process.science stellt neues Release vor

Anzeige

Der Process Mining Tool-Anbieter process.science stellt ein neues Release vor

process.science, Spezialist in der Entwicklung von Process Mining Plugins für BI-Systeme, stellt seine überarbeitet Version ihres Produkts ps4pbi vor. Dem erweiterten Plugin für Microsoft Power BI spendiert process.science die folgenden Verbesserungen, welche in Kürze auch für ps4qlk, dem entsprechenden Plugin für Qlik Sense verfügbar sein werden:

  • 3x schnellere Performance: Durch die Verbesserung der Graph-Bibliothek wurde die Geschwindigkeit des Graph-Aufbaus um ca. 300% gesteigert. Das macht sich insbesondere bei komplexen Prozessen bemerkbar
  • Navigator-Fenster: Für eine bessere Übersicht in komplexen Graphen wurde ein Übersichtsfenster hinzugefügt, in welchem immer der gesamte Graph und die jeweilige Position des betrachteten Bereichs innerhalb des Gesamtprozesses angezeigt wird
  • Aktivitäten Legende: Hiermit lassen sich Aktivitäten bestimmten Kategorien zuordnen und farblich unterschiedlich markieren, beispielsweise in welchem Quellsystem eine Aktivität ausgeführt wurde
  • Activity Drillthrough: Damit ist es möglich, gesetzte Filter auf gewählte Aktivitäten mit in andere Dashboards zu nehmen
  • Value Color Scale: Aktivitätenwerte können farblich markiert freiwählbaren Gruppierungen zugeordnet werden, was die Übersicht auf den ersten Blick erleichtert
process.science Process Mining | Power BI Plugin

process.science Process Mining | Power BI Plugin

Process Mining ist eine Technik zur Geschäftsdatenanalyse. Die dazu eingesetzte Software birgt die ohnehin in den Quellsystemen vorhanden Daten und visualisiert sie zu einem Prozessgraphen. Ziel ist es ein kontinuierliches Monitoring in Echtzeit zu gewährleisten, um so Optimierungsmaßnahmen für Prozesse zu identifizieren, diese zu simulieren und nach der Implementierung kontinuierlich bewerten zu können.

Die Process Mining Werkzeuge von process.science werden direkt in Microsoft Power BI und Qlik Sense integriert. Ein entsprechendes Plugin für Tableau ist bereits in Entwicklung. Es handelt sich also nicht um eine komplizierte Insellösung, die zusätzlich zu bestehenden Systemen eingerichtet werden muss und das vorhandene Know-how zu dem im Unternehmen bereits implementierten BI-System sowie der bestehenden Infrastrukturrahmen können mit adaptiert werden.

Die Implementierung in die BI-Systeme hat keinerlei Einfluss auf das Tagesgeschäft und birgt absolut kein Risiko von Systemausfällen, da process.science nicht in die Programme und die Warenwirtschaft eingreift, sondern das jeweilige Business Intelligence Tool um die Prozessperspektive mit diversen Funktionalitäten erweitert.

Ansprechpartner für Anfragen:

process.science GmbH & Co. KG

process.science stellt neues Release vor
Tel.: + 49 (231) 5869 2868
E-Mail: ga@process.science
https://de.process.science/

Process Mining mit Fluxicon Disco – Artikelserie

Dieser Artikel der Artikelserie Process Mining Tools beschäftigt sich mit dem Anbieter Fluxicon. Das im Jahr 2010 gegründete Unternehmen, bis heute geführt von den zwei Gründern Dr. Anne Rozinat und Dr. Christian W. Günther, die beide bei Prof. Wil van der Aalst in Eindhoven promovierten, sowie einem weiteren Mitarbeiter, ist eines der ersten Tool-Anbieter für Process Mining. Das Tool Disco ist das Kernprodukt des Fluxicon-Teams und bietet pures Process Mining.

Die beiden Gründer haben übrigens eine ganze Reihe an Artikeln zu Process Mining (ohne Sponsoring / ohne Entgelt) veröffentlicht.

Lösungspakete: Standard-Lizenz
Zielgruppe:  Lauf Fluxicon für Unternehmen aller Größen.
Datenquellen: Keine Standard-Konnektoren. Benötigt fertiges Event Log.
Datenvolumen: Unlimitierte Datenmengen, Beschränkung nur durch Hardware.
Architektur: On-Premise / Desktop-Anwendung

Diese Software für Process Mining ist für jeden, der in Process Mining reinschnuppern möchte, direkt als Download verfügbar. Die Demo-Lizenz reicht aus, um eigene Event-Logs auszuprobieren oder das mitgelieferte Event-Log (Sandbox) zu benutzen. Es gibt ferner mehrere Evaluierungslizenz-Modelle sowie akademische Lizenzen via Kooperationen mit Hochschulen.

Fluxicon Disco erfreut sich einer breiten Nutzerbasis, die seit 2012 über das jährliche ‘Process Mining Camp’ (https://fluxicon.com/camp/index und http://processminingcamp.com ) und seit 2020 auch über das monatliche ‘Process Mining Café’ (https://fluxicon.com/cafe/) vorangetrieben wird.

Bedienbarkeit und Anpassungsfähigkeit der Analysen

Fluxicon Disco bietet den Vorteil des schnellen Einstiegs in datengetriebene Prozessanalysen und ist überaus nutzerfreundlich für den Analysten. Die Oberflächen sind leicht zu bedienen und die Bedeutung schnell zu erfassen oder zumindest zu erahnen. Die Filter-Möglichkeiten sind überraschend umfangreich und äußerst intuitiv bedien- und kombinierbar.

Fluxicon Disco Process Mining

Fluxicon Disco Process Mining – Das Haupt-Dashboard zeigt den Process Flow aus der Rekonstruktion auf Basis des Event Logs. Hier wird die Frequenz-Ansicht gezeigt, die Häufigkeiten von Cases und Events darstellt.

Disco lässt den Analysten auf Process Mining im Kern fokussieren, es können keine Analyse-Diagramme strukturell hinzugefügt, geändert oder gelöscht werden, es bleibt ein statischer Report ohne weitere BI-Funktionalitäten.

Die Visualisierung des Prozess-Graphen im Bereich “Map” ist übersichtlich, stets gut lesbar und leicht in der Abdeckung zu steuern. Die Hauptmetrik kann zwischen der Frequenz- zur Zeit-Orientierung hin und her geschaltet werden. Neben der Hauptmetrik kann auch eine zweite Metrik (Secondary Metric) zur Ansicht hinzugefügt werden, was sehr sinnvoll ist, wenn z. B. neben der durchschnittlichen Zeit zwischen Prozessaktivitäten auch die Häufigkeit dieser Prozessfolgen in Relation gesetzt werden soll.

Die Ansicht “Statistics” zeigt die wesentlichen Einblicke nach allen Dimensionen aus statistischer Sicht: Welche Prozessaktivitäten, Ressourcen oder sonstigen Features treten gehäuft auf? Diese Fragen werden hier leicht beantwortet, ohne dass der Analyst selbst statistische Berechnungen anstellen muss – jedoch auch ohne es zu dürfen, würde er wollen.

Die weitere Ansicht “Cases” erlaubt einen Einblick in die Prozess-Varianten und alle Einzelfälle innerhalb einer Variante. Diese Ansicht ist wichtig für Prozessoptimierer, die Optimierungspotenziale vor allem in häufigen, sich oft wiederholenden Prozessverläufen suchen möchten. Für Compliance-Analysten sind hingegen eher die oft vielen verschiedenen Einzelfälle spezieller Prozessverläufe der Fokus.

Für Einsteiger in Process Mining als Methodik und Disco als Tool empfiehlt sich übrigens das Process Mining Online Book: https://processminingbook.com

Integrationsfähigkeit

Fluxicon Disco ist eine Desktop-Anwendung, die nicht als Cloud- oder Server-Version verfügbar ist. Es ist möglich, die Software auf einem Windows Application Server on Premise zu installieren und somit als virtuelle Umgebung via Microsoft Virtual Desktop oder via Citrix als virtuelle Anwendung für mehrere Anwender zugleich verfügbar zu machen. Allerdings ist dies keine hochgradige Integration in eine Enterprise-IT-Infrastruktur.

Auch wird von Disco vorausgesetzt, dass Event Logs als einzelne Tabellen bereits vorliegen müssen. Dieses Tool ist also rein für die Analyse vorgesehen und bietet keine Standardschnittstellen mit vorgefertigten Skripten zur automatischen Herstellung von Event Logs beispielsweise aus Salesforce CRM oder SAP ERP.

Grundsätzlich sollte Process Mining methodisch stets als Doppel-Disziplin betrachtet werden: Der erste Teil des Process Minings fällt in die Kategorie Data Engineering und umfasst die Betrachtung der IT-Systeme (ERP, CRM, SRM, PLM, DMS, ITS,….), die für einen bestimmten Prozess relevant sind, und die in diesen System hinterlegten Datentabellen als Datenquellen. Die in diesen enthaltenen Datenspuren über Prozessaktivitäten müssen dann in ein Prozessprotokoll überführt und in ein Format transformiert werden, das der Inputvoraussetzung als Event Log für das jeweilige Process Mining Tool gerecht wird. Minimalanforderung ist hierbei zumindest eine Vorgangsnummer (Case ID), ein Zeitstempel (Event Time) einer Aktivität und einer Beschreibung dieser Aktivität (Event).

Das Event Log kann dann in ein oder mehrere Process Mining Tools geladen werden und die eigentliche Prozessanalyse kann beginnen. Genau dieser Schritt der Kategorie Data Analytics kann in Fluxicon Disco erfolgen.

Zum Einspeisen eines Event Logs kann der klassische CSV-Import verwendet werden oder neuerdings auch die REST-basierte Airlift-Schnittstelle, so dass Event Logs direkt von Servern On-Premise oder aus der Cloud abgerufen werden können.

Prinzip des direkten Zugriffs auf Event Logs von Servern via Airlift.

Import von Event Logs als CSV (“Open file”) oder von Servern auch aus der Cloud.

Sind diese Limitierungen durch die Software für ein Unternehmen, bzw. für dessen Vorhaben, vertretbar und bestehen interne oder externe Ressourcen zum Data Engineering von Event Logs, begeistert die Einfachheit von Process Mining mit Fluxicon Disco, die den schnellsten Start in diese Analyse verspricht, sofern die Daten als Event Log vorbereitet vorliegen.

Skalierbarkeit

Die Skalierbarkeit im Sinne hochskalierender Datenmengen (Big Data Readiness) sowie auch im Sinne eines Ausrollens dieser Analyse-Software auf einer Konzern-Ebene ist nahezu nicht gegeben, da hierzu Benutzer-Berechtigungsmodelle fehlen. Ferner darf hierbei nicht unberücksichtigt bleiben, dass Disco, wie zuvor erläutert, ein reines Analyse-/Visualisierungstool ist und keine Event Logs generieren kann (der Teil der Arbeit, der viele Hardware Ressourcen benötigt).

Für die reine Analyse läuft Disco jedoch auch mit vielen Daten sehr zügig und ist rein auf Ebene der Hardware-Ressourcen limitiert. Vertikales Upscaling ist auf dieser Ebene möglich, dazu empfiehlt sich diese Leselektüre zum System-Benchmark.

Zukunftsfähigkeit

Fluxicon Disco ist eines der Process Mining Tools der ersten Stunde und wird auch heute noch stetig vom Fluxicon Team mit kleinen Updates versorgt, die Weiterentwicklung ist erkennbar, beschränkt sich jedoch auf Process Mining im Kern.

Preisgestaltung

Die Preisgestaltung wird, wie auch bei den meisten anderen Anbietern für Process Mining Tools, nicht transparent kommuniziert. Aus eigener Einsatzerfahrung als Berater können mit Preisen um 1.000 EUR pro Benutzer pro Monat gerechnet werden, für Endbenutzer in Anwenderunternehmen darf von anderen Tarifen ausgegangen werden.

Studierende von mehr als 700 Universitäten weltweit (siehe https://fluxicon.com/academic/) können Fluxicon Disco kostenlos nutzen und das sehr unkompliziert. Sie bekommen bereits automatisch akademische Lizenzen, sobald sie sich mit ihrer Uni-Email-Adresse in dem Tool registrieren. Forscher und Studierende, deren Uni noch kein Partner ist, können sehr leicht auch individuelle akademische Lizenzen anfragen.

Fazit

Fluxicon Disco ist ein Process Mining Tool der ersten Stunde und das bis heute. Das Tool beschränkt sich auf das Wesentliche, bietet keine Big Data Plattform mit Multi-User-Management oder anderen Möglichkeiten integrierter Data Governance, auch sind keine Standard-Schnittstellen zu anderen IT-Systemen vorhanden. Auch handelt es sich hierbei nicht um ein Tool, das mit anderen BI-Tools interagieren oder gar selbst zu einem werden möchte, es sind keine eigenen Report-Strukturen erstellbar. Fluxicon Disco ist dafür der denkbar schnellste Einstieg mit minimaler Rüstzeit in Process Mining für kleine bis mittelständische Unternehmen, für die Hochschullehre und nicht zuletzt auch für Unternehmensberatungen oder Wirtschaftsprüfungen, die ihren Kunden auf schlanke Art und Weise Ist-Prozessanalysen ergebnisorientiert anbieten möchten.

Dass Disco seitens Fluxicon nur für kleine und mittelgroße Unternehmen bestimmt ist, ist nicht ganz zutreffend. Die meisten Kunden sind grosse Unternehmen (Banken, Versicherungen, Telekommunikationsanabieter, Ministerien, Pharma-Konzerne und andere), denn diese haben komplexe Prozesse und somit den größten Optimierungsbedarf. Um Process Mining kommen die Unternehmen nicht herum und so sind oft auch mehrere Tools verschiedener Anbieter im Einsatz, die sich gegenseitig um ihre Stärken ergänzen, für Fluxicon Disco ist dies die flexible Nutzung, nicht jedoch das unternehmensweite Monitoring. Der flexible und schlanke Einsatz von Disco in vielen Unternehmen zeigt sich auch mit Blick auf die Sprecher und Teilnehmer der jährlichen Nutzerkonferenz, dem Process Mining Camp.

Process Mining mit PAFnow – Artikelserie

Artikelserie zu Process Mining Tools – PAFnow

Der zweite Artikel der Artikelserie Process Mining Tools beschäftigt sich mit dem Anbieter PAFnow. 2014 in Deutschland gegründet kann das Unternehmen PAF, dessen Kürzel für Process Analytics Factory steht, bereits auf eine beachtliche Anzahl an Projekten zurückblicken. Das klare selbst gesteckte Ziel von PAF: Mit dem eigenen Tool namens PAFnow Process Mining für jeden zugänglich machen.

PAFnow basiert auf dem bekannten BI-Tool „Power BI“. Wer sein Wissen zu Power BI noch einmal auffrischen möchte, kann das gerne in diesem Artikel aus der Artikelserie zu BI-Tools machen. Da Power BI selbst als Cloud- und On-Premise-Lösung erhältlich ist, gilt dies indirekt auch für PAFnow. Diese vier Versionen des Process Mining Tools werden von PAFnow angeboten:

Free Pro Premium Enterprise
Lizenz:  Kostenfrei
(Marketplace Power BI)
99€ pro User pro Monat 499€ pro User pro Monat Nur auf Anfrage
Zielgruppe:  Für kleine Unternehmen und Einzelanwender Für kleine bis mittlere Unternehmen Für mittlere und große Unternehmen Für mittlere und große Unternehmen
Datenquellen: Beliebig (Power BI Konnektoren), Transformationen in Power BI Beliebig (Power BI Konnektoren), Transformationen in Power BI Beliebig (Power BI Konnektoren), Transformationen in Power BI Beliebig (Power BI Konnektoren), Transformationen auch via MS SSIS
Datenvolumen: Limitiert auf 30.000 Events,
1 Visual
Unlimitierte Events,
1 Visual, 1 Report
Unlimitierte Events,
9 Visual, 10 Reports
Unlimitierte Events,
10 Visual, 10 Reports, Content Packs
Architektur: Nur On-Premise Nur On-Premise Nur On-Premise Nur On-Premise

Abbildung 1: Übersicht zu den vier verschiedenen Produktversionen des Process Mining Tools PAFnow

PAF führt auf seiner Website weitere Informationen zu den jeweiligen Versionsunterschieden an. Für diesen Artikel wird sich im weiteren Verlauf auf die Enterprise Version bezogen, wenn nicht anderes gekennzeichnet.

Bedienbarkeit und Anpassungsfähigkeit der Analysen

Das übersichtliche Userinterface von Power BI unterstützt die Analyse von Prozessen mit PAFnow. Und auch Anfänger können sich glücklich schätzen, denn es gibt eine beeindruckende Vielzahl an hochwertigen Lernvideos und Dokumentation zu Power BI. Die von PAFnow entwickelten Visuals, wie zum Beispiel der „Process Explorer“ fügt sich reibungslos zu den Power BI Visuals ein. Denn die Bedienung dieser Visuals entspricht größtenteils demselben Prinzip wie dem der Power BI Visuals. Neue Anwendungen wie beim Process Explorer der Conformance Check, werden jedoch auch von PAFnow in Lernvideos erläutert.

PAFnow Process Mining by using Power BIAbbildung 1: Userinterface von PAFnow in dem vorgefertigten Report „Discovery“

Die PAFnow Visuals werden – wie in Power BI – üblich per drag & drop platziert und mit den gewünschten Dimensionen und Measures bestückt. Die Visuals besitzen verschiedenste Einstellungsmöglichkeiten, um dem Benutzer das Visual nach seinen Vorstellungen gestallten zu lassen. Kommt man an die Grenzen der Einstellungen, lohnt sich immer ein Blick in den Marketplace von Power BI. Dort werden viele und teilweise auch technisch sehr gute Visuals kostenlos angeboten, welche viele weitere Analyseideen im Kontext der Prozessanalyse abdecken.

Die vorgefertigten Reports von PAFnow sind intuitiv zu handhaben, denn sie vermitteln dem Analysten direkt den passenden Eindruck, wie die jeweiligen Visuals am besten einzusetzen sind. Einzelne Elemente aus dem Report können gelöscht und nach Belieben ergänzt werden. Dadurch kann Zeit gespart und mit der eigentlichen Analyse schnell begonnen werden.

PAFnow Process Mining Power BI - Varienten-AnalyseAbbildung 2: Vorgefertigter Report „Variants“ an dem direkt eine Root-Cause Analyse durchgeführt werden kann

In Power BI werden die KPI’s bzw. Measures in einer von Microsoft eigens entwickelten Analysesprache namens DAX (Data Analysis Expressions) definiert. Diese Formelsprache ist ein sehr stark an Excel angelehnter Syntax und bietet für viele Nutzer in dieser Hinsicht einen guten Einstieg. Allerdings bietet der Umfang von DAX noch deutlich mehr, als es die meisten Excel Nutzer gewohnt sein werden, so können auch motivierte und technisch affine Business Experten recht tief in die Analyse abtauchen. Da es auch hier eine sehr gut aufgestellte Community als auch Dokumentation gibt, sind die Informationen zu den verborgenen Fähigkeiten von DAX meist nur ein paar Klicks entfernt.

Integrationsfähigkeit

PAF bietet für sein Process Mining Tool aktuell noch keine eigene Cloud-Lösung an und ist somit nur über Power BI selbst als Cloud-Lösung erhältlich. Anwender, die sich eine unabhängige Process Mining – Plattform wünschen, müssen sich daher mit Power BI zufriedengeben. Ob PAFnow in absehbarer Zeit diese Lücke schließen wird und die Enterprise-Readiness des Tools somit erhöhen wird, bleibt abzuwarten, wünschenswert wäre es. Mit Power BI als Cloud-Lösung ist man als Anwender jedoch in den meisten Fällen nicht schlecht vertröstet. Da Power BI sowohl als Cloud- und als On-Premise-Lösung verfügbar ist, kann hier situationsabhängig entschieden werden. An dieser Stelle gilt es abzuwägen, welche Limitationen die beiden Lösungen mit sich bringen und daher sei auch an dieser Stelle der Artikel zu Power BI aus der BI-Tool-Artikelserie empfohlen. Darüber hinaus sollte die Größe der zu analysierenden Prozessdaten berücksichtigt werden. So kann bei plötzlich zu großen Datenmengen auch später noch ein Wechsel von der recht günstigen Power BI Pro-Lizenz auf die deutlich kostenintensivere Premium-Lizenz erfordern. In der Enterprise Version von PAFnow sind zwei frei wählbare Content Packs enthalten, welche aus SAP-Konnektoren, sowie vorentwickelten SSIS Packages bestehen. Mittels Datenextraktor werden die benötigten Prozessdaten, z. B. für die Prozesse P2P (Purchase-to-Pay) und O2C (Order-to-Cash), in eine Datenbank eines MS SQL Servers geladen und dort durch die SSIS-Packages automatisch in das für die Analyse benötigte Format transformiert. SSIS ist ein ETL-Tool von Microsoft und steht für SQL Server Integration Services. SSIS ist ein Teil der Enterprise-Vollversion des Microsoft SQL Servers.

Die vorgefertigten Reports die PAFnow zur Verfügung stellt, können Projekte zusätzlich beschleunigen. Neben den zwei frei wählbaren Content Packs, die in der Enterprise Version von PAFnow enthalten sind, stellen Partner die von Ihnen selbstentwickelte Packs zur Verfügung. Diese sind sofern die zwei kostenlosen Content Packs bereits beansprucht wurden jedoch zahlungspflichtig. PAFnow profitiert von der beeindruckenden Menge an verschiedenen Konnektoren, die Microsoft in Power BI zur Verfügung stellt. So können zusätzlich Daten direkt aus den Quellsystemen in Power BI geladen werden und dem Datenmodel ggf. hinzugefügt werden. Der Vorteil liegt in der Flexibilität, Daten nicht immer zwingend über ein Data Warehouse verfügbar machen zu müssen, sondern durch den direkten Zugriff auf die Datenquellen schnelle Workarounds zu ermöglichen. Allerdings ist dieser Vorteil nur auf ergänzende Daten beschränkt, denn das Event-Log wird stets via SSIS-ETL in der Datenbank oder der sogenannten „Companion-Software“ transformiert und bereitgestellt. Da der Companion jedoch ohne Schedule-Funktion auskommt, Transformationen also manuell angestoßen werden müssen, eignet sich dieser kaum für das Monitoring von Prozessen. Falls eine hohe Aktualität der Daten gefordert ist, sollte daher auf die SSIS-Package-Funktion der Enterprise Version zurückgegriffen werden.

Ergänzende Daten können anschließend mittels einer der vielen Power BI Konnektoren auch direkt aus der Datenquelle geladen werden, um Sie anschließend mit dem Datenmodell zu verknüpfen. Dabei sollte bei der Modellierung jedoch darauf geachtet werden, dass ein entsprechender Verbindungsschlüssel besteht. Die Flexibilität, Daten aus verschiedensten Datenquellen in nahezu x-beliebigem Format der Process Mining Analyse hinzufügen zu können, ist ein klarer Pluspunkt und der große Vorteil von PAFnow, auf die erfolgreiche BI-Lösung von Microsoft aufzusetzen. Mit der Wahl von SSIS als Event-Log/ETL-Lösung, positioniert sich PAFnow noch ein deutliches Stück näher zum Microsoft Stack und erleichtert die Integration in diejenige IT-Infrastruktur, die auf eben diesen Microsoft Stack setzt.

Auch in Sachen Benutzer-Berechtigungsmanagement können die Process Mining Analysen mittels Power BI Features, wie z.B. Row-based Level Security detailliert verwaltet werden. So können ganze Reports nur für bestimmte Personen oder Gruppen zugänglich gemacht werden, aber auch Teile des Reports sowie einzelne Datenausschnitte kontrolliert definierten Rollen zugewiesen werden.

Skalierbarkeit

Um große Datenmengen mit Analysemethodik aus dem Process Mining analysieren zu können, muss die Software bei Bedarf skalieren. Wer mit großen Datasets in Power BI Pro lokal auf seinem Rechner schon Erfahrungen sammeln durfte, wird sicherlich schon mal an seine Grenzen gestoßen sein und Power BI nicht unbedingt als Big Data ready bezeichnen. Diese Performance spiegelt allerdings nur die untere Seite des Spektrums wider. So ist Power BI mit der Premium-Lizenz und einer ausreichend skalierten Azure SQL Data Warehouse Instanz durchaus dazu in der Lage, Daten im Petabytebereich zu analysieren. Microsoft entwickelt Power BI kontinuierlich weiter und wird mit an Sicherheit grenzender Wahrscheinlichkeit auch für weitere Performance-Verbesserung sorgen. Dabei wird MS Azure, die Cloud-Plattform von Microsoft, weiterhin eine entscheidende Rolle spielen. Hiervon wird PAFnow profitieren und attraktiv auch für Process Mining Projekte mit Big Data werden. Referenzprojekte mit besonders großen Datenmengen, die mit PAFnow analysiert wurden, sind öffentlich nicht bekannt. Im Grunde sind jegliche Skalierungsfähigkeiten jedoch nicht jene dieser Analysefunktionalität, sondern liegen im Microsoft Technology Stack mit all seinen Vor- und Nachteilen der Nutzung on-Premise oder in der Microsoft Cloud. Dabei steckt der Teufel übrigens immer im Detail und so muss z. B. stets auf die richtige Version von Power BI geachtet werden, denn es gibt für die Nutzung On-Premise mit dem Power BI Report Server als auch für jene Nutzung über Microsoft Azure unterschiedliche Versionen, die zueinander passen müssen.

Die Datenmodellierung erfolgt in der Datenbank (On-Premise oder in der Cloud) und wird dann in Power BI geladen. Das Datenmodell wird in Power BI grafisch und übersichtlich dargestellt, wodurch auch der End-Nutzer jederzeit nachvollziehen kann in welcher Beziehung die einzelnen Tabellen zueinanderstehen. Die folgende Abbildung zeigt ein beispielhaftes Datenmodel visuell in Power BI.

Data Model in Microsoft Power BIAbbildung 3: Grafische Darstellung des Datenmodels in Power BI

Zusätzliche Daten lassen sich – wie bereits erwähnt – sehr einfach hinzufügen und auch einfach anbinden, sofern ein Verbindungsschlüssel besteht. Sollten also zusätzliche Slicer benötigt werden, können diese problemlos ergänzt werden. An dieser Stelle sorgen die vielen von Power BI bereitgestellten Konnektoren für einen hohen Grad an Flexibilität. Für erfahrene Power BI Benutzer ist die Datenmodellierung also wie immer reibungslos und übersichtlich. Aber auch Neulinge sollten, sofern sie Erfahrung in der Datenmodellierung haben, hier keine Schwierigkeiten haben. Kleinere Transformationen beim Datenimport können im Query Editor von Power BI, mit Hilfe der Formelsprache Power Query (M) gemacht werden. Diese Formelsprache ist einsteigerfreundlich und ähnelt in Teilen der Programmiersprache F#. Aber auch ohne diese Formelsprache können einfache Transformationen mit Hilfe des übersichtlichen und mit vielen Funktionen ausgestatteten Userinterfaces im Query Editor intuitiv erledigt werden. Bei größeren und komplexeren Transformationen sollten die Daten jedoch auf Datenbankebene erfolgen. Dort werden die Rohdaten auch für die PAFnow Visuals vorbereitet, sofern die Enterprise-Version genutzt wird. PAFnow stellt für diese Transformationen vorgefertigte SSIS-Packages zur Verfügung, welche auch angepasst und erweitert werden können. Die Modellierung erfolgt somit in T-SQL, das in den SSIS-Queries eingebettet ist und stellt für jeden erfahrenden SQL-Anwender keine Schwierigkeiten dar. Bei der Erweiterbarkeit und Flexibilität der Datenmodelle konnte ich ebenfalls keine besonderen Einschränkungen feststellen. Einzig das Schema, welches von den PAFnow Visuals vorgegeben wird, muss eingehalten werden. Durch das Zurückgreifen auf die Abfragesprache SQL, kann bei der Modellierung auf eine sehr breite Community zurückgegriffen werden. Darüber hinaus können bestehende SQL-Skripte eingefügt und leicht angepasst werden. Und auch die Suche nach einem geeigneten Data Engineer gestaltet sich dadurch praktisch, da SQL im Generellen und der MS SQL Server im Speziellen im Einsatz sehr verbreitet sind.

Zukunftsfähigkeit

Grundsätzlich verfolgt PAF nach eigener Aussage einen anderen Ansatz als der Großteil ihrer Mitbewerber: “So setzt PAF weniger auf monolithische Strukturen, sondern verfolgt einen Plattform-agnostischen Ansatz“.  Damit grenzt sich PAF von sogenannte All-in-one Lösungen ab, bei welchen alle Funktionen bereits integriert sind. Der Vorteil solcher Lösungen ist, dass sie vollumfänglich „ready-to-use“ sind, sobald sie erfolgreich implementiert wurden. Der Nachteil solcher Systeme liegt in der unzureichenden Steuerungsmöglichkeit der einzelnen Bestandteile. Microservices hingegen versprechen eben genau diese Kontrolle und erlauben es dem Anwender, nur die Funktionen, die benötigt werden nach eigenen Vorstellungen in das System zu integrieren. Auf der anderen Seite ist der Aufbau solcher agnostischen Systeme deutlich komplexer und beansprucht daher oft mehr Zeit bei der Implementierung und setzt auch ein gewissen Know-How voraus. Die Entscheidung für den einen oder anderen Ansatz gleicht ein wenig einer make-or-buy Entscheidung und muss daher in den individuellen Situationen abgewogen werden.

In den beiden Trendthemen Machine Learning und Task Mining kann PAFnow aktuell noch keine Lösungen vorzeigen. Nach eigenen Aussagen gibt es jedoch bereits einige Neuerungen in der Pipeline, welche PAFnow in Zukunft deutlich AI-getriebener gestalten werden. Näheres zu diesem Thema wollte man an dieser Stelle zum Zeitpunkt der Veröffentlichung dieses Artikels nicht verkünden. Jedoch kann der Website von PAFnow diverse Forschungsprojekte eingesehen werden, welche sich unteranderem mit KI und RPA befassen. Sicherlich profitieren PAFnow Anwender auch von der Zukunftsfähigkeit von Power BI bzw. Microsoft selbst. Inwieweit diese Entwicklungen in dieselbe Richtung gehen wie die Trends im Bereich Process Mining bleibt abzuwarten.

Preisgestaltung

Der Kostenrahmen für das Process Mining Tool von PAFnow ist sehr weit gehalten. Da die Pro Version bereits für 120$ im Monat zu haben ist, spiegelt sich hier die Philosophie von PAFnow wider, Process Mining für jedermann zugänglich zu machen. Mit dieser niedrigen Einstiegshürde können Unternehmen erste Erfahrungen im Process Mining sammeln und diese ohne großes Investitionsrisiko validieren. Nicht im Preis enthalten, sind jedoch etwaige Kosten für das notwendige BI-Tool Power BI. Da jedoch auch hier der Kostenrahmen sehr weit ausfällt und mittlerweile auch im Serviceportfolio von Microsoft 365 enthalten ist, bleibt es bei einer niedrigen Einstieghürde aus finanzieller Sicht. Allerdings kann bei umfangreicher Nutzung der Preis der Power BI Lizenzgebühren auch deutlich höher ausfallen. Kommt Power BI z. B. aus Gründen der Data Governance nur als On-Premise-Lösung in Betracht, steigen die Kosten für Power BI grundsätzlich bereits auf mindestens 4.995 EUR pro Monat. Die Preisbewertung von PAFnow ist also eng verbunden mit dem Power BI Lizenzmodel und sollte im Einzelfall immer mit einbezogen werden. Wer gerne mehr zum Lizenzmodel von Power BI wissen möchte, bekommt hier eine zusammengefasste Übersicht.

Fazit

Mit PAFnow ist ein durchaus erschwingliche Process Mining Tool auf dem Markt erhältlich, welches sich geschickt in den Microsoft-BI-Stack eingliedert und die Hürden für den Einstieg relativ geringhält. Unternehmen, die ohnehin Power BI als Reporting Lösung nutzen, können ohne großen Aufwand erste Projekte mit Process Mining starten und den Umfang der Funktionen über die verschiedenen Lizenzen hochskalieren. Allerdings sind dem Autor auch Unternehmen bekannt, die Power BI und den MS SQL Server explizit für die Nutzung von PAFnow erstmalig in ihre Unternehmens-IT eingeführt haben. Da Power BI bereits mit vielen Features ausgestattet ist und auch kontinuierlich weiterentwickelt wird, profitiert PAFnow von dieser Entwicklungsarbeit ungemein. Die vorgefertigten Reports von PAFnow können die Time-to-Value lukrativ verkürzen und sind flexibel erweiterbar. Für erfahrene Anwender von Power BI ist der Umgang mit den Visuals von PAF sehr intuitiv und bedarf keines großen Schulungsaufwandes. Die Datenmodellierung erfolgt auf SSIS-Basis in SQL und weist somit auch keine nennenswerten Hürden auf. Wie leistungsstark PAFnow mit großen Datenmengen umgeht kann an dieser Stelle nicht bewertet werden. PAFnow steht nicht nur in diesem Punkt in direkter Abhängigkeit von der zukünftigen Entwicklung des Microsoft Technology Stacks und insbesondere von Microsoft Power BI. Für strategische Überlegungen bzgl. der Integrationsfähigkeit in das jeweilige Unternehmen sollte dies immer berücksichtigt werden.

Ein Einblick in die Aktienmärkte unter Berücksichtigung von COVID-19

Einleitung

Die COVID-19-Pandemie hat uns alle fest im Griff. Besonders die Wirtschaft leidet stark unter den erforderlichen Maßnahmen, die weltweit angewendet werden. Wir wollen daher die Gelegenheit nutzen einen Blick auf die Aktienkurse zu wagen und analysieren, inwieweit der Virus einen Einfluss auf das Wachstum des Marktes hat.

Rahmenbedingungen

Zuallererst werden wir uns auf die Industrie-, Schwellenländer und Grenzmärkte konzentrieren. Dafür nutzen wir die MSCI Global Investable Market Indizes (kurz GIMI), welche die zuvor genannten Gruppen abbilden. Die MSCI Inc. ist ein US-amerikanischer Finanzdienstleister und vor allem für ihre Aktienindizes bekannt.

Aktienindizes sind Kennzahlen der Entwicklung bzw. Änderung einer Auswahl von Aktienkursen und können repräsentativ für ganze Märkte, spezifische Branchen oder Länder stehen. Der DAX ist zum Beispiel ein Index, welcher die Entwicklung der größten 30 deutschen Unternehmen zusammenfasst.

Leider sind die Daten von MSCI nicht ohne weiteres zugänglich, weshalb wir unsere Analysen mit ETFs (engl.: “Exchange Traded Fund”) durchführen werden. ETFs sind wiederum an Börsen gehandelte Fonds, die von Fondgesellschaften/-verwaltern oder Banken verwaltet werden.

Für unsere erste Analyse sollen folgende ETFs genutzt werden, welche die folgenden Indizes führen:

Index Beschreibung ETF
MSCI World über 1600 Aktienwerte aus 24 Industrieländern iShares MSCI World ETF
MSCI Emerging Markets ca. 1400 Aktienwerte aus 27 Schwellenländern iShares MSCI Emerging Markets ETF
MSCI Frontier Markets Aktienwerte aus ca. 29 Frontier-Ländern iShares MSCI Frontier 100 ETF

Tab.1: MSCI Global Investable Market Indizes mit deren repräsentativen ETFs

Datenquellen

Zur Extraktion der ETF-Börsenkurse nehmen wir die yahoo finance API zur Hilfe. Mit den richtigen Symbolen können wir die historischen Daten unserer ETF-Auswahl ausgeben lassen. Wie unter diesem Link für den iShares MSCI World ETF zu sehen ist, gibt es mehrere Werte in den historischen Daten. Für unsere Analyse nutzen wir den Wert, nachdem die Börse geschlossen hat.

Da die ETFs in ihren Kurswerten Unterschiede haben und uns nur die relative Entwicklung interessiert, werden wir relative Werte für die Analyse nutzen. Der Startzeitpunkt soll mit dem 06.01.2020 festgelegt werden.

Die Daten über bestätigte Infektionen mit COVID-19 entnehmen wir aus der Hochrechnung der Johns Hopkins Universität.

Correlation between confirmed cases and growth of MSCI GIMI
Abb.1: Interaktives Diagramm: Wachstum der Aktienmärkte getrennt in Industrie-, Schwellen-, Frontier-Länder und deren bestätigten COVID-19 Fälle über die Zeit. Die bestätigten Fälle der jeweiligen Märkte basieren auf der Aufsummierung der Länder, welche auch in den Märkten aufzufinden sind und daher kann es zu Unterschieden bei den offiziellen Zahlen kommen.

Interpretation des Diagramms

Auf den ersten Blick sieht man deutlich, dass mit steigenden COVID-19 Fällen die Aktienkurse bis zu -31% einbrechen. (Anfangszeitpunkt: 06.01.2020 Endzeitpunkt: 09.04.2020)

Betrachten wir den Anfang des Diagramms so sehen wir einen Einbruch der Emerging Markets, welche eine Gewichtung von 39.69 % (Stand 09.04.20) chinesische Aktien haben. Am 17.01.20 verzeichnen die Emerging Marktes noch ein Plus von 3.15 % gegenüber unserem Startzeitpunkt, wohingegen wir am 01.02.2020 ein Defizit von -6.05 % gegenüber dem Startzeitpunkt haben, was ein Einbruch von -9.20 % zum 17.01.2020 entspricht. Da der Ursprung des COVID-19 Virus auch in China war, könnte man diesen Punkt als Grund des Einbruches interpretieren. Die Industrie- und  Frontier-Länder bleiben hingegen recht stabil und auch deren bestätigten Fälle sind noch sehr niedrig.

Die Industrieländer erreichen ihren Höchststand am 19.02.20 mit einem Plus von 2.80%. Danach brachen alle drei Märkte deutlich ein. Auch in diesem Zeitraum gab es die ersten Todesopfer in Europa und in den USA. Der derzeitige Tiefpunkt, welcher am 23.03.20 zu registrieren ist, beläuft sich für die Industrieländer -32.10 %, Schwellenländer 31.7 % und Frontier-Länder auf -34.88 %.

Interessanterweise steigen die Marktwerte ab diesem Zeitpunkt wieder an. Gründe könnten die Nachrichten aus China sein, welche keine weiteren Neu-Infektionen verzeichnen, die FED dem Markt bis zu 1.5 Billionen Dollar zur Verfügung stellt und/oder die Ankündigung der Europäische Zentralbank Anleihen in Höhe von 750 MRD. Euro zu kaufen. Auch in Deutschland wurden große Hilfspakete angekündigt.

Um detaillierte Aussagen treffen zu können, müssen wir uns die Kurse auf granularer Ebene anschauen. Durch eine gezieltere Betrachtung auf Länderebene könnten Zusammenhänge näher beschrieben werden.

Wenn du dich für interaktive Analysen interessierst und tiefer in die Materie eintauchen möchtest: DATANOMIQ COVID-19 Dashboard

Hier haben wir ein Dashboard speziell für Analysen für die Aktienmärkte, welches stetig verbessert wird. Auch sollen Krypto-Währungen bald implementiert werden. Habt ihr Vorschläge und Verbesserungswünsche, dann lasst gerne ein Kommentar da!

Artikelserie: BI Tools im Vergleich – Power BI von Microsoft

 

Den Auftakt dieser Artikelserie zum Vergleich von BI-Tools macht die Softwarelösung Power BI von Microsoft. Solltet ihr gerade erst eingestiegen sein, dann schaut euch ruhig vorher einmal die einführenden Worte und die Ausführungen zur Datenbasis an.

Lizenzmodell

Power BI ist in seinem Kern ein Cloud-Dienst und so ist auch die Ausrichtung des Lizenzmodells. Der Bezug als Stand-Alone SaaS ist genauso gut möglich, wie auch die Nutzung von Power BI im Rahmen des Serviceportfolios Office 365 von Microsoft. Zusätzlich besteht aber auch die Möglichkeit die Software lokal, also on premise laufen zu lassen. Beachten sollten man aber die eingeschränkte Funktionalität gegenüber der cloudbasierten Alternative.

Power BI Desktop, das Kernelement des Produktportfolios, ist eine frei verfügbare Anwendung. Damit schafft Microsoft eine geringe Einstiegsbarriere zur Nutzung der Software. Natürlich gibt es, wie auf dem Markt üblich, Nutzungsbeschränkungen, welche den User zum Kauf animieren. Interessanterweise liegen diese Limitierungen nicht in den wesentlichen Funktionen der Software selbst, also nicht im Aufbau von Visualisierungen, sondern vor allem in der beschränkten Möglichkeit Dashboards in einem Netzwerk zu teilen. Beschränkt auch deshalb, weil in der freien Version ebenfalls die Möglichkeit besteht, die Dashboards teilen zu können, indem eine Datei gespeichert und weiter versendet werden kann. Microsoft rät natürlich davon ab und verweist auf die Vorteile der Power BI Pro Lizenz. Dem ist i.d.R. zuzustimmen, da (wie im ersten Artikel näher erläutert) ein funktionierendes Konzept zur Data Governance die lokale Erstellung von Dashboards und manuelle Verteilung nicht erlauben würde. Sicherlich gibt es Firmen die Lizenzkosten einsparen wollen und funktionierende Prozesse eingeführt haben, um eine Aktualität und Korrektheit der Dashboards zu gewährleisten. Ein Restrisiko bleibt! Demgegenüber stehen relativ geringe Lizenzkosten mit $9,99 pro Monat/User für eine Power BI Pro Lizenz, nutzt man die cloud-basierte Variante mit dem Namen Power BI Service. Das Lizenzmodell ist für den Einstieg mit wenigen Lizenzen transparent gestaltet und zudem besteht keine Verpflichtung zur Abnahme einer Mindestmenge an Lizenzen, also ist der Einstieg auch für kleine Unternehmen gut möglich. Das Lizenzmodell wird komplexer bei intensivierter Nutzung der Cloud (Power BI Service) und dem zeitgleichen Wunsch, leistungsfähige Abfragen durchzuführen und große Datenmengen zu sichern. Mit einer Erweiterung der Pro Lizenz auf die Power BI Premium Lizenz, kann der Bedarf nach höheren Leistungsanforderungen gedeckt werden. Natürlich sind mit diesem Upgrade Kapazitätsgrenzen nicht aufgehoben und die Premium Lizenz kann je nach Leistungsanforderungen unterschiedliche Ausprägungen annehmen und Kosten verursachen. Microsoft hat sogenannte SKU´s definiert, welche hier aufgeführt sind. Ein Kostenrechner steht für eine Kostenschätzung online bereit, wobei je nach Anforderung unterschiedliche Parameter zu SKU`s (Premium P1, P2, P3) und die Anzahl der Pro Lizenzen wesentliche Abweichungen zum kalkulierten Preis verursachen kann. Die Kosten für die Premium P1 Lizenz belaufen sich auf derzeit $4.995 pro Monat und pro Speicherressource (Cloud), also i.d.R. je Kunde. Sollte eine cloud-basierte Lösung aus Kosten, technischen oder sogar Data Governance Gründen nicht möglich sein, kann der Power BI Report Server auf einer selbst gewählten Infrastruktur betrieben werden. Eine Premium Lizenz ermöglicht die lokale Bereitstellung der Software.

Anmerkung: Sowohl die Pro als auch die Premium Lizenz umfassen weitere Leistungen, welche in Einzelfällen ähnlich bedeutend sein können.

Um nur einige wenige zu nennen:

  • Eingebettete Dashboards auf Webseiten oder anderer SaaS Anwendungen
  • Nutzung der Power BI mobile app
  • Inkrementelle Aktualisierung von Datenquellen
  • Erhöhung der Anzahl automatischer Aktualisierungen pro Tag (Pro = 8)
  • u.v.m.

Community & Features von anderen Entwicklern

Power BI Benutzer können sich einer sehr großen Community erfreuen, da diese Software sich laut Gartner unter den führenden BI Tools befindet und Microsoft einen großen Kundenstamm vorzuweisen hat. Dementsprechend gibt es nicht nur auf der Microsoft eigenen Webseite https://community.powerbi.com/ eine Vielzahl von Themen, welche erörtert werden, sondern behandeln auch die einschlägigen Foren Problemstellungen und bieten Infomaterial an. Dieser große Kundenstamm bietet eine attraktive Geschäftsgrundlage für Entwickler von Produkten, welche komplementär oder gar substitutiv zu einzelnen Funktionen von Power BI angeboten werden. Ein gutes Beispiel für einen ersetzenden Service ist das Tool PowerBI Robots, welches mit Power BI verbunden, automatisch generierte E-Mails mit Screenshots von Dashboards an beliebig viele Personen sendet. Da dafür keine Power BI Pro Lizenz benötigt wird, hebelt dieser Service die wichtige Veröffentlichungsfunktion und damit einen der Hauptgründe für die Beschaffung der Pro Lizenz teilweise aus. Weiterhin werden Features ergänzt, welche noch nicht durch Microsoft selbst angeboten werden, wie z.B. die Erweiterung um ein Process Mining Tool namens PAFnow. Dieses und viele weitere Angebote können auf der Marketplace-Plattform heruntergeladen werden, sofern man eine Pro Lizenz besitzt.

Daten laden: Allgemeines

Ein sehr großes Spektrum an Datenquellen wird von Power BI unterstützt und fast jeder Nutzer sollte auf seinen Datenbestand zugreifen können. Unterstützte Datenquellen sind natürlich diverse Textdateien, SaaS verschiedenster Anbieter und Datenbanken jeglicher Art, aber auch Python, R Skripte sowie Blank Queries können eingebunden werden. Ebenfalls besteht die Möglichkeit mit einer ODBC-Schnittstelle eine Verbindung zu diversen, nicht aufgelisteten Datenquellen herstellen zu können. Ein wesentlicher Unterschied zwischen den einzelnen Datenquellen besteht in der Limitierung, eine direkte Verbindung aufsetzen zu können, eine sogenannte DirectQuery. In der Dokumentation zu Datenquellen findet man eine Auflistung mit entsprechender Info zur DirectQuery. Die Alternative dazu ist ein Import der Daten in Kombination mit regelmäßig durchgeführten Aktualisierungen. Mit Dual steht dem Anwender ein Hybrid aus beiden Methoden zur Verfügung, welcher in besonderen Anwendungsfällen sinnvoll sein kann. Demnach können einzelne Tabellen als Dual definiert und die im Folgenden beschriebenen Vorteile beider Methoden genutzt werden.

Import vs DirectQuery

Welche Verbindung man wählen sollte, hängt von vielen Faktoren ab. Wie bereits erwähnt, besteht eine Limitierung von 8 Aktualisierungen pro Tag und je Dataset bei importierten Datenquellen, sofern man nur eine Pro Lizenz besitzt. Mit der Nutzung einer DirectQuery besteht diese Limitierung nicht. Ebenfalls existiert keine Beschränkung in Bezug auf die Upload-Größe von 1GB je Dataset. Eine stetige Aktualität der Reports ist unter der Einstellung DirectQuery selbst redend.

Wann bringt also der Import Vorteile?

Dieser besteht im Grunde in den folgenden technischen Limitierungen von DirectQuery:

  • Es können nicht mehr als 1 Mio. Zeilen zurückgegeben werden (Aggregationen wiederum können über mehr Zeilen laufen).
  • Es können nur eingeschränkt Measures (Sprache DAX) geschrieben werden.
  • Es treten Fehler im Abfrageeditor bei übermäßiger Komplexität von Abfragen auf.
  • Zeitintelligenzfunktionen sind nicht verfügbar.

Daten laden: AdventureWorks2017Dataset

Wie zu erwarten, verlief der Import der Daten reibungslos, da sowohl die Datenquelle als auch das Dataset Produkte von Microsoft sind. Ein Import war notwendig, um Measures unter Nutzung von DAX anzuwenden. Power BI ermöglichte es, die Daten schnell in das Tool zu laden.

Beziehungen zwischen Datentabellen werden durch die Software entweder aufgrund von automatischer Erkennung gleicher Attribute über mehrere Tabellen hinweg oder durch das Laden von Metadaten erkannt. Aufgrund des recht komplexen und weit verzweigten Datasets schien dieses Feature im ersten Moment von Vorteil zu sein, erst in späteren Visualisierungsschritten stellte sich heraus, dass einige Verbindungen nicht aus den Metadaten geladen wurden, da eine falsch gesetzte Beziehung durch eine automatische Erkennung gesetzt wurde und so die durch die Metadaten determinierte Beziehung nicht übernommen werden konnte. Lange Rede kurzer Sinn: Diese Automatisierung ist arbeitserleichternd und nützlich, insbesondere für Einsteiger, aber das manuelle Setzen von Beziehungen kann wenig auffällige Fehler vermeiden und fördert zugleich das eigene Verständnis für die Datengrundlage. Microsoft bietet seinen Nutzer an, diese Features zu deaktivieren. Das manuelle Setzen der Beziehungen ist über das Userinterface (UI) im Register „Beziehungen“ einfach umzusetzen. Besonders positiv ist die Verwirklichung dieses Registers, da der Nutzer ein einfach zu bedienendes Tool zur Strukturierung der Daten erhält. Ein Entity-Relationship-Modell (ERM) zeigt das Resultat der Verknüpfung und zugleich das Datenmodel gemäß dem Konzept eines Sternenschemas.

Daten transformieren

Eines der wesentlichen Instrumente zur Transformierung von Daten ist Power Query. Diese Software ist ebenfalls ein etablierter Bestandteil von Excel und verfügt über ein gelungenes UI, welches die Sprache M generiert. Ca. 95% der gewünschten Daten Transformationen können über das UI durchgeführt werden und so ist es in den meisten Fällen nicht notwendig, M schreiben zu müssen. Durch das UI ermöglicht Power Query, wesentliche Aufgaben wie das Bereinigen, Pivotieren und Zusammenführen von Daten umzusetzen. Aber es ist von Vorteil, wenn man sich zumindest mit der Syntax auskennt und die Sprache in groben Zügen versteht. Die Sprache M wie auch das UI, welches unter anderem die einzelnen Bearbeitungs-/Berechnungsschritte aufzeigt, ist Workflow-orientiert. Das UI ist gut strukturiert, und Nutzer finden schnellen Zugang zur Funktionsweise. Ein sehr gut umgesetztes Beispiel ist die Funktion „Spalten aus Beispielen“. In nur wenigen Schritten konnten der Längen- und Breitengrad aus einer zusammengefassten Spalte getrennt werden. Den erzeugten M-Code und den beschriebenen Workflow seht ihr in der folgenden Grafik.

Das Feature zur Zusammenführung von Tabellen ist jedoch problematisch, da das UI von Power Query dem Nutzer keine vorprogrammierten Visualisierungen o.ä. an die Hand gibt, um die Resultate überprüfen zu können. Wie bei dem Beispiel Dataset von Microsoft, welches mit über 70 Tabellen eine relativ komplexe Struktur aufweist, können bei unzureichender Kenntnis über die Struktur der Datenbasis Fehler entstehen. Eine mögliche Folge können die ungewollte Vervielfachung von Zeilen (Kardinalität ist „viele zu viele“) oder gar das Fehlen von Informationen sein (nur eine Teilmenge ist in die Verknüpfung eingeschlossen). Zur Überprüfung der JOIN Ergebnisse können die drei genannten Register (siehe obige Grafik) dienen, aber ein Nutzer muss sich selbst ein eigenes Vorgehen zur Überwachung der korrekten Zusammenführung überlegen.

Nachdem die Bearbeitung der Daten in Power Query abgeschlossen ist und diese in Power BI geladen werden, besteht weiterhin die Möglichkeit, die Daten unter Nutzung von DAX zu transformieren. Insbesondere Measures bedienen sich ausschließlich dieser Sprache und ein gutes Auto-Fill-Feature mit zusätzlicher Funktionsbeschreibung erleichtert das Schreiben in DAX. Dynamische Aggregationen und etliche weitere Kalkulationen sind denkbar. Nachfolgend findet ihr einige wenige Beispiele, welche auch im AdventureWorks Dashboard Anwendung finden:

Measures können komplexe Formen annehmen und Power BI bietet eine sehr gute Möglichkeit gebräuchliche Berechnungen über sogenannte Quickmeasures (QM) vorzunehmen. Ähnlich wie für die Sprache M gibt es ein UI zur Erstellung dieser, ohne eine Zeile Code schreiben zu müssen. Die Auswahl an QM ist groß und die Anwendungsfälle für die einzelnen QM sind vielfältig. Als Beispiel könnt ihr euch das Measure „Kunden nach Year/KPI/Category“ im bereitgestellten AdventureWorks Dashboard anschauen, welches leicht abgewandelt auf Grundlage des QM „Verkettete Werteliste“ erstellt wurde. Dieses Measure wurde als dynamischer Titel in das Balkendiagramm eingebunden und wie das funktioniert seht ihr hier.

Daten visualisieren

Der letzte Schritt, die Visualisierung der Daten, ist nicht nur der wichtigste, sondern auch der sich am meisten unterscheidende Schritt im Vergleich der einzelnen BI-Tools. Ein wesentlicher Faktor dabei ist die Arbeitsabfolge in Bezug auf den Bau von Visualisierungen. Power BI ermöglicht dem Nutzer, einzelne Grafiken in einem UI zu gestalten und in dem selbigen nach Belieben anzuordnen. Bei Tableau und Looker zum Beispiel werden die einzelnen Grafiken in separaten UIs gestaltet und in einem weiteren UI als Dashboard zusammengesetzt. Eine Anordnung der Visualisierungen ist in Power BI somit sehr flexibel und ein Dashboard kann in wenigen Minuten erstellt werden. Verlieren kann man sich in den Details, fast jede visuelle Vorstellung kann erfüllt werden und in der Regel sind diese nur durch die eigene Zeit und das Know-How limitiert. Ebenfalls kann das Repertoire an Visualisierungen um sogenannte Custom Visualizations erweitert werden. Sofern man eine Pro Lizenz besitzt, ist das Herunterladen dieser Erweiterungen unter AppSource möglich.

Eine weitere Möglichkeit zur Anreicherung von Grafiken um Detailinformationen, besteht über das Feature Quickinfo. Sowohl eine schnell umsetzbare und somit wenig detaillierte Einbindung von Details ist möglich, aber auch eine aufwendigere Alternative ermöglicht die Umsetzung optisch ansprechender und sehr detaillierter Quickinfos.

Das Setzen von Filtern kann etliche Resultate und Erkenntnisse mit sich bringen. Dem Nutzer können beliebige Ansichten bzw. Filtereinstellungen in sogenannten Bookmarks gespeichert werden, sodass ein einziger Klick genügt. In dem AdventureWorks Dashboard wurde ein nützliches Bookmark verwendet, welches dem Zurücksetzen aller Filter dient.

Erstellt man Visualisierungen im immer gleichen Format, dann lohnt es sich ein eigenes Design in JSON-Format zu erstellen. Wenn man mit diesem Format nicht vertraut ist, kann man eine Designvorlage über das Tool Report Theme Generator V3 sehr einfach selbst erstellen.

Existiert ein Datenmodell und werden Daten aus verschiedenen Tabellen im selben Dashboard zusammengestellt (siehe auch Beispiel Dashboard AdventureWorks), dann werden entsprechende JOIN-Operationen im Hintergrund beim Zusammenstellen der Visualisierung erstellt. Ob das Datenmodell richtig aufgebaut wurde, ist oft erst in diesem Schritt erkennbar und wie bereits erwähnt, muss sich ein jeder Anwender ein eigenes Vorgehen überlegen, um mit Hilfe dieses Features die vorausgegangenen Schritte zu kontrollieren.

Warum braucht Power BI eine Python Integration?

Interessant ist dieses Feature in Bezug auf Machine Learning Algorithmen, welche direkt in Power BI integriert werden können. Python ist aber auch für einige Nutzer eine gern genutzte Alternative zu DAX und M, sofern man sich mit diesen Sprachen nicht auseinandersetzen möchte. Zwei weitere wesentliche Gründe für die Nutzung von Python sind Daten zu transformieren und zu visualisieren, unter Nutzung der allseits bekannten Plots. Zudem können weitere Quellen eingebunden werden. Ein Vorteil von Python ist dessen Repertoire an vielen nützlichen Bibliotheken wie pandas, matplotlib u.v.m.. Jedoch ist zu bedenken, dass die Python-Skripte zur Datenbereinigung und zur Abfrage der Datenquelle erst durch den Data Refresh in Power BI ausgeführt werden. In DAX geschriebene Measures bieten den Vorteil, dass diese mehrmals verwendet werden können. Ein Python-Skript hingegen muss kopiert und demnach auch mehrfach instandgehalten werden.

Es ist ratsam, Python in Power BI nur zu nutzen, wenn man an die Grenzen von DAX und M kommt.

Fazit

Das Lizenzmodel ist stark auf die Nutzung in der Cloud ausgerichtet und zudem ist die Funktionalität der Software, bei einer lokalen Verwendung (Power Bi Report Server) verglichen mit der cloud-basierten Variante, eingeschränkt. Das Lizenzmodell ist für den Power BI Neuling, welcher geringe Kapazitäten beansprucht einfach strukturiert und sehr transparent. Bereits kleine Firmen können so einen leichten Einstieg in Power BI finden, da auch kein Mindestumsatz gefordert ist.

Gut aufbereitete Daten können ohne großen Aufwand geladen werden und bis zum Aufbau erster Visualisierungen bedarf es nicht vieler Schritte, jedoch sind erste Resultate sehr kritisch zu hinterfragen. Die Kontrolle automatisch generierter Beziehungen und das Schreiben von zusätzlichen DAX Measures zur Verwendung in den Visualisierungen sind in den meisten Fällen notwendig, um eine korrekte Darstellung der Zahlen zu gewährleisten.

Die Transformation der Daten kann zum großen Teil über unterschiedliche UIs umgesetzt werden, jedoch ist das Schreiben von Code ab einem gewissen Punkt unumgänglich und wird auch nie komplett vermeidbar sein. Power BI bietet aber bereits ein gut durchdachtes Konzept.

Im Großen und Ganzen ist Power BI ein ausgereiftes und sehr gut handhabbares Produkt mit etlichen Features, ob von Microsoft selbst oder durch Drittanbieter angeboten. Eine große Community bietet ebenfalls Hilfestellung bei fast jedem Problem, wenn dieses nicht bereits erörtert wurde. Hervorzuheben ist der Kern des Produkts: die Visualisierungen. Einfach zu erstellende Visualisierungen jeglicher Art in einem ansprechenden Design grenzen dieses Produkt von anderen ab.

Fortsetzung: Tableau wurde als zweites Tool dieser Artikelserie näher beleuchtet.

Artikelserie: BI Tools im Vergleich – Datengrundlage

Als Datengrundlage habe ich mir die Trainingsdaten – AdventureWorks 2017 – von Microsoft geschnappt und Ziel soll es sein, ein möglichst gleiches Dashboard in jedem dieser Tools zu erstellen.

Bei der Datenbasis handelt es sich bereits um ein relationales Datenbankmodel mit strukturierten Daten, welches als bak (Backup Datei) zur Verfügung steht. Die Daten sind bereits bereinigt und normalisiert, sowie bestehen auch bereits Beziehungen zwischen den Tabellen. Demnach fallen in meinem Fall aufwendige Datenbereinigungen und auch der Aufbau eines relationalen Datenmodells im Dashboard selbst weg. In den meisten Tools ist beides möglich, wenn auch nicht das optimale Programm, um Datenbereinigungen vorzunehmen. Alle Tools bieten einem die Möglichkeit strukturierte und unstrukturierte Daten aus verschiedensten Datenquellen zu importieren. Meine Datenquelle wird SQL Server von Microsoft sein, da die bak nicht direkt in die meisten Dashboards geladen werden kann und zudem auf Grund der Datenmenge ein kompletter Upload auch nicht ratsam ist. Aus Gründen der Performance sollten nur die für das Dashboard relevanten Daten importiert werden. In meinem Fall werde ich Daten aus lediglich 15 von insgesamt 71 Tabellen verwenden um Visualisierungen für wesentliche Geschäftskennzahlen aufzubauen. Die obere Grafik zeigt das Entity-Relationship-Modell (ERM) zu den relevanten Tabellen. Die Datengrundlage eignet sich sehr gut für tiefer gehende Analysen und bietet zugleich ein großes Potential für sehr ausgefallene Visualisierungen. Im Fokus dieser Artikelserie soll aber nicht die Komplexität der Grafiken, sondern die allgemeine Handhabbarkeit stehen. Meiner Erfahrung nach geht der Blick für das wesentliche verloren, sobald man zu ausgefallene Visualisierungen in einem Dashboard verwendet.

Eine mir selbst auferlegte Beschränkung soll sein, dass die Daten lediglich in dem Dashboard manipuliert werden, bedeutet das keine Tabellen in SQL Server geändert oder Views erstellt werden. Gehen wir einfach Mal davon aus, dass der Data Engineer Haare auf den Zähnen hat und mich weder an seine Datenbank ran lässt noch mir in irgendeiner Art und Weise zuarbeitet.

Also ganz nach dem Motto: Help yourself! 😉

Daten zum Üben gibt es etliche. Einfach Mal Github, Kaggle oder andere Open Data Quellen anzapfen. Falls ihr Lust habt, dann probiert euch doch selber einmal an den Dashboards. Ihr solltet ein wenig Zeit mitbringen, aber wenn man erstmal drin ist macht es viel Spaß und es gibt immer etwas neues zu entdecken!

Das erste Dashboard werde ich in Power BI erstellen. Falls ihr mir folgen möchtet: Hier ein paar Links um euch startklar zu machen.

Dataset: AdventureWorks 2017

MS SQL Server

MS SSMS

MS Power BI (Desktop)

Artikelserie: BI Tools im Vergleich – Einführung und Motivation

„Mit welchem BI-Tool arbeitest du am liebsten?“ Mit dieser Frage werde ich dieser Tage oft konfrontiert. Meine klassische Antwort und eine typische Beraterantwort: „Es kommt darauf an.“ Nach einem Jahr als Berater sitzt diese Antwort sicher, aber gerade in diesem Fall auch begründet. Auf den Analytics und Business Intelligence Markt drängen jedes Jahr etliche neue Dashboard-Anbieter und die etablierten erweitern Services und Technik in rasantem Tempo. Zudem sind die Anforderungen an ein BI-Tool höchst unterschiedlich und von vielen Faktoren abhängig. Meine Perspektive, also die Anwenderperspektive eines Entwicklers, ist ein Faktor und auch der Kern dieser Artikelserie. Um die Masse an Tools auf eine machbare Anzahl runter zu brechen werde ich die bekanntesten Tools im Vergleich ausprobieren und hier vorstellen. Die Aufgabe ist also schnell erklärt: Ein Dashboard mit den gleichen Funktionen und Aussagen in unterschiedlichen Tools erstellen. Im Folgenden werde ich auch ein paar Worte zur Bewertungsgrundlage und zur Datengrundlage verlieren.

Erstmal kurz zu mir: Wie bereits erwähnt arbeite ich seit einem Jahr als Berater, genauer als Data Analyst in einem BI-Consulting Unternehmen namens DATANOMIQ. Bereits davor habe ich mich auf der anderen Seite der Macht, quasi als Kunde eines Beraters, viel mit Dashboards beschäftigt. Aber erst in dem vergangenen Jahr wurde mir die Fülle an BI Tools bewusst und der Lerneffekt war riesig. Die folgende Grafik zeigt alle Tools welche ich in der Artikelserie vorstellen möchte.

Gartner’s Magic Quadrant for Analytics and Business Intelligence Platform führt jedes Jahr eine Portfolioanalyse über die visionärsten und bedeutendsten BI-Tools durch, unter der genannten befindet sich nur eines, welches nicht in dieser Übersicht geführt wird, ich jedoch als potenziellen Newcomer für die kommenden Jahre erwarte. Trotz mittlerweile einigen Jahren Erfahrung gibt es noch reichlich Potential nach oben und viel Neues zu entdecken, gerade in einem so direkten Vergleich. Also seht mich ruhig als fortgeschrittenen BI-Analyst, der für sich herausfinden will, welche Tools aus Anwendersicht am besten geeignet sind und vielleicht kann ich dem ein oder anderen auch ein paar nützliche Tipps mit auf den Weg geben.

Was ist eigentlich eine „Analytical and Business Intelligence Platform“?

Für alle, die komplett neu im Thema sind, möchte ich erklären, was eine Analytical and Business Intelligence Platform in diesem Kontext ist und warum wir es nachfolgend auch einfach als BI-Tool bezeichnen können. Es sind Softwarelösungen zur Generierung von Erkenntnissen mittels Visualisierung und Informationsintegration von Daten. Sie sollten einfach handhabbar sein, weil der Nutzer für die Erstellung von Dashboards keine speziellen IT-Kenntnisse mitbringen muss und das Userinterface der jeweiligen Software einen mehr oder minder gut befähigt die meisten Features zu nutzen. Die meisten und zumindest die oben genannten lassen sich aber auch um komplexere Anwendungen und Programmiersprachen erweitern. Zudem bestimmt natürlich auch der Use Case den Schwierigkeitsgrad der Umsetzung.

Cloudbasierte BI Tools sind mittlerweile der Standard und folgen dem allgemeinen Trend. Die klassische Desktop-Version wird aber ebenfalls von den meisten angeboten. Von den oben genannten haben lediglich Data Studio und Looker keine Desktop- Version. Für den einfachen User macht das keinen großen Unterschied, welche Version man nutzt. Aber für das Unternehmen in Gesamtheit ist es ein wesentlicher Entscheidungsfaktor für die Wahl der Software und auch auf den Workflow des Developers bzw. BI-Analyst kann sich das auswirken.

Unternehmensperspektive: Strategie & Struktur

Die Unternehmensstrategie setzt einen wesentlichen Rahmen zur Entwicklung einer Datenstrategie worunter auch ein anständiges Konzept zur Data Governance gehört.

Ein wesentlicher Punkt der Datenstrategie ist die Verteilung der BI- und Datenkompetenz im Unternehmen. An der Entwicklung der Dashboards arbeiten in der Regel zwei Parteien, der Developer, der im Unternehmen meistens die Bezeichnung BI- oder Data Analyst hat, und der Stakeholder, also einzelner User oder die User ganzer Fachabteilungen.

Prognose: Laut Gartner wird die Anzahl der Daten- und Analyse-Experten in den Fachabteilungen, also die Entwickler und Benutzer von BI Tools, drei Mal so schnell wachsen verglichen mit dem bereits starken Wachstum an IT-Fachkräften.

Nicht selten gibt es für ein Dashboard mehrere Stakeholder verschiedener Abteilungen. Je nach Organisation und Softwarelösung mit unterschiedlich weitreichenden Verantwortlichkeiten, was die Entwicklung eines Dashboards an geht.

Die obige Grafik zeigt die wesentlichen Prozessschritte von der Konzeption bis zum fertigen Dashboard und drei oft gelebte Konzepte zur Verteilung der Aufgaben zwischen dem User und dem Developer. Natürlich handelt es sich fast immer um einen iterativen Prozess und am Ende stellen sich auch positive Nebenerkenntnisse heraus. Verschiedene Tools unterstützen durch Ihre Konfiguration und Features verschiedene Ansätze zur Aufgabenverteilung, auch wenn mit jedem Tool fast jedes System gelebt werden kann, provozieren einige Tools mit ihrem logischen Aufbau und dem Lizenzmodell zu einer bestimmten Organisationsform. Looker zum Beispiel verkauft mit der Software das Konzept, dem User eine größere Möglichkeit zu geben, das Dashboard in Eigenregie zu bauen und gleichzeitig die Datenhoheit an den richtigen Stellen zu gewährleisten (mittlerer Balken in der Grafik). Somit wird dem User eine höhere Verantwortung übertragen und weit mehr Kompetenzen müssen vermittelt werden, da der Aufbau von Visualisierung ebenfalls Fehlerpotential in sich birgt. Ein Full‑Service hingegen unterstützt das Konzept fast aller Tools durch Zuweisen von Berechtigungen. Teilweise werden aber gewisse kostenintensive Features nicht genutzt oder auf Cloud-Lizenzen verzichtet, so dass jeder Mitarbeiter unabhängig auf einer eigenen Desktop-Version arbeitet, am Ende dann leider die Single Source of Truth nicht mehr gegeben ist. Denn das führt eigentlich gezwungenermaßen dazu, dass die User sich aus x beliebigen Datentöpfen bedienen, ungeschultes Personal falsche Berechnungen anstellt und am Ende die unterschiedlichen Abteilungen sich mit schlichtweg falschen KPIs überbieten. Das spricht meistens für ein Unternehmen ohne vollumfängliches Konzept für Data Governance bzw. einer fehlenden Datenstrategie.

Zu dem Thema könnte man einen Roman schreiben und um euch diesen zu ersparen, möchte ich kurz die wichtigsten Fragestellungen aus Unternehmensperspektive aufzählen, ohne Anspruch auf Vollständigkeit:

  • Wann wird ein Return on Invest (ROI) realisiert werden?
  • Wie hoch ist mein Budget für BI-Lösungen?
  • Sollen die Mitarbeiter mit BI-Kompetenz zentral oder dezentral organisiert sein?
  • Wie ist meine Infrastruktur aufgebaut? Cloudbasiert oder on Premise?
  • Soll der Stakeholder/User Zeit-Ressourcen für den Aufbau von Dashboards erhalten?
  • Über welche Skills verfügen die Mitarbeiter bereits?
  • Welche Autorisierung in Bezug auf die Datensichtbarkeit und -manipulation haben die jeweiligen Mitarbeiter der Fachabteilungen?
  • Bedarf an Dashboards: Wie häufig werden diese benötigt und wie oft werden bestehende Dashboards angepasst?
  • Kann die Data Exploration durch den Stakeholder/User einen signifikanten Mehrwert liefern?
  • Werden Dashboards in der Regel für mehrere Stakeholder gebaut?

Die Entscheidung für die Wahl eines Dashboards ist nicht nur davon abhängig, wie sich die Grafiken von links nach rechts schieben lassen, sondern es handelt sich auch um eine wichtige strategische Frage aus Unternehmersicht.

Ein Leitsatz hierbei sollte lauten:
Die Strategie des Unternehmens bestimmt die Anforderungen an das Tool und nicht andersrum!

Perspektive eines Entwicklers:      Bewertungsgrundlage der Tools

So jetzt Mal Butter bei die Fische und ab zum Kern des Artikels. Jeder der Artikel wird aus den folgenden Elementen bestehen:

  • Das Tool:
    • Daten laden
    • Daten transformieren
    • Daten visualisieren
    • Zukunftsfähigkeit am Beispiel von Pythonintegration
    • Handhabbarkeit
  • Umweltfaktoren:
    • Community
    • Dokumentation
    • Features anderer Entwickler(-firmen) zur Erweiterung
    • Lizenzmodell
      • Cloud (SaaS) ODER on premise Lizenzen?
      • Preis (pro Lizenz, Unternehmenslizenz etc.)
      • Freie Version

 

Im Rahmen dieser Artikelserie erscheinen im Laufe der kommenden Monate folgende Artikel zu den Reviews der BI-Tools:

  1. Power BI von Microsoft
  2. Tableau
  3. Qlik Sense
  4. MicroStrategy (erscheint demnächst)
  5. Looker (erscheint demnächst)

Über einen vorausgehend veröffentlichten Artikel wird die Datengrundlage erläutert, die für alle Reviews gemeinsam verwendet wird: Vorstellung der Datengrundlage

Mit Dashboards zur Prozessoptimierung

Geschäftlicher Erfolg ergibt sich oft aus den richtigen Fragen – zum Beispiel: „Wie kann ich sicherstellen, dass mein Produkt das beste ist?“, „Wie hebe ich mich von meinen Mitbewerbern ab?“ und „Wie baue ich mein Unternehmen weiter aus?“ Moderne Unternehmen gehen über derartige Fragen hinaus und stellen vielmehr die Funktionsweise ihrer Organisation in den Fokus. Fragen auf dieser Ebene lauten dann: „Wie kann ich meine Geschäftsprozesse so effizient wie möglich gestalten?“, „Wie kann ich Zusammenarbeit meiner Mitarbeiter verbessern?“ oder auch „Warum funktionieren die Prozesse meines Unternehmens nicht so, wie sie sollten?“


Read this article in English: 
“Process Paradise by the Dashboard Light”


Um die Antworten auf diese (und viele andere!) Fragen zu erhalten, setzen immer mehr Unternehmen auf Process Mining. Process Mining hilft Unternehmen dabei, den versteckten Mehrwert in ihren Prozessen aufzudecken, indem Informationen zu Prozessmodellen aus den verschiedenen IT-Systemen eines Unternehmens automatisch erfasst werden. Auf diese Weise kann die End-to-End-Prozesslandschaft eines Unternehmens kontinuierlich überwacht werden. Manager und Mitarbeiter profitieren so von operativen Erkenntnissen und können potenzielle Risiken ebenso erkennen wie Möglichkeiten zur Verbesserung.

Process Mining ist jedoch keine „Wunderwaffe“, die Daten auf Knopfdruck in Erkenntnisse umwandelt. Eine Process-Mining-Software ist vielmehr als Werkzeug zu betrachten, das Informationen erzeugt, die anschließend analysiert und in Maßnahmen umgesetzt werden. Hierfür müssen die generierten Informationen den Entscheidungsträgern jedoch auch in einem verständlichen Format zur Verfügung stehen.

Bei den meisten Process-Mining-Tools steht nach wie vor die Verbesserung der Analysefunktionen im Fokus und die generierten Daten müssen von Experten oder Spezialisten innerhalb einer Organisation bewertet werden. Dies führt zwangsläufig dazu, dass es zwischen den einzelnen Schritten zu Verzögerungen kommt und die Abläufe bis zur Ergreifung von Maßnahmen ins Stocken geraten.

Process-Mining-Software, die einen kooperativeren Ansatz verfolgt und dadurch das erforderliche spezifische Fachwissen verringert, kann diese Lücke schließen. Denn nur wenn Informationen, Hypothesen und Analysen mit einer Vielzahl von Personen geteilt und erörtert werden, können am Ende aussagekräftige Erkenntnisse gewonnen werden.

Aktuelle Process-Mining-Software kann natürlich standardisierte Berichte und Informationen generieren. In einem sich immer schneller ändernden Geschäftsumfeld reicht dies jedoch möglicherweise nicht mehr aus. Das Erfolgsgeheimnis eines wirklich effektiven Process Minings besteht darin, Herausforderungen und geschäftliche Möglichkeiten vorherzusehen und dann in Echtzeit auf sie zu reagieren.

Dashboards der Zukunft

Nehmen wir ein analoges Beispiel, um aufzuzeigen, wie sich das Process Mining verbessern lässt. Der technologische Fortschritt soll die Dinge einfacher machen: Denken Sie beispielsweise an den Unterschied zwischen der handschriftlichen Erfassung von Ausgaben und einem Tabellenkalkulator. Stellen Sie sich nun vor, die Tabelle könnte Ihnen genau sagen, wann Sie sie lesen und wo Sie beginnen müssen, und würde Sie auf Fehler und Auslassungen aufmerksam machen, bevor Sie überhaupt bemerkt haben, dass sie Ihnen passiert sind.

Fortschrittliche Process-Mining-Tools bieten Unternehmen, die ihre Arbeitsweise optimieren möchten, genau diese Art der Unterstützung. Denn mit der richtigen Process-Mining-Software können individuelle operative Cockpits erstellt werden, die geschäftliche Daten in Echtzeit mit dem Prozessmanagement verbinden. Der Vorteil: Es werden nicht nur einzelne Prozesse und Ergebnisse kontinuierlich überwacht, sondern auch klare Einblicke in den Gesamtzustand eines Unternehmens geboten.

Durch die richtige Kombination von Process Mining mit den vorhandenen Prozessmodellen eines Unternehmens werden statisch dargestellte Funktionsweisen eines bestimmten Prozesses in dynamische Dashboards umgewandelt. Manager und Mitarbeiter erhalten so Warnungen über potenzielle Probleme und Schwachstellen in Ihren Prozessen. Und denken Sie daran, dynamisch heißt nicht zwingend störend: Die richtige Process-Mining-Software setzt an der richtigen Stelle in Ihren Prozessen an und bietet ein völlig neues Maß an Prozesstransparenz und damit an Prozessverständnis.

Infolgedessen können Transformationsinitiativen und andere Verbesserungspläne jederzeit angepasst und umstrukturiert werden und Entscheidungsträger mittels automatisierter Nachrichten sofort über Probleme informiert werden, sodass sich Korrekturmaßnahmen schneller als je zuvor umsetzen lassen. Der Vorteil: Unternehmen sparen Zeit und Geld, da Zykluszeiten verkürzt, Engpässe lokalisiert und nicht konforme Prozesse in der Prozesslandschaft der Organisation aufgedeckt werden.

Dynamische Dashboards von Signavio

 Testen Sie Signavio Process Intelligence und erleben Sie selbst, wie die modernste und fortschrittlichste Process-Mining-Software Ihnen dabei hilft, umsetzbare Einblicke in die Funktionsweise Ihres Unternehmens zu erhalten. Mit Signavios Live Insights profitieren Sie von einer zentralen Ansicht Ihrer Prozesse und Informationen, die in Form eines Ampelsystems dargestellt werden. Entscheiden Sie einfach, welche Prozesse und Aktivitäten Sie innerhalb eines Prozesses überwachen möchten, platzieren Sie Indikatoren und wählen Sie Grenzwerte aus. Alles Weitere übernimmt Signavio Process Intelligence, das Ihre Prozessmodelle mit den Daten verbindet.

Lassen Sie veraltete Arbeitsweisen hinter sich. Setzen Sie stattdessen auf faktenbasierte Erkenntnisse, um Ihre Geschäftstransformation zu unterstützen und Ihre Prozessmanagementinitiativen schneller zum Erfolg zu führen. Erfahren Sie mehr über Signavio Process Intelligence oder registrieren Sie sich für eine kostenlose 30-Tage-Testversion über www.signavio.com/try.

Erfahren Sie in unserem kostenlosen Whitepaper mehr über erfolgreiches Process Mining mit Signavio Process Intelligence.

Einstieg in Natural Language Processing – Teil 2: Preprocessing von Rohtext mit Python

Dies ist der zweite Artikel der Artikelserie Einstieg in Natural Language Processing.

In diesem Artikel wird das so genannte Preprocessing von Texten behandelt, also Schritte die im Bereich des NLP in der Regel vor eigentlichen Textanalyse durchgeführt werden.

Tokenizing

Um eingelesenen Rohtext in ein Format zu überführen, welches in der späteren Analyse einfacher ausgewertet werden kann, sind eine ganze Reihe von Schritten notwendig. Ganz allgemein besteht der erste Schritt darin, den auszuwertenden Text in einzelne kurze Abschnitte – so genannte Tokens – zu zerlegen (außer man bastelt sich völlig eigene Analyseansätze, wie zum Beispiel eine Spracherkennung anhand von Buchstabenhäufigkeiten ect.).

Was genau ein Token ist, hängt vom verwendeten Tokenizer ab. So bringt NLTK bereits standardmäßig unter anderem BlankLine-, Line-, Sentence-, Word-, Wordpunkt- und SpaceTokenizer mit, welche Text entsprechend in Paragraphen, Zeilen, Sätze, Worte usw. aufsplitten. Weiterhin ist mit dem RegexTokenizer ein Tool vorhanden, mit welchem durch Wahl eines entsprechenden Regulären Ausdrucks beliebig komplexe eigene Tokenizer erstellt werden können.

Üblicherweise wird ein Text (evtl. nach vorherigem Aufsplitten in Paragraphen oder Sätze) schließlich in einzelne Worte und Interpunktionen (Satzzeichen) aufgeteilt. Hierfür kann, wie im folgenden Beispiel z. B. der WordTokenizer oder die diesem entsprechende Funktion word_tokenize() verwendet werden.

rawtext = 'This is a short example text that needs to be cleaned.'

tokens = nltk.word_tokenize(rawtext)

tokens
['This', 'is', 'a', 'short', 'example', 'text', 'that', 'needs', 'to',  'be',  'cleaned',  '.']

Stemming & Lemmatizing

Andere häufig durchgeführte Schritte sind Stemming sowie Lemmatizing. Hierbei werden die Suffixe der einzelnen Tokens des Textes mit Hilfe eines Stemmers in eine Form überführt, welche nur den Wortstamm zurücklässt. Dies hat den Zweck verschiedene grammatikalische Formen des selben Wortes (welche sich oft in ihrer Endung unterscheiden (ich gehe, du gehst, er geht, wir gehen, …) ununterscheidbar zu machen. Diese würden sonst als mehrere unabhängige Worte in die darauf folgende Analyse eingehen.

Neben bereits fertigen Stemmern bietet NLTK auch für diesen Schritt die Möglichkeit sich eigene Stemmer zu programmieren. Da verschiedene Stemmer Suffixe nach unterschiedlichen Regeln entfernen, sind nur die Wortstämme miteinander vergleichbar, welche mit dem selben Stemmer generiert wurden!

Im forlgenden Beispiel werden verschiedene vordefinierte Stemmer aus dem Paket NLTK auf den bereits oben verwendeten Beispielsatz angewendet und die Ergebnisse der gestemmten Tokens in einer Art einfachen Tabelle ausgegeben:

# Ready-to-use stemmers in nltk
porter = nltk.PorterStemmer()
lancaster = nltk.LancasterStemmer()
snowball = nltk.SnowballStemmer(language='english')

# Printing a table to compare the different stemmers
header = 'Token\tPorter\tLancas.\tSnowball'
print(header + '\n' + len(header) * '-')
for token in tokens:
    print('\t'.join([token, porter.stem(token), lancaster.stem(token), snowball.stem(token)]))


Token	Porter	Lancas.	Snowball
-----------------------------
This	thi 	thi 	this
is  	is  	is  	is
a    	a    	a    	a
short	short	short	short
example	exampl	exampl	exampl
text	text	text	text
that	that	that	that
needs	need	nee	need
to  	to  	to  	to
be  	be  	be  	be
cleaned	clean	cle 	clean
.   	.   	.   	.

Sehr ähnlich den Stemmern arbeiten Lemmatizer: Auch ihre Aufgabe ist es aus verschiedenen Formen eines Wortes die jeweilige Grundform zu bilden. Im Unterschied zu den Stemmern ist das Lemma eines Wortes jedoch klar als dessen Grundform definiert.

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmas = [lemmatizer.lemmatize(t) for t in tokens()]

Vokabular

Auch das Vokabular, also die Menge aller verschiedenen Worte eines Textes, ist eine informative Kennzahl. Bezieht man die Größe des Vokabulars eines Textes auf seine gesamte Anzahl verwendeter Worte, so lassen sich hiermit Aussagen zu der Diversität des Textes machen.

Außerdem kann das auftreten bestimmter Worte später bei der automatischen Einordnung in Kategorien wichtig werden: Will man beispielsweise Nachrichtenmeldungen nach Themen kategorisieren und in einem Text tritt das Wort „DAX“ auf, so ist es deutlich wahrscheinlicher, dass es sich bei diesem Text um eine Meldung aus dem Finanzbereich handelt, als z. B. um das „Kochrezept des Tages“.

Dies mag auf den ersten Blick trivial erscheinen, allerdings können auch mit einfachen Modellen, wie dem so genannten „Bag-of-Words-Modell“, welches nur die Anzahl des Auftretens von Worten prüft, bereits eine Vielzahl von Informationen aus Texten gewonnen werden.

Das reine Vokabular eines Textes, welcher in der Variable “rawtext” gespeichert ist, kann wie folgt in der Variable “vocab” gespeichert werden. Auf die Ausgabe wurde in diesem Fall verzichtet, da diese im Falle des oben als Beispiel gewählten Satzes den einzelnen Tokens entspricht, da kein Wort öfter als ein Mal vorkommt.

from nltk import wordpunct_tokenizer
from nltk.stem import WordNetLemmatizer

lemma = WordNetLemmatizer()

vocab = set([WordNetLemmatizer().lemmatize(t) for t in wordpunct_tokenize(text.lower())])

Stopwords

Unter Stopwords werden Worte verstanden, welche zwar sehr häufig vorkommen, jedoch nur wenig Information zu einem Text beitragen. Beispiele in der beutschen Sprache sind: der, und, aber, mit, …

Sowohl NLTK als auch cpaCy bringen vorgefertigte Stopwordsets mit. 

from nltk.corpus import stopwords
stoplist = stopwords.words('english')
stopset = set(stopwords.words('english'))

[t for t in tokens if not t in stoplist]
['This', 'short', 'example', 'text', 'needs', 'cleaned', '.']

Vorsicht: NLTK besitzt eine Stopwordliste, welche erst in ein Set umgewandelt werden sollte um die lookup-Zeiten kurz zu halten – schließlich muss jedes einzelne Token des Textes auf das vorhanden sein in der Stopworditerable getestet werden!

%timeit [w for w in tokens if not w in stopset] # 1.11 ms
%timeit [w for w in tokens if not w in stoplist] # 26.6 ms

POS-Tagging

POS-Tagging steht für „Part of Speech Tagging“ und entspricht ungefähr den Aufgaben, die man noch aus dem Deutschunterricht kennt: „Unterstreiche alle Subjekte rot, alle Objekte blau…“. Wichtig ist diese Art von Tagging insbesondere, wenn man später tatsächlich strukturiert Informationen aus dem Text extrahieren möchte, da man hierfür wissen muss wer oder was als Subjekt mit wem oder was als Objekt interagiert.

Obwohl genau die selben Worte vorkommen, bedeutet der Satz „Die Katze frisst die Maus.“ etwas anderes als „Die Maus frisst die Katze.“, da hier Subjekt und Objekt aufgrund ihrer Reihenfolge vertauscht sind (Stichwort: Subjekt – Prädikat – Objekt ).

Weniger wichtig ist dieser Schritt bei der Kategorisierung von Dokumenten. Insbesondere bei dem bereits oben erwähnten Bag-of-Words-Modell, fließen POS-Tags überhaupt nicht mit ein.

Und weil es so schön einfach ist: Die obigen Schritte mit spaCy

Die obigen Methoden und Arbeitsschritte, welche Texte die in natürlicher Sprache geschrieben sind, allgemein computerzugänglicher und einfacher auswertbar machen, können beliebig genau den eigenen Wünschen angepasst, einzeln mit dem Paket NLTK durchgeführt werden. Dies zumindest einmal gemacht zu haben, erweitert das Verständnis für die funktionsweise einzelnen Schritte und insbesondere deren manchmal etwas versteckten Komplexität. (Wie muss beispielsweise ein Tokenizer funktionieren der den Satz “Schwierig ist z. B. dieser Satz.” korrekt in nur einen Satz aufspaltet, anstatt ihn an jedem Punkt welcher an einem Wortende auftritt in insgesamt vier Sätze aufzuspalten, von denen einer nur aus einem Leerzeichen besteht?) Hier soll nun aber, weil es so schön einfach ist, auch das analoge Vorgehen mit dem Paket spaCy beschrieben werden:

import spacy

nlp = spacy.load('en')
doc = nlp(rawtext)

Dieser kurze Codeabschnitt liest den an spaCy übergebenen Rohtext in ein spaCy Doc-Object ein und führt dabei automatisch bereits alle oben beschriebenen sowie noch eine Reihe weitere Operationen aus. So stehen neben dem immer noch vollständig gespeicherten Originaltext, die einzelnen Sätze, Worte, Lemmas, Noun-Chunks, Named Entities, Part-of-Speech-Tags, ect. direkt zur Verfügung und können.über die Methoden des Doc-Objektes erreicht werden. Des weiteren liegen auch verschiedene weitere Objekte wie beispielsweise Vektoren zur Bestimmung von Dokumentenähnlichkeiten bereits fertig vor.

Die Folgende Übersicht soll eine kurze (aber noch lange nicht vollständige) Übersicht über die automatisch von spaCy generierten Objekte und Methoden zur Textanalyse geben:

# Textabschnitte
doc.text                                 # Originaltext
sents = doc.sents                        # Sätze des Dokuments
tokens = [token for token in doc]        # Tokens/Worte des Dokuments
parags = doc.text_with_ws.split('\n\n')  # Absätze des Dokuments

# Eigenschaften einzelner Tokens
[t.lemma_ for t in doc]                  # Lemmata der einzelnen Tokens
[t.tag_ for t in doc]                    # POS-Tags der einzelnen Tokens

# Objekte zur Textanalyse
doc.vocab                                # Vokabular des Dokuments
doc.sentiment                            # Sentiment des Dokuments
doc.noun_chunks                          # NounChunks des Dokuments
entities = [ent for ent in doc.ents]     # Named Entities (Persons, Locations, Countrys)

# Objekte zur Dokumentenklassifikation
doc.vector                               # Vektor
doc.tensor                               # Tensor

Diese „Vollautomatisierung“ der Vorabschritte zur Textanalyse hat jedoch auch seinen Preis: spaCy geht nicht gerade sparsam mit Ressourcen wie Rechenleistung und Arbeitsspeicher um. Will man einen oder einige Texte untersuchen so ist spaCy oft die einfachste und schnellste Lösung für das Preprocessing. Anders sieht es aber beispielsweise aus, wenn eine bestimmte Analyse wie zum Beispiel die Einteilung in verschiedene Textkategorien auf eine sehr große Anzahl von Texten angewendet werden soll. In diesem Fall, sollte man in Erwägung ziehen auf ressourcenschonendere Alternativen wie zum Beispiel gensim auszuweichen.

Wer beim lesen genau aufgepasst hat, wird festgestellt haben, dass ich im Abschnitt POS-Tagging im Gegensatz zu den anderen Abschnitten auf ein kurzes Codebeispiel verzichtet habe. Dies möchte ich an dieser Stelle nachholen und dabei gleich eine Erweiterung des Pakets spaCy vorstellen: displaCy.

Displacy bietet die Möglichkeit, sich Zusammenhänge und Eigenschaften von Texten wie Named Entities oder eben POS-Tagging graphisch im Browser anzeigen zu lassen.

import spacy
from spacy import displacy

rawtext = 'This is a short example sentence that needs to be cleaned.'

nlp = spacy.load('en')
doc = nlp(rawtext)
displacy.serve(doc, style='dep')

Nach ausführen des obigen Codes erhält man eine Ausgabe die wie folgt aussieht:

Serving on port 5000...
Using the 'dep' visualizer

Nun öffnet man einen Browser und ruft die URL ‘http://127.0.0.1:5000’ auf (Achtung: localhost anstatt der IP funktioniert – warum auch immer – mit displacy nicht). Im Browser sollte nun eine Seite mit einem SVG-Bild geladen werden, welches wie folgt aussieht

Die Abbildung macht deutlich was POS-Tagging genau ist und warum es von Nutzen sein kann wenn man Informationen aus einem Text extrahieren will. Jedem Word (Token) ist eine Wortart zugeordnet und die Beziehung der einzelnen Worte durch Pfeile dargestellt. Dies ermöglicht es dem Computer zum Beispiel in dem Satzteil “der grüne Apfel”, das Adjektiv “grün” auf das Nomen “Apfel” zu beziehen und diesem somit als Eigenschaft zuzuordnen.

Nachdem dieser Artikel wichtige Schritte des Preprocessing von Texten beschrieben hat, geht es im nächsten Artikel darum was man an Texten eigentlich analysieren kann und welche Analysemöglichkeiten die verschiedenen für Python vorhandenen Module bieten.

Analyse der Netzwerktopologie des Internets auf Basis des IPv4-Protokolls

Wie kommen Daten die man via Internet quer durch die Welt sendet eigentlich an ihr Ziel? Welchen Weg nehmen beispielsweise die Datenpakete, wenn ich von mir zu Hause eine Datei an meinen Nachbarn ein Haus weiter sende? Wie groß ist der “Umweg”, den die Daten nehmen? Und macht es eigentlich einen Unterschied, ob ich www.google.de, www.google.com oder www.google.nl aufrufe, oder gehen alle Suchanfragen sowieso an dasselbe Ziel?

Fragen wie diese lassen sich durch eine Kombination von Tools wie traceroute oder tracepath und geoiplookup beantworten und unter Verwendung des Python-Paketes geoplotlib sogar graphisch auf einer Weltkarte darstellen. Die so gewonnenen Ergebnisse zeigen Teile der Netzwerktopologie des Internets auf und führen zu interessanten, teils unerwarteten Erkenntnissen.

Ziel dieses Artikels soll sein, ein möglichst einfaches Tutorial zum selber mitbasteln bereit zu stellen. Die einzelnen Schritte die hierfür notwendig sind, werden möglichst einfach verständlich dargestellt und erklärt, trotzdem sind zum vollständigen Verständnis grundlegende Kenntnisse in Python sowie der Kommandozeile hilfreich. Er richtet sich aber auch an alle, die sich einfach einmal etwas in ihrer virtuellen Umgebung „umschauen“ möchten oder einfach nur an den Ergebnissen interessiert sind, ohne sich mit den Details und wie diese umgesetzt werden, auseinander setzen zu wollen.  Am Ende des Artikels werden die einzelnen Skripte des Projekts als zip-Datei bereitgestellt.

Hinweis: Diese Anleitung bezieht sich auf ein Linux-System und wurde unter Ubuntu getestet. Windows-User können beispielsweise mit dem Befehl tracert (als Ersatz für traceroute) ähnliche Ergebnisse erziehlen, jedoch muss dann das Parsing der IP-Adressen abgeändert werden.

1. Grundsätzliches Erkunden der Route, die ein Datenpaket nimmt

Hierfür wird ein Programm wie traceroute, tracepath oder nmap benötigt, welches durch Versenden von „abgelaufenen Datenpaketen“ die Hosts „auf dem Weg“ zum Ziel dazu bringt, ihre IPv4-Adresse zurück zu geben. In diesem Artikel wird beispielhaft traceroute verwendet, da dieses unter den meisten Linux-Versionen bereits zur „Grundausstattung“ gehört und somit für diesen Schritt keine weitere Software installiert werden muss. Die Verwendung von traceroute folgt der Syntax:

sudo traceroute ${ZIEL}

Als Ziel muss hier die IP-Adresse bzw. der Domainname des Zielrechners angegeben werden. Ein Beispiel soll dies vereinfachen:

$ sudo traceroute www.google.de
traceroute to www.google.de (172.217.22.99), 64 hops max
  1   192.168.0.1  167,148ms  3,200ms  11,636ms 
  2   83.169.183.11  21,389ms  19,380ms  88.134.203.107  16,746ms 
  3   88.134.203.107  27,431ms  24,063ms  * 
  4   88.134.237.6  1679,865ms  *  130,818ms 
  5   88.134.235.207  58,815ms  84,150ms  * 
  6   72.14.198.218 144,998ms  107,364ms  108.170.253.68  121,851ms 
  7   108.170.253.84  58,323ms  101,127ms  216.239.57.218  44,461ms 
  8   216.239.57.218  43,722ms  91,544ms  172.253.50.100  67,971ms 
  9   172.253.50.214  106,689ms  96,100ms  216.239.56.130  110,334ms 
 10   209.85.241.145  63,720ms  61,387ms  209.85.252.76  73,724ms 
 11   209.85.252.28  71,214ms  61,828ms  108.170.251.129  81,470ms 
 12   108.170.251.129  64,262ms  52,056ms  72.14.234.115  71,661ms 
 13   72.14.234.113  262,988ms  55,005ms  172.217.22.99  66,043ms 

Im Beispiel wird die Route zum Hostrechner mit der Domain www.google.de ermittelt. In der ersten Spalte der Ausgabe ist die Nummer des jeweiligen „Hops“ zu sehen. Wichtig ist insbesondere die zweite Spalte, welche die IPv4-Adresse des jeweiligen Rechners auf dem Weg zum Ziel darstellt. Die folgenden Spalten enthalten weitere Informationen wie Antwortzeiten der jeweiligen Server und die IP-Adressen der Folge-Server.

Um die Ausgabe in eine Form umzuwandeln, welche später einfacher von Python gelesen werden kann, muss diese noch ausgelesen werden (Parsing). zuerst soll die erste Zeile der Ausgabe herausgeschnitten werden, da diese zwar informativ, jedoch kein Teil der eigentlichen Route ist. Dies kann sehr einfach durchgeführt werden, indem die Ausgabe des traceroute-Befehls an einen Befehl wie beispielsweise sed „gepiped“ (also weitergeleitet) wird. Die dabei entstehende Pipe sieht dann wie folgt aus:

sudo traceroute ${ZIEL} | sed '1d'

Um bei unserem Beispiel mit der Route zu www.google.de zu bleiben, sieht der Befehl und die Entsprechende Ausgabe wie folgt aus:

$ sudo traceroute   | sed '1d'
  1   192.168.0.1  167,148ms  3,200ms  11,636ms 
  2   83.169.183.11  21,389ms  19,380ms  88.134.203.107  16,746ms 
  3   88.134.203.107  27,431ms  24,063ms  * 
  4   88.134.237.6  1679,865ms  *  130,818ms 
  5   88.134.235.207  58,815ms  84,150ms  * 
  6   72.14.198.218 144,998ms  107,364ms  108.170.253.68  121,851ms 
  7   108.170.253.84  58,323ms  101,127ms  216.239.57.218  44,461ms 
  8   216.239.57.218  43,722ms  91,544ms  172.253.50.100  67,971ms 
  9   172.253.50.214  106,689ms  96,100ms  216.239.56.130  110,334ms 
 10   209.85.241.145  63,720ms  61,387ms  209.85.252.76  73,724ms 
 11   209.85.252.28  71,214ms  61,828ms  108.170.251.129  81,470ms 
 12   108.170.251.129  64,262ms  52,056ms  72.14.234.115  71,661ms 
 13   72.14.234.113  262,988ms  55,005ms  172.217.22.99  66,043ms 

Anschließend soll die zweite Spalte der Ausgabe herausgeschnitten werden. Dies ist am einfachsten mit dem Befehl awk zu bewerkstelligen. Das Prinzip dahinter ist das gleiche wie im obigen Schritt: die Ausgabe des vorherigen Befehls wird dem Befehl awk als Eingabe weitergeleitet, womit der gesamte Befehl nun wie folgt aussieht:

sudo traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }'

Bezogen auf das google-Beispiel sehen Ein- und Ausgabe nun so aus:

$ sudo traceroute | sed '1d' | awk '{ print $2 }'
192.168.0.1
83.169.183.11
88.134.203.107
88.134.237.6
88.134.235.207
72.14.198.218
108.170.253.84
216.239.57.218
172.253.50.214
209.85.241.145
209.85.252.28
108.170.251.129
72.14.234.113

Im letzten Schritt sollen die einzelnen IP-Adressen durch Leerzeichen getrennt in eine einzelne Zeile geschrieben werden. Sinn dieses Schrittes ist, dass später viele Zielrechner nacheinander aus einer Datei eingelesen werden können und jede Route zu einem Zielrechner als eine einzelne Zeile in eine Zieldatei geschrieben wird.
Auch dieser Schritt funktioniert ähnlich wie die obigen Schritte, indem die Ausgabe des letzten Schrittes an einen weiteren Befehl weitergeleitet wird, der diese Funktion erfüllt. Dieser Schritt könnte wieder mit dem Befehl sed durchgeführt werden, da aber nur ein einzelnes Zeichen (nämlich das Zeilenumbruch-Zeichen bzw. Newline) durch ein Leerzeichen ersetzt werden soll, wird hier aufgrund der einfacheren Syntax der Befehl tr verwendet.
Der fertige Befehl sieht nun wie folgt aus:

sudo traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }' | tr '\n' ' '

Oder im fertigen Beispiel mit www.google.de:

$ sudo traceroute   | sed '1d' | awk '{ print $2 }' | tr '\n' ' '
192.168.0.1 83.169.183.11 88.134.203.107 88.134.237.6 88.134.235.207 72.14.198.218 108.170.253.84 216.239.57.218 172.253.50.214 209.85.241.145 209.85.252.28 108.170.251.129 72.14.234.113

Hiermit ist das Parsen abgeschlossen und die fertige Ausgabe kann nun in eine Ergebnisdatei geschrieben werden. Um automatisch viele Zielrechner aus einer Datei einzulesen und alle gefundenen Routen in eine Zieldatei zu schreiben, wird der obige Befehl in eine Schleife „verpackt“ welche die Zielrechner Zeile für Zeile aus der Datei zieladressen.txt ausliest und die gefundenen Routen ebenso Zeile für Zeile in die Datei routen.csv schreibt. Die Datei routen.csv kann später zur Ermittlung verschiedener Informationen zu den gefunden IP-Adressen einfach mit einem Python-Skript eingelesen und geparst werden.

In diesem Artikel wird das fertige Skript ohne weitere Erklärung in der beiliegenden zip-Datei bereitgestellt. Wen die genaue Funktionsweise der Schleife interessiert, sei angehalten sich generell über die Funktionsweise von Shellskripten einzulesen, da dies den Rahmen des Artikels sprengen würde.

#/bin/sh

cat zieladressen.txt | while read ZIEL; do
    printf 'Ermittle Route nach: %s\n' "${ZIEL}"
    traceroute ${ZIEL} | sed '1d' | awk '{ print $2 }' | tr '\n' ' ' >> routes.csv
    printf '\n' >> routes.csv
done

cat routes.csv | tr -d \* | tr -s ' ' > routes_corrected.csv
mv routes_corrected.csv routes.csv

Dieses Skript benötigt die Datei zieladressen.txt welche wie folgt aussehen muss (anstatt Domainnamen können auch direkt IPv4-Adressen verwendet werden):

www.google.de
www.github.com
www.google.nl
...

2. Sammeln von (Geo-)Informationen zu bestimmten IPv4-Adressen

Die gefundenen IPv4-Adressen können anschließend mit dem Befehl geoiplookup oder über die Internetseite http://geoiplookup.net/ relativ genau (meißtens auf Städteniveau) lokalisiert werden. Dies funktioniert, da einzelne Subnets in der Regel bestimmten Regionen und Internetprovidern zugeordnet sind.

Der Befehl geoiplookup greift hierbei auf eine vorher installierte und lokal gespeicherte Datenbank zu, welche je nach installierter Version als Country- oder City-Edition vorliegt. Da geoiplookup nicht zu den Standartbordmitteln unter Linux gehört und um die weiteren Schritte auch Benutzern anderer Betriebssysteme zu ermöglichen, wird hier nur ein kurzes Beispiel der Benutzung dieses Befehls und dessen Ausgabe gegeben und im weiteren die Online-Abfrage mittels eines Python-Skriptes beschrieben.

$ geoiplookup 172.217.22.99
GeoIP Country Edition: US, United States
GeoIP City Edition, Rev 1: US, CA, California, Mountain View, 94043, 37.419201, -122.057404, 807, 650
GeoIP ASNum Edition: AS15169 Google Inc.

Die Internetseite http://geoiplookup.net bietet einen Onlineservice welcher Geo- und weitere Informationen zu gegebenen IPv4-Adressen bereitstellt. Öffnet man die Seite ohne Angabe einer IP-Adresse in einem Browser, so erhält man die entsprechenden Informationen über die eigene IP-Adresse. (Achtung: die Verwendung eines Proxies oder gar Tor führt zwangsläufig zu falschen Ergebnissen.)

Da die Seite auch über eine API (also eine automatisierte Abfrageschnittstelle) unter der Adresse “http://api.geoiplookup.net/?query=${IPADRESSE}” verfügt, kann man die entsprechenden Informationen zu den IP-Adressen mittels eines Pythonskriptes abfragen und auswerten. Als Antwort erhält man eine XML‑Datei welche beispielsweise folgendermaßen aussieht:

<ip>
  <results>
    <result>
      <ip>77.20.253.87</ip>
      <host>77.20.253.87</host>
      <isp>Vodafone Kabel Deutschland</isp>
      <city>Hamburg</city>
      <countrycode>DE</countrycode>
      <countryname>Germany</countryname>
      <latitude>53.61530</latitude>
      <longitude>10.1162</longitude>
    </result>
  </results>
</ip>

Diese kann im Browser z. B. unter der Adresse http://api.geoiplookup.net/?query=77.20.253.87 aufgerufen werden (oder unter: http://api.geoiplookup.net/ für die eigene Adresse).

Um die hierin enthaltenen Informationen mit Hilfe von Python auszulesen lässt sich ElementTree aus aus dem Modul xml.etree, das in der Python-Standartbibliothek vorhanden ist, verwenden. Dies wird im beiliegenden Skript mit der Funktion get_hostinfo() bewerkstelligt:

def get_hostinfo(ipv4):
    ''' Returns geoiplookup information of agiven host adress as a dictionary.
    The adress can be given as a string representation 0f a DNS or IPv4 adress.

    get_hostinfo(str) -> dict

    Examples: get_hostinfo("www.github.com")
              get_hostinfo("151.101.12.133")
    '''

    apiurl = 'http://api.geoiplookup.net/?query='
    hostinfo = defaultdict(str, {})
    try:
        xml = urllib.request.urlopen(apiurl + dns2ipv4(ipv4)).read().decode()
        xml = xml.replace('&', '')
        tree = ETree.fromstring(xml)
        for element in tree.getiterator():
            hostinfo[element.tag] = element.text
    except:
        return hostinfo
    finally:
        return hostinfo

Diese parst die XML-Datei automatisch zu einem Python-DefaultDict das dann die entsprechenden Informationen enthält (das DefaultDict wird verwendet da normale Python Dictionaries zu Fehlern führen, wenn nicht gesetzte Werte abgefragt werden). Die Ausgabe der Funktion sieht dann wie folgt aus:

In [3]: get_hostinfo('www.google.com')
Out[3]:
defaultdict(str,
            {'city': 'Mountain View',
             'countrycode': 'US',
             'countryname': 'United States',
             'host': '172.217.22.99',
             'ip': '172.217.22.99',
             'isp': 'Google',
             'latitude': '37.4192',
             'longitude': '-122.0574',
             'result': None,
             'results': None})

3. Plotten der gefundenen Routen mit geoplotlib auf einer Weltkarte

Wichtig für das anschließende Plotten ist hierbei die Geolocation also ‘latitude’ und ‘longitude’. Mit den Werten kann man anschließend die mit traceroute gefundenen Pfade als Basemap plotten. Dies funktioniert mit der Funktion drawroutes2map():

def drawroutes2map(routesfile='routes.csv'):
    drawroutes = list()
    for route in open(routesfile).readlines():
        ips = [ip2location(ip) for ip in route.strip().split(',')]
        print(ips)
        locs = [loc for loc in ips if not loc == None]
        longs = [loc[0] for loc in locs]
        lats = [loc[1] for loc in locs]
        m = minimalmap()
        drawroutes.append(tuple(m(lats, longs)))
        for drawroute in drawroutes:
            m.plot(drawroute[0], drawroute[1], '-', markersize=0, linewidth=1, color=rand_color())
            pickleto(drawroutes, 'tracedlocs.plk')
    plt.savefig('world.svg', format='svg')
    plt.savefig('world.png', format='png')
    plt.show()

Der Plot einer Verbindungsanfrage an www.google.de aus Berlin sieht beispielsweise folgendermaßen aus:

Hier wird deutlich, dass Datenpakete durchaus nicht immer den kürzesten Weg nehmen, sondern teilweise rund um die Welt gesendet werden (Deutschland – USA – Sydney(!) – USA), bevor sie an ihrem Ziel ankommen und dass das Ziel einer Verbindung zu einer Domain mit der Endung „de“ nicht unbedingt in Deutschland liegen muss.

Mit Default-Einstellungen werden von der Funktion drawroutes2map() alle Routen in zufälligen Farben geplottet, welche in der Datei routen.csv gefunden werden.

Lässt man viele Routen plotten wird hierbei die Netzwerkstruktur deutlich, über die die Daten im Internet verteilt werden. Auf dem obigen Plot kann man recht gut erkennen, dass die meisten Internetseiten in Europa oder den USA gehostet werden, einige noch in China und Japan, dagegen beispielsweise Afrika praktisch unbedeutend ist.

Auf dem nächsten Plot wiederum ist zu erkennen, dass es tatsächlich eine Art “Hotspots” gibt über die fast alle Daten laufen, wie z. B. Frankfurt am Main, Zürich und Madrid.

4. Schematische Darstellung der Routen als directed Graph mit graphviz

Mit graphviz lassen sich schematische Graphen darstellen. Mit dem Paket pygraphviz existiert hiefür auch eine Python-Anbindung. Die schematische Darstellung als Graph ist in vielen Fällen deutlich übersichtlicher als die Darstellung auf einer Weltkarte und die Topologie des Netzwerkes wird besser sichtbar.

Die entsprechende Python-Funktion, die alle Routen aus der Datei routes.csv als geplotteten Graph ausgibt ist drawroutes2graph():

def drawroutes2graph(routesfile='routes.csv'):
    '''Draws all routes found in the routesfile with graphviz to a Graph

        drawroutes2graph(file)

    '''
    routes = open(routesfile).readlines()
    for i in range(len(routes)):
        routes[i] = routes[i].replace('*', '').split()
        G = pgv.AGraph(strict=False, directed=True)

    for l in routes:
        for i in range(len(l)-1):
            if not (l[i], l[i+1]) in set(G.edges()):
                G.add_edge(l[i], l[i+1])

    for n in G.nodes():
        if get_hostinfo(n)['countrycode'] == 'DE':
            n.attr['color'] = 'green'
        elif get_hostinfo(n)['countrycode'] == 'US':
            n.attr['color'] = 'red'
        elif get_hostinfo(n)['countrycode'] == 'ES':
            n.attr['color'] = 'yellow'
        elif get_hostinfo(n)['countrycode'] == 'CH':
            n.attr['color'] = 'blue'
        elif get_hostinfo(n)['countrycode'] == 'CN':
            n.attr['color'] = 'magenta'

        G.write('routes.dot')
        
        G.layout('dot')
        G.draw('dot.png')

        G.layout()
        G.draw('neato.png')

Die Funktion schreibt den erstellten Graph in der Dot-Language in die Datei routes.dot und erstellt zwei verschiedene visuelle Darstellungen als png-Dateien.

Da mit der Funktion get_hostinfo() auch weitere Informationen zu den jeweiligen IP-Adressen verfügbar sind  können diese auch visuell im Graph dargestellt werden. So sind in der folgenden Darstellung Hosts in verschiedenen Ländern in unterschiedlichen Farben dargestellt. (Deutschland in grün, USA in rot, Spanien in gelb, Schweiz in blau, China in magenta und alle übrigen Länder und Hosts ohne Länderinformation in schwarz).

Diese Art der Darstellung vereint damit die Vorteile der schematischen Darstellung mit der Geoinformation zu den jeweiligen Hosts. Aus der Grafik lässt sich beispielsweise sehr gut erkennen, dass, trotz oft vieler Zwischenstationen innerhalb eines Landes, Landesgrenzen überschreitende Verbindungen relativ selten sind.

Auch interessant ist, dass das Netzwerk durchaus Maschen aufweist – mit anderen Worten: Dass ein und dieselbe Station bei verschiedenen Verbindungsanfragen über verschiedene Zwischenstationen angesprochen wird und Daten, die von Punkt A nach Punkt B gesendet werden, nicht immer denselben Weg nehmen.

5. Schlussfolgerung

Was kann man hieraus denn nun letztendlich an Erkenntnissen ziehen? Zum einen natürlich, wie Daten via Internet über viele Zwischenstationen rund um die Welt gesendet und hierbei mit jeder Station neu sortiert werden. Vor allem aber auch, dass mit dem entsprechenden Know-How und etwas Kreativität mit bemerkenswert wenig Code bereits Unmengen an Daten gesammelt, geordnet und ausgewertet werden können. Alle möglichen Daten werden in unserer heutigen Welt gespeichert und sind zu einem nicht unbeträchtlichen Teil auch für jeden, der weiß, wer diese Daten hat oder wie man sie selber ermitteln kann, verfügbar und oft lassen sich hier interessante Einblicke in die Funktionsweise unserer Welt gewinnen.