will man beispielsweise Nachrichtenmeldungen nach Themen kategorisieren und in einem Text tritt das Wort „DAX“ auf, so ist es deutlich wahrscheinlicher, dass es sich bei diesem Text um eine Meldung aus dem Finanzbereich handelt, als z. B. um das „Kochrezept des Tages“.

Dies mag auf den ersten Blick trivial erscheinen, allerdings können auch mit einfachen Modellen, wie dem so genannten „Bag-of-Words-Modell“, welches nur die Anzahl des Auftretens von Worten prüft, bereits eine Vielzahl von Informationen aus Texten gewonnen werden.

Das reine Vokabular eines Textes, welcher in der Variable “rawtext” gespeichert ist, kann wie folgt in der Variable “vocab” gespeichert werden. Auf die Ausgabe wurde in diesem Fall verzichtet, da diese im Falle des oben als Beispiel gewählten Satzes den einzelnen Tokens entspricht, da kein Wort öfter als ein Mal vorkommt.

from nltk import wordpunct_tokenizer
from nltk.stem import WordNetLemmatizer

lemma = WordNetLemmatizer()

vocab = set([WordNetLemmatizer().lemmatize(t) for t in wordpunct_tokenize(text.lower())])

Stopwords

Unter Stopwords werden Worte verstanden, welche zwar sehr häufig vorkommen, jedoch nur wenig Information zu einem Text beitragen. Beispiele in der beutschen Sprache sind: der, und, aber, mit, …

Sowohl NLTK als auch cpaCy bringen vorgefertigte Stopwordsets mit. 

from nltk.corpus import stopwords
stoplist = stopwords.words('english')
stopset = set(stopwords.words('english'))

[t for t in tokens if not t in stoplist]
['This', 'short', 'example', 'text', 'needs', 'cleaned', '.']

Vorsicht: NLTK besitzt eine Stopwordliste, welche erst in ein Set umgewandelt werden sollte um die lookup-Zeiten kurz zu halten – schließlich muss jedes einzelne Token des Textes auf das vorhanden sein in der Stopworditerable getestet werden!

%timeit [w for w in tokens if not w in stopset] # 1.11 ms
%timeit [w for w in tokens if not w in stoplist] # 26.6 ms

POS-Tagging

POS-Tagging steht für „Part of Speech Tagging“ und entspricht ungefähr den Aufgaben, die man noch aus dem Deutschunterricht kennt: „Unterstreiche alle Subjekte rot, alle Objekte blau…“. Wichtig ist diese Art von Tagging insbesondere, wenn man später tatsächlich strukturiert Informationen aus dem Text extrahieren möchte, da man hierfür wissen muss wer oder was als Subjekt mit wem oder was als Objekt interagiert.

Obwohl genau die selben Worte vorkommen, bedeutet der Satz „Die Katze frisst die Maus.“ etwas anderes als „Die Maus frisst die Katze.“, da hier Subjekt und Objekt aufgrund ihrer Reihenfolge vertauscht sind (Stichwort: Subjekt – Prädikat – Objekt ).

Weniger wichtig ist dieser Schritt bei der Kategorisierung von Dokumenten. Insbesondere bei dem bereits oben erwähnten Bag-of-Words-Modell, fließen POS-Tags überhaupt nicht mit ein.

Und weil es so schön einfach ist: Die obigen Schritte mit spaCy

Die obigen Methoden und Arbeitsschritte, welche Texte die in natürlicher Sprache geschrieben sind, allgemein computerzugänglicher und einfacher auswertbar machen, können beliebig genau den eigenen Wünschen angepasst, einzeln mit dem Paket NLTK durchgeführt werden. Dies zumindest einmal gemacht zu haben, erweitert das Verständnis für die funktionsweise einzelnen Schritte und insbesondere deren manchmal etwas versteckten Komplexität. (Wie muss beispielsweise ein Tokenizer funktionieren der den Satz “Schwierig ist z. B. dieser Satz.” korrekt in nur einen Satz aufspaltet, anstatt ihn an jedem Punkt welcher an einem Wortende auftritt in insgesamt vier Sätze aufzuspalten, von denen einer nur aus einem Leerzeichen besteht?) Hier soll nun aber, weil es so schön einfach ist, auch das analoge Vorgehen mit dem Paket spaCy beschrieben werden:

import spacy

nlp = spacy.load('en')
doc = nlp(rawtext)

Dieser kurze Codeabschnitt liest den an spaCy übergebenen Rohtext in ein spaCy Doc-Object ein und führt dabei automatisch bereits alle oben beschriebenen sowie noch eine Reihe weitere Operationen aus. So stehen neben dem immer noch vollständig gespeicherten Originaltext, die einzelnen Sätze, Worte, Lemmas, Noun-Chunks, Named Entities, Part-of-Speech-Tags, ect. direkt zur Verfügung und können.über die Methoden des Doc-Objektes erreicht werden. Des weiteren liegen auch verschiedene weitere Objekte wie beispielsweise Vektoren zur Bestimmung von Dokumentenähnlichkeiten bereits fertig vor.

Die Folgende Übersicht soll eine kurze (aber noch lange nicht vollständige) Übersicht über die automatisch von spaCy generierten Objekte und Methoden zur Textanalyse geben:

# Textabschnitte
doc.text                                 # Originaltext
sents = doc.sents                        # Sätze des Dokuments
tokens = [token for token in doc]        # Tokens/Worte des Dokuments
parags = doc.text_with_ws.split('\n\n')  # Absätze des Dokuments

# Eigenschaften einzelner Tokens
[t.lemma_ for t in doc]                  # Lemmata der einzelnen Tokens
[t.tag_ for t in doc]                    # POS-Tags der einzelnen Tokens

# Objekte zur Textanalyse
doc.vocab                                # Vokabular des Dokuments
doc.sentiment                            # Sentiment des Dokuments
doc.noun_chunks                          # NounChunks des Dokuments
entities = [ent for ent in doc.ents]     # Named Entities (Persons, Locations, Countrys)

# Objekte zur Dokumentenklassifikation
doc.vector                               # Vektor
doc.tensor                               # Tensor

Diese „Vollautomatisierung“ der Vorabschritte zur Textanalyse hat jedoch auch seinen Preis: spaCy geht nicht gerade sparsam mit Ressourcen wie Rechenleistung und Arbeitsspeicher um. Will man einen oder einige Texte untersuchen so ist spaCy oft die einfachste und schnellste Lösung für das Preprocessing. Anders sieht es aber beispielsweise aus, wenn eine bestimmte Analyse wie zum Beispiel die Einteilung in verschiedene Textkategorien auf eine sehr große Anzahl von Texten angewendet werden soll. In diesem Fall, sollte man in Erwägung ziehen auf ressourcenschonendere Alternativen wie zum Beispiel gensim auszuweichen.

Wer beim lesen genau aufgepasst hat, wird festgestellt haben, dass ich im Abschnitt POS-Tagging im Gegensatz zu den anderen Abschnitten auf ein kurzes Codebeispiel verzichtet habe. Dies möchte ich an dieser Stelle nachholen und dabei gleich eine Erweiterung des Pakets spaCy vorstellen: displaCy.

Displacy bietet die Möglichkeit, sich Zusammenhänge und Eigenschaften von Texten wie Named Entities oder eben POS-Tagging graphisch im Browser anzeigen zu lassen.

import spacy
from spacy import displacy

rawtext = 'This is a short example sentence that needs to be cleaned.'

nlp = spacy.load('en')
doc = nlp(rawtext)
displacy.serve(doc, style='dep')

Nach ausführen des obigen Codes erhält man eine Ausgabe die wie folgt aussieht:

Serving on port 5000...
Using the 'dep' visualizer

Nun öffnet man einen Browser und ruft die URL ‘http://127.0.0.1:5000’ auf (Achtung: localhost anstatt der IP funktioniert – warum auch immer – mit displacy nicht). Im Browser sollte nun eine Seite mit einem SVG-Bild geladen werden, welches wie folgt aussieht

Die Abbildung macht deutlich was POS-Tagging genau ist und warum es von Nutzen sein kann wenn man Informationen aus einem Text extrahieren will. Jedem Word (Token) ist eine Wortart zugeordnet und die Beziehung der einzelnen Worte durch Pfeile dargestellt. Dies ermöglicht es dem Computer zum Beispiel in dem Satzteil “der grüne Apfel”, das Adjektiv “grün” auf das Nomen “Apfel” zu beziehen und diesem somit als Eigenschaft zuzuordnen.

Nachdem dieser Artikel wichtige Schritte des Preprocessing von Texten beschrieben hat, geht es im nächsten Artikel darum was man an Texten eigentlich analysieren kann und welche Analysemöglichkeiten die verschiedenen für Python vorhandenen Module bieten.

Einstieg in Natural Language Processing – Teil 1: Natürliche vs. Formale Sprachen

Dies ist Artikel 1 von 4 der Artikelserie Einstieg in Natural Language Processing – Artikelserie.

Versuche und erste Ansätze, Maschinen beizubringen menschliche Sprache zu verstehen, gibt es bereits seit den 50er Jahren. Trotz der jahrzehntelangen Forschung und Entwicklung gelingt dies bis heute nicht umfassend. Woran liegt dies?

Um diese Frage zu beantworten, hilft es, sich die Unterschiede zwischen „natürlichen“, also sich selbstständig entwickelnden, typischerweise von Menschen gesprochenen Sprachen und den von Computern interpretieren formalen Sprachen klar zu machen. Formale Sprachen, wie zum Beispiel Python zum Ausführen der Codebeispiele in dieser Artikelserie, HTML (Hyper Text Markup Language) zur Darstellung von Webseiten und andere typische Programmier- und Skriptsprachen, sind üblicherweise sehr streng strukturiert.

Alle diese Sprachen weisen eine Reihe von Gemeinsamkeiten auf, welche es Computern einfach machen, sie korrekt zu interpretieren (also den Informationsinhalt zu “verstehen”). Das vermutlich auffälligste Merkmal formaler Sprachen ist eine relativ strikte Syntax, welche (wenn überhaupt) nur geringe Abweichungen von einem Standard erlaubt. Wie penibel die jeweilige Syntax oft einzuhalten ist, wird am ehesten deutlich, wenn diese verletzt wird:

>>> print('Correct Syntax')
Correct Syntax

>>> print{'Wrong Syntax'}
    print{'Wrong Syntax'}
         ^
SyntaxError: invalid syntax

Solche so genannten “Syntax Error”  gehören daher zu den häufigsten Fehlern beim Schreiben von Quellcode.

Ganz anders dagegen sieht es in der Kommunikation mit natürlichen Sprachen aus. Zwar fördert falsche Komma-Setzung in der Regel nicht die Leserlichkeit eines Textes, jedoch bleibt dieser in der Regel trotzdem verständlich. Auch macht es keinen Unterschied ob ich sage „Es ist heiß heute.“ oder „Heute ist es heiß.“. Genau wie in der deutschen Sprache funktioniert dieses Beispiel auch im Englischen sowie in anderen natürlichen Sprachen. Insbesondere Spanisch ist ein Beispiel für eine Sprache mit extrem variabler Satzstellung. Jedoch kann in anderen Fällen eine andere Reihenfolge der selben Worte deren Bedeutung auch verändern. So ist „Ist es heute heiß?“ ganz klar eine Frage, obwohl exakt die selben Worte wie in den Beispielsätzen oben vorkommen.

Ein weiterer wichtiger, hiermit verwandter Unterschied ist, dass es bei formalen Sprachen in der Regel einen Ausdruck gibt, welcher eine spezifische Bedeutung besitzt, während es in natürlichen Sprachen oft viele Synonyme gibt, die ein und dieselbe Sache (oder zumindest etwas sehr ähnliches) ausdrücken. Ein wahrer boolscher Wert wird in Python als

True

geschrieben. Es gibt keine andere Möglichkeit, diesen Wert auszudrücken (zumindest nicht ohne irgend eine Art von Operatoren wie das Doppelgleichheitszeichen zu benutzen und damit z. B. “0 == 0” zu schreiben).  Anders hingegen zum Beispiel in der Deutschen Sprache: Wahr, richtig, korrekt, stimmt, ja,

Um einen Vorstellung davon zu bekommen, wie verbreitet Synonyme in natürlichen Sprachen sind, lässt sich die Internetseite https://www.openthesaurus.de verwenden. Beispielshalber findet man dutzende Synonyme für das Wort „schnell“ hier: https://www.openthesaurus.de/synonyme/schnell

Eine weitere große Schwierigkeit, welche in den meisten natürlichen Sprachen und nahezu allen Arten von Texten zu finden ist, stellen verschiedene grammatikalische Formen eines Wortes dar. So sind die Worte bin, wäre, sind, waren, wirst, werden… alles Konjugationen desselben Verbs, nämlich sein. Eine durchaus beeindruckende Übersicht über die verwirrende Vielfalt von Konjugationen dieses kleinen Wörtchens, findet sich unter: https://www.verbformen.de/konjugation/sein.htm.

Dieses Problem wird um so schwerwiegender, da viele Verben, insbesondere die am häufigsten genutzten, sehr unregelmäßige Konjugationsformen besitzen und damit keiner generellen Regel folgen. Daher ist computerintern oft ein Mapping für jede mögliche Konjugationsform bei vielen Verben die einzige Möglichkeit, an die Grundform zu kommen (mehr dazu in Teil 3 dieser Artikelserie).

Die Liste der sprachlichen Schwierigkeiten beim computergestützten Auswerten natürlicher Sprache ließe sich an diesem Punkt noch beliebig weiter fortsetzen:

  • Rechtschreibfehler
  • falsche Grammatik
  • Smileys
  • der „Substantivverkettungswahn“ im Deutschen
  • mehrdeutige Worte und Abkürzungen
  • abwegige Redewendungen (z. B. “ins Gras beißen”)
  • Ironie
  • und, und, und …

Ob und welche Rolle jede dieser Schwierigkeiten im einzelnen spielt, hängt natürlich sehr stark von den jeweiligen Texten ab und kann nicht pauschalisiert werden – ein typischer Chatverlauf wird ganz andere Probleme bereithalten als ein Wikipedia-Artikel. Wie man einige dieser Probleme in der Praxis vereinfachen oder sogar lösen kann und welche Ansätze und Methoden zur Verfügung stehen und regelmäßig zur Anwendung kommen wird im nächsten Teil dieser Artikelserie an praktischen Codebeispielen genauer unter die Lupe genommen.

NLTK vs. Spacy – Eine kurze Übersicht

Möchte man einen (oder auch einige) Text(e) mit den Methoden des natural language processings untersuchen um die darin verwendete Sprache auswerten oder nach bestimmten Informationen suchen, so sind insbesondere die Pakete NLTK und spaCy zu empfehlen (bei sehr vielen Texten sieht das schon wieder anders aus und wird am Ende der Artikelserie mit dem Paket gensim vorgestellt); beide bieten eine unglaubliche Vielzahl von Analysemöglichkeiten, vorgefertigten Wortsets, vortrainierte Stemmer und Lemmatiser, POS Tagger und, und, und…

Ist man vor allem an den Ergebnissen der Analyse selbst interessiert, so bietet sich spaCy an, da hier bereits mit wenigen Zeilen Code viele interessante Informationen generiert werden können.

Wer dagegen gerne selber bastelt oder wissen möchte wie die einzelnen Tools und Teilschritte genau funktionieren oder sich seine eigenen Stemmer, Tagger ect. trainieren will, ist vermutlich mit NLTK besser beraten. Zwar ist hier oft mehr Quellcode für das gleiche Ergebnis notwendig, allerdings kann das Preprocessing der Texte hierbei relativ einfach exakt den eigenen Vorstellungen angepasst werden. Zudem bietet NLTK eine Vielzahl von Beispieltexten und bereits fertig getagte Daten, mit welchen eigene Tagger trainiert und getestet werden können.

Einstieg in Natural Language Processing – Artikelserie

Unter Natural Language Processing (NLP) versteht man ein Teilgebiet der Informatik bzw. der Datenwissenschaft, welches sich mit der Analyse und Auswertung , aber auch der Synthese natürlicher Sprache befasst. Mit natürlichen Sprachen werden Sprachen wie zum Beispiel Deutsch, Englisch oder Spanisch bezeichnet, welche nicht geplant entworfen wurden, sondern sich über lange Zeit allein durch ihre Benutzung entwickelt haben. Anders ausgedrückt geht es um die Schnittstelle zwischen unserer im Alltag verwendeten und für uns Menschen verständlichen Sprache auf der einen, und um deren computergestützte Auswertung auf der anderen Seite.

Diese Artikelserie soll eine Einführung in die Thematik des Natural Language Processing sein, dessen Methoden, Möglichkeiten, aber auch der Grenzen . Im einzelnen werden folgende Themen näher behandelt:

1. Artikel – Natürliche vs. Formale Sprachen
2. Artikel – Preprocessing von Rohtext mit Python (erscheint demnächst…)
3. Artikel – Möglichkeiten/Methoden der Textanalyse an Beispielen (erscheint demnächst…)
4. Artikel – NLP, was kann es? Und was nicht? (erscheint demnächst…)

Zur Verdeutlichung der beschriebenen Zusammenhänge und Methoden und um Interessierten einige Ideen für mögliche Startpunkte aufzuzeigen, werden im Verlauf der Artikelserie an verschiedenen Stellen Codebeispiele in der Programmiersprache Python vorgestellt.
Von den vielen im Internet zur Verfügung stehenden Python-Paketen zum Thema NLP, werden in diesem Artikel insbesondere die drei Pakete NLTK, Gensim und Spacy verwendet.

I. Einführung in TensorFlow: Einleitung und Inhalt

 

 

 

1. Einleitung und Inhalt

Früher oder später wird jede Person, welche sich mit den Themen Daten, KI, Machine Learning und Deep Learning auseinander setzt, mit TensorFlow in Kontakt geraten. Für diejenigen wird der Zeitpunkt kommen, an dem sie sich damit befassen möchten/müssen/wollen.

Und genau für euch ist diese Artikelserie ausgelegt. Gemeinsam wollen wir die ersten Schritte in die Welt von Deep Learning und neuronalen Netzen mit TensorFlow wagen und unsere eigenen Beispiele realisieren. Dabei möchten wir uns auf das Wesentlichste konzentrieren und die Thematik Schritt für Schritt in 4 Artikeln angehen, welche wie folgt aufgebaut sind:

  1. In diesem und damit ersten Artikel wollen wir uns erst einmal darauf konzentrieren, was TensorFlow ist und wofür es genutzt wird.
  2. Im zweiten Artikel befassen wir uns mit der grundlegenden Handhabung von TensorFlow und gehen den theoretischen Ablauf durch.
  3. Im dritten Artikel wollen wir dann näher auf die Praxis eingehen und ein Perzeptron – ein einfaches künstliches Neuron – entwickeln. Dabei werden wir die Grundlagen anwenden, die wir im zweiten Artikel erschlossen haben.

Wenn ihr die Praxisbeispiele in den Artikeln 3 & 4 aktiv mit bestreiten wollt, dann ist es vorteilhaft, wenn ihr bereits mit Python gearbeitet habt und die Grundlagen dieser Programmiersprache beherrscht. Jedoch werden alle Handlungen und alle Zeilen sehr genau kommentiert, so dass es leicht verständlich bleibt.

Neben den Programmierfähigkeiten ist es hilfreich, wenn ihr euch mit der Funktionsweise von neuronalen Netzen auskennt, da wir im späteren Verlauf diese modellieren wollen. Jedoch gehen wir vor der Programmierung  kurz auf die Theorie ein und werden das Wichtigste nochmal erwähnen.

Zu guter Letzt benötigen wir für unseren Theorie-Teil ein Mindestmaß an Mathematik um die Grundlagen der neuronalen Netze zu verstehen. Aber auch hier sind die Anforderungen nicht hoch und wir sind vollkommen gut  damit bedient, wenn wir unser Wissen aus dem Abitur noch nicht ganz vergessen haben.

2. Ziele dieser Artikelserie

Diese Artikelserie ist speziell an Personen gerichtet, welche einen ersten Schritt in die große und interessante Welt von Deep Learning wagen möchten, die am Anfang nicht mit zu vielen Details überschüttet werden wollen und lieber an kleine und verdaulichen Häppchen testen wollen, ob dies das Richtige für sie ist. Unser Ziel wird sein, dass wir ein Grundverständnis für TensorFlow entwickeln und die Grundlagen zur Nutzung beherrschen, um mit diesen erste Modelle zu erstellen.

3. Was ist TensorFlow?

Viele von euch haben bestimmt von TensorFlow in Verbindung mit Deep Learning bzw. neuronalen Netzen gehört. Allgemein betrachtet ist TensorFlow ein Software-Framework zur numerischen Berechnung von Datenflussgraphen mit dem Fokus maschinelle Lernalgorithmen zu beschreiben. Kurz gesagt: Es ist ein Tool um Deep Learning Modelle zu realisieren.

Zusatz: Python ist eine Programmiersprache in der wir viele Paradigmen (objektorientiert, funktional, etc.) verwenden können. Viele Tutorials im Bereich Data Science nutzen das imperative Paradigma; wir befehlen Python also Was gemacht und Wie es ausgeführt werden soll. TensorFlow ist dahingehend anders, da es eine datenstrom-orientierte Programmierung nutzt. In dieser Form der Programmierung wird ein Datenfluss-Berechnungsgraph (kurz: Datenflussgraph) erzeugt, welcher durch die Zusammensetzung von Kanten und Knoten charakterisiert wird. Die Kanten enthalten Daten und können diese an Knoten weiterleiten. In den Knoten werden Operationen wie z. B. Addition, Multiplikation oder auch verschiedenste Variationen von Funktionen ausgeführt. Bekannte Programme mit datenstrom-orientierten Paradigmen sind Simulink, LabView oder Knime.

Für das Verständnis von TensorFlow verrät uns der Name bereits erste Informationen über die Funktionsweise. In neuronalen Netzen bzw. in Deep-Learning-Netzen können Eingangssignale, Gewichte oder Bias verschiedene Erscheinungsformen haben; von Skalaren, zweidimensionalen Tabellen bis hin zu mehrdimensionalen Matrizen kann alles dabei sein. Diese Erscheinungsformen werden in Deep-Learning-Anwendungen allgemein als Tensoren bezeichnet, welche durch ein Datenflussgraph ‘fließen’. [1]

Abb.1 Namensbedeutung von TensorFlow: Links ein Tensor in Form einer zweidimensionalen Matrix; Rechts ein Beispiel für einen Datenflussgraph

 

4. Warum TensorFlow?

Wer in die Welt der KI einsteigen und Deep Learning lernen will, hat heutzutage die Qual der Wahl. Neben TensorFlow gibt es eine Vielzahl von Alternativen wie Keras, Theano, Pytorch, Torch, Caffe, Caffe2, Mxnet und vielen anderen. Warum also TensorFlow?

Das wohl wichtigste Argument besteht darin, dass TensorFlow eine der besten Dokumentationen hat. Google – Herausgeber von TensorFlow – hat TensorFlow stets mit neuen Updates beliefert. Sicherlich aus genau diesen Gründen ist es das meistgenutzte Framework. Zumindest erscheint es so, wenn wir die Stars&Forks auf Github betrachten. [3] Das hat zur Folge, dass neben der offiziellen Dokumentation auch viele Tutorials und Bücher existieren, was die Doku nur noch besser macht.

Natürlich haben alle Frameworks ihre Vor- und Nachteile. Gerade Pytorch von Facebook erfreut sich derzeit großer Beliebtheit, da die Berechnungsgraphen dynamischer Natur sind und damit einige Vorteile gegenüber TensorFlow aufweisen.[2] Auch Keras wäre für den Einstieg eine gute Alternative, da diese Bibliothek großen Wert auf eine einsteiger- und nutzerfreundliche Handhabung legt. Keras kann man sich als eine Art Bedienoberfläche über unsere Frameworks vorstellen, welche vorgefertigte neuronale Netze bereitstellt und uns einen Großteil der Arbeit abnimmt.

Möchte man jedoch ein detailreiches und individuelles Modell bauen und die Theorie dahinter nachvollziehen können, dann ist TensorFlow der beste Einstieg in Deep Learning! Es wird einige Schwierigkeiten bei der Gestaltung unserer Modelle geben, aber durch die gute Dokumentation, der großen Community und der Vielzahl an Beispielen, werden wir gewiss eine Lösung für aufkommende Problemstellungen finden.

 

Abb.2 Beliebtheit von DL-Frameworks basierend auf Github Stars & Forks (10.06.2018)

 

5. Zusammenfassung und Ausblick

Fassen wir das Ganze nochmal zusammen: TensorFlow ist ein Framework, welches auf der datenstrom-orientierten Programmierung basiert und speziell für die Implementierung von Machine/Deep Learning-Anwendungen ausgelegt ist. Dabei fließen unsere Daten durch eine mehr oder weniger komplexe Anordnung von Berechnungen, welche uns am Ende ein Ergebnis liefert.

Die wichtigsten Argumente zur Wahl von TensorFlow als Einstieg in die Welt des Deep Learnings bestehen darin, dass TensorFlow ausgezeichnet dokumentiert ist, eine große Community besitzt und relativ einfach zu lesen ist. Außerdem hat es eine Schnittstelle zu Python, welches durch die meisten Anwender im Bereich der Datenanalyse bereits genutzt wird.

Wenn ihr es bis hier hin geschafft habt und immer noch motiviert seid den Einstieg mit TensorFlow zu wagen, dann seid gespannt auf den nächsten Artikel. In diesem werden wir dann auf die Funktionsweise von TensorFlow eingehen und einfache Berechnungsgraphen aufbauen, um ein Grundverständnis von TensorFlow zu bekommen. Bleibt also gespannt!

Quellen

[1] Hope, Tom (2018): Einführung in TensorFlow: DEEP-LEARNING-SYSTEME PROGRAMMIEREN, TRAINIEREN, SKALIEREN UND DEPLOYEN, 1. Auflage

[2] https://www.marutitech.com/top-8-deep-learning-frameworks/

[3] https://github.com/mbadry1/Top-Deep-Learning

[4] https://www.bigdata-insider.de/was-ist-keras-a-726546/

Analyse der Netzwerktopologie des Internets auf Basis des IPv4-Protokolls

Wie kommen Daten die man via Internet quer durch die Welt sendet eigentlich an ihr Ziel? Welchen Weg nehmen beispielsweise die Datenpakete, wenn ich von mir zu Hause eine Datei an meinen Nachbarn ein Haus weiter sende? Wie groß ist der “Umweg”, den die Daten nehmen? Und macht es eigentlich einen Unterschied, ob ich www.google.de, www.google.com oder www.google.nl aufrufe, oder gehen alle Suchanfragen sowieso an dasselbe Ziel?

Fragen wie diese lassen sich durch eine Kombination von Tools wie traceroute oder tracepath und geoiplookup beantworten und unter Verwendung des Python-Paketes geoplotlib sogar graphisch auf einer Weltkarte darstellen. Die so gewonnenen Ergebnisse zeigen Teile der Netzwerktopologie des Internets auf und führen zu interessanten, teils unerwarteten Erkenntnissen.

Ziel dieses Artikels soll sein, ein möglichst einfaches Tutorial zum selber mitbasteln bereit zu stellen. Die einzelnen Schritte die hierfür notwendig sind, werden möglichst einfach verständlich dargestellt und erklärt, trotzdem sind zum vollständigen Verständnis grundlegende Kenntnisse in Python sowie der Kommandozeile hilfreich. Er richtet sich aber auch an alle, die sich einfach einmal etwas in ihrer virtuellen Umgebung „umschauen“ möchten oder einfach nur an den Ergebnissen interessiert sind, ohne sich mit den Details und wie diese umgesetzt werden, auseinander setzen zu wollen.  Am Ende des Artikels werden die einzelnen Skripte des Projekts als zip-Datei bereitgestellt.

Hinweis: Diese Anleitung bezieht sich auf ein Linux-System und wurde unter Ubuntu getestet. Windows-User können beispielsweise mit dem Befehl tracert (als Ersatz für traceroute) ähnliche Ergebnisse erziehlen, jedoch muss dann das Parsing der IP-Adressen abgeändert werden.

1. Grundsätzliches Erkunden der Route, die ein Datenpaket nimmt

Hierfür wird ein Programm wie traceroute, tracepath oder nmap benötigt, welches durch Versenden von „abgelaufenen Datenpaketen“ die Hosts „auf dem Weg“ zum Ziel dazu bringt, ihre IPv4-Adresse zurück zu geben. In diesem Artikel wird beispielhaft traceroute verwendet, da dieses unter den meisten Linux-Versionen bereits zur „Grundausstattung“ gehört und somit für diesen Schritt keine weitere Software installiert werden muss. Die Verwendung von traceroute folgt der Syntax:

sudo traceroute ${ZIEL}

Als Ziel muss hier die IP-Adresse bzw. der Domainname des Zielrechners angegeben werden. Ein Beispiel soll dies vereinfachen:

$ sudo traceroute www.google.de
traceroute to www.google.de (172.217.22.99), 64 hops max
  1   192.168.0.1  167,148ms  3,200ms  11,636ms 
  2   83.169.183.11  21,389ms  19,380ms  88.134.203.107  16,746ms 
  3   88.134.203.107  27,431ms  24,063ms  * 
  4   88.134.237.6  1679,865ms  *  130,818ms 
  5   88.134.235.207  58,815ms  84,150ms  * 
  6   72.14.198.218 144,998ms  107,364ms  108.170.253.68  121,851ms 
  7   108.170.253.84  58,323ms  101,127ms  216.239.57.218  44,461ms 
  8   216.239.57.218  43,722ms  91,544ms  172.253.50.100  67,971ms 
  9   172.253.50.214  106,689ms  96,100ms  216.239.56.130  110,334ms 
 10   209.85.241.145  63,720ms  61,387ms  209.85.252.76  73,724ms 
 11   209.85.252.28  71,214ms  61,828ms  108.170.251.129  81,470ms 
 12   108.170.251.129  64,262ms  52,056ms  72.14.234.115  71,661ms 
 13   72.14.234.113  262,988ms  55,005ms  172.217.22.99  66,043ms 

Im Beispiel wird die Route zum Hostrechner mit der Domain www.google.de ermittelt. In der ersten Spalte der Ausgabe ist die Nummer des jeweiligen „Hops“ zu sehen. Wichtig ist insbesondere die zweite Spalte, welche die IPv4-Adresse des jeweiligen Rechners auf dem Weg zum Ziel darstellt. Die folgenden Spalten enthalten weitere Informationen wie Antwortzeiten der jeweiligen Server und die IP-Adressen der Folge-Server.

Um die Ausgabe in eine Form umzuwandeln, welche später einfacher von Python gelesen werden kann, muss diese noch ausgelesen werden (Parsing). zuerst soll die erste Zeile der Ausgabe herausgeschnitten werden, da diese zwar informativ, jedoch kein Teil der eigentlichen Route ist. Dies kann sehr einfach durchgeführt werden, indem die Ausgabe des traceroute-Befehls an einen Befehl wie beispielsweise sed „gepiped“ (also weitergeleitet) wird. Die dabei entstehende Pipe sieht dann wie folgt aus:

sudo traceroute ${ZIEL} | sed '1d'

Um bei unserem Beispiel mit der Route zu www.google.de zu bleiben, sieht der Befehl und die Entsprechende Ausgabe wie folgt aus:

$ sudo traceroute   | sed '1d'
  1   192.168.0.1  167,148ms  3,200ms  11,636ms 
  2   83.169.183.11  21,389ms  19,380ms  88.134.203.107  16,746ms 
  3   88.134.203.107  27,431ms  24,063ms  * 
  4   88.134.237.6  1679,865ms  *  130,818ms 
  5   88.134.235.207  58,815ms  84,150ms  * 
  6   72.14.198.218 144,998ms  107,364ms  108.170.253.68  121,851ms 
  7   108.170.253.84  58,323ms  101,127ms  216.239.57.218  44,461ms 
  8   216.239.57.218  43,722ms  91,544ms  172.253.50.100  67,971ms 
  9   172.253.50.214  106,689ms  96,100ms  216.239.56.130  110,334ms 
 10   209.85.241.145  63,720ms  61,387ms  209.85.252.76  73,724ms 
 11   209.85.252.28  71,214ms  61,828ms  108.170.251.129  81,470ms 
 12   108.170.251.129  64,262ms  52,056ms  72.14.234.115  71,661ms 
 13   72.14.234.113  262,988ms  55,005ms  172.217.22.99  66,043ms 

Anschließend soll die zweite Spalte der Ausgabe herausgeschnitten werden. Dies ist am einfachsten mit dem Befehl awk zu bewerkstelligen. Das Prinzip dahinter ist das gleiche wie im obigen Schritt: die Ausgabe des vorherigen Befehls wird dem Befehl awk als Eingabe weitergeleitet, womit der gesamte Befehl nun wie folgt aussieht:

sudo traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }'

Bezogen auf das google-Beispiel sehen Ein- und Ausgabe nun so aus:

$ sudo traceroute | sed '1d' | awk '{ print $2 }'
192.168.0.1
83.169.183.11
88.134.203.107
88.134.237.6
88.134.235.207
72.14.198.218
108.170.253.84
216.239.57.218
172.253.50.214
209.85.241.145
209.85.252.28
108.170.251.129
72.14.234.113

Im letzten Schritt sollen die einzelnen IP-Adressen durch Leerzeichen getrennt in eine einzelne Zeile geschrieben werden. Sinn dieses Schrittes ist, dass später viele Zielrechner nacheinander aus einer Datei eingelesen werden können und jede Route zu einem Zielrechner als eine einzelne Zeile in eine Zieldatei geschrieben wird.
Auch dieser Schritt funktioniert ähnlich wie die obigen Schritte, indem die Ausgabe des letzten Schrittes an einen weiteren Befehl weitergeleitet wird, der diese Funktion erfüllt. Dieser Schritt könnte wieder mit dem Befehl sed durchgeführt werden, da aber nur ein einzelnes Zeichen (nämlich das Zeilenumbruch-Zeichen bzw. Newline) durch ein Leerzeichen ersetzt werden soll, wird hier aufgrund der einfacheren Syntax der Befehl tr verwendet.
Der fertige Befehl sieht nun wie folgt aus:

sudo traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }' | tr '\n' ' '

Oder im fertigen Beispiel mit www.google.de:

$ sudo traceroute   | sed '1d' | awk '{ print $2 }' | tr '\n' ' '
192.168.0.1 83.169.183.11 88.134.203.107 88.134.237.6 88.134.235.207 72.14.198.218 108.170.253.84 216.239.57.218 172.253.50.214 209.85.241.145 209.85.252.28 108.170.251.129 72.14.234.113

Hiermit ist das Parsen abgeschlossen und die fertige Ausgabe kann nun in eine Ergebnisdatei geschrieben werden. Um automatisch viele Zielrechner aus einer Datei einzulesen und alle gefundenen Routen in eine Zieldatei zu schreiben, wird der obige Befehl in eine Schleife „verpackt“ welche die Zielrechner Zeile für Zeile aus der Datei zieladressen.txt ausliest und die gefundenen Routen ebenso Zeile für Zeile in die Datei routen.csv schreibt. Die Datei routen.csv kann später zur Ermittlung verschiedener Informationen zu den gefunden IP-Adressen einfach mit einem Python-Skript eingelesen und geparst werden.

In diesem Artikel wird das fertige Skript ohne weitere Erklärung in der beiliegenden zip-Datei bereitgestellt. Wen die genaue Funktionsweise der Schleife interessiert, sei angehalten sich generell über die Funktionsweise von Shellskripten einzulesen, da dies den Rahmen des Artikels sprengen würde.

#/bin/sh

cat zieladressen.txt | while read ZIEL; do
    printf 'Ermittle Route nach: %s\n' "${ZIEL}"
    traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }' | tr '\n' ' ' >> routes.csv
    printf '\n' >> routes.csv
done

cat routes.csv | tr -d \* | tr -s ' ' > routes_corrected.csv
mv routes_corrected.csv routes.csv

Dieses Skript benötigt die Datei zieladressen.txt welche wie folgt aussehen muss (anstatt Domainnamen können auch direkt IPv4-Adressen verwendet werden):

www.google.de
www.github.com
www.google.nl
...

2. Sammeln von (Geo-)Informationen zu bestimmten IPv4-Adressen

Die gefundenen IPv4-Adressen können anschließend mit dem Befehl geoiplookup oder über die Internetseite http://geoiplookup.net/ relativ genau (meißtens auf Städteniveau) lokalisiert werden. Dies funktioniert, da einzelne Subnets in der Regel bestimmten Regionen und Internetprovidern zugeordnet sind.

Der Befehl geoiplookup greift hierbei auf eine vorher installierte und lokal gespeicherte Datenbank zu, welche je nach installierter Version als Country- oder City-Edition vorliegt. Da geoiplookup nicht zu den Standartbordmitteln unter Linux gehört und um die weiteren Schritte auch Benutzern anderer Betriebssysteme zu ermöglichen, wird hier nur ein kurzes Beispiel der Benutzung dieses Befehls und dessen Ausgabe gegeben und im weiteren die Online-Abfrage mittels eines Python-Skriptes beschrieben.

$ geoiplookup 172.217.22.99
GeoIP Country Edition: US, United States
GeoIP City Edition, Rev 1: US, CA, California, Mountain View, 94043, 37.419201, -122.057404, 807, 650
GeoIP ASNum Edition: AS15169 Google Inc.

Die Internetseite http://geoiplookup.net bietet einen Onlineservice welcher Geo- und weitere Informationen zu gegebenen IPv4-Adressen bereitstellt. Öffnet man die Seite ohne Angabe einer IP-Adresse in einem Browser, so erhält man die entsprechenden Informationen über die eigene IP-Adresse. (Achtung: die Verwendung eines Proxies oder gar Tor führt zwangsläufig zu falschen Ergebnissen.)

Da die Seite auch über eine API (also eine automatisierte Abfrageschnittstelle) unter der Adresse “http://api.geoiplookup.net/?query=${IPADRESSE}” verfügt, kann man die entsprechenden Informationen zu den IP-Adressen mittels eines Pythonskriptes abfragen und auswerten. Als Antwort erhält man eine XML‑Datei welche beispielsweise folgendermaßen aussieht:

<ip>
  <results>
    <result>
      <ip>77.20.253.87</ip>
      <host>77.20.253.87</host>
      <isp>Vodafone Kabel Deutschland</isp>
      <city>Hamburg</city>
      <countrycode>DE</countrycode>
      <countryname>Germany</countryname>
      <latitude>53.61530</latitude>
      <longitude>10.1162</longitude>
    </result>
  </results>
</ip>

Diese kann im Browser z. B. unter der Adresse http://api.geoiplookup.net/?query=77.20.253.87 aufgerufen werden (oder unter: http://api.geoiplookup.net/ für die eigene Adresse).

Um die hierin enthaltenen Informationen mit Hilfe von Python auszulesen lässt sich ElementTree aus aus dem Modul xml.etree, das in der Python-Standartbibliothek vorhanden ist, verwenden. Dies wird im beiliegenden Skript mit der Funktion get_hostinfo() bewerkstelligt:

def get_hostinfo(ipv4):
    ''' Returns geoiplookup information of agiven host adress as a dictionary.
    The adress can be given as a string representation 0f a DNS or IPv4 adress.

    get_hostinfo(str) -> dict

    Examples: get_hostinfo("www.github.com")
              get_hostinfo("151.101.12.133")
    '''

    apiurl = 'http://api.geoiplookup.net/?query='
    hostinfo = defaultdict(str, {})
    try:
        xml = urllib.request.urlopen(apiurl + dns2ipv4(ipv4)).read().decode()
        xml = xml.replace('&', '')
        tree = ETree.fromstring(xml)
        for element in tree.getiterator():
            hostinfo[element.tag] = element.text
    except:
        return hostinfo
    finally:
        return hostinfo

Diese parst die XML-Datei automatisch zu einem Python-DefaultDict das dann die entsprechenden Informationen enthält (das DefaultDict wird verwendet da normale Python Dictionaries zu Fehlern führen, wenn nicht gesetzte Werte abgefragt werden). Die Ausgabe der Funktion sieht dann wie folgt aus:

In [3]: get_hostinfo('www.google.com')
Out[3]:
defaultdict(str,
            {'city': 'Mountain View',
             'countrycode': 'US',
             'countryname': 'United States',
             'host': '172.217.22.99',
             'ip': '172.217.22.99',
             'isp': 'Google',
             'latitude': '37.4192',
             'longitude': '-122.0574',
             'result': None,
             'results': None})

3. Plotten der gefundenen Routen mit geoplotlib auf einer Weltkarte

Wichtig für das anschließende Plotten ist hierbei die Geolocation also ‘latitude’ und ‘longitude’. Mit den Werten kann man anschließend die mit traceroute gefundenen Pfade als Basemap plotten. Dies funktioniert mit der Funktion drawroutes2map():

def drawroutes2map(routesfile='routes.csv'):
    drawroutes = list()
    for route in open(routesfile).readlines():
        ips = [ip2location(ip) for ip in route.strip().split(',')]
        print(ips)
        locs = [loc for loc in ips if not loc == None]
        longs = [loc[0] for loc in locs]
        lats = [loc[1] for loc in locs]
        m = minimalmap()
        drawroutes.append(tuple(m(lats, longs)))
        for drawroute in drawroutes:
            m.plot(drawroute[0], drawroute[1], '-', markersize=0, linewidth=1, color=rand_color())
            pickleto(drawroutes, 'tracedlocs.plk')
    plt.savefig('world.svg', format='svg')
    plt.savefig('world.png', format='png')
    plt.show()

Der Plot einer Verbindungsanfrage an www.google.de aus Berlin sieht beispielsweise folgendermaßen aus:

Hier wird deutlich, dass Datenpakete durchaus nicht immer den kürzesten Weg nehmen, sondern teilweise rund um die Welt gesendet werden (Deutschland – USA – Sydney(!) – USA), bevor sie an ihrem Ziel ankommen und dass das Ziel einer Verbindung zu einer Domain mit der Endung „de“ nicht unbedingt in Deutschland liegen muss.

Mit Default-Einstellungen werden von der Funktion drawroutes2map() alle Routen in zufälligen Farben geplottet, welche in der Datei routen.csv gefunden werden.

Lässt man viele Routen plotten wird hierbei die Netzwerkstruktur deutlich, über die die Daten im Internet verteilt werden. Auf dem obigen Plot kann man recht gut erkennen, dass die meisten Internetseiten in Europa oder den USA gehostet werden, einige noch in China und Japan, dagegen beispielsweise Afrika praktisch unbedeutend ist.

Auf dem nächsten Plot wiederum ist zu erkennen, dass es tatsächlich eine Art “Hotspots” gibt über die fast alle Daten laufen, wie z. B. Frankfurt am Main, Zürich und Madrid.

4. Schematische Darstellung der Routen als directed Graph mit graphviz

Mit graphviz lassen sich schematische Graphen darstellen. Mit dem Paket pygraphviz existiert hiefür auch eine Python-Anbindung. Die schematische Darstellung als Graph ist in vielen Fällen deutlich übersichtlicher als die Darstellung auf einer Weltkarte und die Topologie des Netzwerkes wird besser sichtbar.

Die entsprechende Python-Funktion, die alle Routen aus der Datei routes.csv als geplotteten Graph ausgibt ist drawroutes2graph():

def drawroutes2graph(routesfile='routes.csv'):
    '''Draws all routes found in the routesfile with graphviz to a Graph

        drawroutes2graph(file)

    '''
    routes = open(routesfile).readlines()
    for i in range(len(routes)):
        routes[i] = routes[i].replace('*', '').split()
        G = pgv.AGraph(strict=False, directed=True)

    for l in routes:
        for i in range(len(l)-1):
            if not (l[i], l[i+1]) in set(G.edges()):
                G.add_edge(l[i], l[i+1])

    for n in G.nodes():
        if get_hostinfo(n)['countrycode'] == 'DE':
            n.attr['color'] = 'green'
        elif get_hostinfo(n)['countrycode'] == 'US':
            n.attr['color'] = 'red'
        elif get_hostinfo(n)['countrycode'] == 'ES':
            n.attr['color'] = 'yellow'
        elif get_hostinfo(n)['countrycode'] == 'CH':
            n.attr['color'] = 'blue'
        elif get_hostinfo(n)['countrycode'] == 'CN':
            n.attr['color'] = 'magenta'

        G.write('routes.dot')
        
        G.layout('dot')
        G.draw('dot.png')

        G.layout()
        G.draw('neato.png')

Die Funktion schreibt den erstellten Graph in der Dot-Language in die Datei routes.dot und erstellt zwei verschiedene visuelle Darstellungen als png-Dateien.

Da mit der Funktion get_hostinfo() auch weitere Informationen zu den jeweiligen IP-Adressen verfügbar sind  können diese auch visuell im Graph dargestellt werden. So sind in der folgenden Darstellung Hosts in verschiedenen Ländern in unterschiedlichen Farben dargestellt. (Deutschland in grün, USA in rot, Spanien in gelb, Schweiz in blau, China in magenta und alle übrigen Länder und Hosts ohne Länderinformation in schwarz).

Diese Art der Darstellung vereint damit die Vorteile der schematischen Darstellung mit der Geoinformation zu den jeweiligen Hosts. Aus der Grafik lässt sich beispielsweise sehr gut erkennen, dass, trotz oft vieler Zwischenstationen innerhalb eines Landes, Landesgrenzen überschreitende Verbindungen relativ selten sind.

Auch interessant ist, dass das Netzwerk durchaus Maschen aufweist – mit anderen Worten: Dass ein und dieselbe Station bei verschiedenen Verbindungsanfragen über verschiedene Zwischenstationen angesprochen wird und Daten, die von Punkt A nach Punkt B gesendet werden, nicht immer denselben Weg nehmen.

5. Schlussfolgerung

Was kann man hieraus denn nun letztendlich an Erkenntnissen ziehen? Zum einen natürlich, wie Daten via Internet über viele Zwischenstationen rund um die Welt gesendet und hierbei mit jeder Station neu sortiert werden. Vor allem aber auch, dass mit dem entsprechenden Know-How und etwas Kreativität mit bemerkenswert wenig Code bereits Unmengen an Daten gesammelt, geordnet und ausgewertet werden können. Alle möglichen Daten werden in unserer heutigen Welt gespeichert und sind zu einem nicht unbeträchtlichen Teil auch für jeden, der weiß, wer diese Daten hat oder wie man sie selber ermitteln kann, verfügbar und oft lassen sich hier interessante Einblicke in die Funktionsweise unserer Welt gewinnen.

Self Service Data Preparation mit Microsoft Excel

Get & Transform (vormals Power Query), eine kurze Einführung

 Unter Data Preparation versteht man sinngemäß einen Prozeß der Vorbereitung / Aufbereitung von Rohdaten aus meistens unterschiedlichen Datenquellen und -formaten, verbunden mit dem Ziel, diese effektiv für verschiedene Geschäftszwecke / Analysen (Business Fragen) weiterverwenden/bereitstellen zu können. Rohdaten müssen oft vor ihrem bestimmungsgemäßen Gebrauch transformiert (Datentypen), integriert (Datenkonsistenz, referentielle Integrität), sowie zugeordnet (mapping; Quell- zu Zieldaten) werden.
An diesem neuralgischen Punkt werden bereits die Weichen für Datenqualität gestellt.

Unter Datenqualität soll hier die Beschaffenheit / Geeignetheit von Daten verstanden werden, um konkrete Fragestestellungen beantworten zu können (fitness for use):

Kriterien Datenqualität

  • Eindeutigkeit
  • Vollständigkeit
  • Widerspruchsfreiheit / Konsistenz
  • Aktualität
  • Genauigkeit
  • Verfügbarkeit

Datenqualität bestimmt im Wesentlichen die weitere zielgerichtete Verwendung der Daten in Analysen (Modelle) und Berichten (Reporting). Daten werden in entscheidungsrelevante Kennzahlen (Informationen) überführt. Eine Kennzahl ist gegenüber der Datenqualität immer blind, ihre Aussagekraft (Validität) hängt -neben der Definition – in sehr starkem Maße davon ab:

Gütekriterien von Kennzahlen

  • Objektivität := ist die Interpretation unabhängig vom Beobachter / Verwender?
  • Reliabilität := kann das Ergebnis unter sonst gleichen Bedingungen reproduziert werden ?
  • Validität := sagt die Kennzahl das aus, was sie vorgibt, auszusagen ?

Business Fragen entstehen naturgemäß in den Fachbereichen.Daher ist es nur folgerichtig, Data Preparation als einen ersten Analyseschritt innerhalb des Fachbereichs anzusiedeln (Self Service Data Preparation). Dadurch erhält der Fachbereich einen Teil seiner Autonomie zurück. Welche Teilmenge der Daten relevant für Fragestellungen ist, kann nur der Fachbereich beurteilen; der Anforderer von entscheidungsrelevanten Informationen sollte idealerweiseTeil der Entstehung wertiger Daten sein, das fördert zum einen die Akzeptanz des Ergebnisses, zum anderen wirkt es einem „not-invented-here“ Syndrom frühzeitig entgegen.

Im Folgenden wird anhand 4 Schritten skizziert, wie Microsoft Excel bei dem Thema (Self Service) Data Preparation vor allem den Fachbereich unterstützen kann. Eine Beispieldatei können Sie hier (google drive) einsehen. Sie finden die hierfür verwendete Funktionalität (Get & Transform) in Excel 2016 unter:

Reiter Daten -> Abrufen und Transformieren.

Dem interessierten Leser werden im Text vertiefende Informationen über links zu einzelnen typischen Aufgabenstellungen und Lösungswegen angeboten. Eine kurze Einführung in das Thema finden Sie in diesem Blog Beitrag.

1 Einlesen

Datenquellen anbinden (externe, interne)

Dank der neuen Funktionsgruppe „Abrufen und Transformieren“ ist es in Microsoft Excel möglich, verschiedene externe Datenquellen /-formate anzubinden. Zusätzlich können natürlich auch Tabellen der aktiven / offenen Excel Arbeitsmappe als Datenquelle dienen (interne Datenquellen). Diese Datenquellen werden anschließend als sogenannte Arbeitsmappenabfragen abgebildet.

Praxisbeispiele:

Anbindung mehrerer Dateien, welche in einem Ordner bereitgestellt werden

Anbindung von Webinhalten

2 Transformieren

Daten transformieren (Datentypen, Struktur)

Datentypen (Text, Zahl) können anschließend je Arbeitsmappenabfrage und Spalte(n) geändert werden.
Dies ist zB immer dann notwendig, wenn Abfragen über Schlüsselspalten in Beziehung gesetzt werden sollen (siehe Punkt 3). Gleicher Datentyp (Primär- und Fremdschlüssel) in beiden Tabellen ist hier notwendige Voraussetzung.

Des Weiteren wird in dieser Phase typischerweise festgelegt, welche Zeile der Abfrage die Spaltenbeschriftungen enthält.

Praxisbeispiele:

Fehlerbehandlung

Leere Zellen auffüllen

Umgang mit wechselnden Spaltenbeschriftungen

3 Zusammenführen / Anreichern

Daten zusammenführen (SVERWEIS mal anders)

Um unterschiedliche Tabellen / Abfragen über gemeinsame Schlüsselspalten zusammenzuführen, stellt der Excel Abfrage Editor eine Reihe von JOIN-Operatoren zur Verfügung, welche ohne SQL-Kenntnisse nur durch Anklicken ausgewählt werden können.

Praxisbeispiele

JOIN als Alternative zu Excel Formel SVERWEIS()

Daten anreichern (benutzerdefinierte Spalte anfügen)

Bei Bedarf können weitere Daten, welche sich nicht in der originären Struktur der Datenquelle befinden, abgeleitet werden. Die Sprache Language M stellt einen umfangreichen Katalog an Funktionen zur Verfügung. Wie Sie eine Übersicht über die verfügbaren Funktionen erhalten können erfahren Sie hier.

Praxisbeispiele

Geschäftsjahr aus Datum ableiten

Extraktion Textteil aus Text (Trunkation)

Mehrfache Fallunterscheidung, Datenbereinigung /-harmonisierung

4 Laden

Daten laden

Die einzelnen Arbeitsmappenabfragen können abschließend in eine Exceltabelle, eine Verbindung und / oder in das Power Pivot Datemodell zur weiteren Bearbeitung (Modellierung, Kennzahlenbildung) geladen werden.

Praxisbeispiele

Datenverbindung erstellen