Wie lernen Maschinen?

Im dritten Teil meiner Reihe Wie lernen Maschinen? wollen wir die bisher kennengelernten Methoden anhand eines der bekanntesten Verfahren des Maschinellen Lernens – der Linearen Regression – einmal gegenüberstellen. Die Lineare Regression dient uns hier als Prototyp eines Verfahrens aus dem Gebiet der Regression, in weiteren Artikeln werden die Logistische Regression als Prototyp eines Verfahrens aus dem Gebiet der Klassifikation und eine Collaborative-Filtering- bzw. Matrix-Faktorisierungs-Methode als Prototyp eines Recommender-Systems behandelt.

Read more

Text Mining mit R

R ist nicht nur ein mächtiges Werkzeug zur Analyse strukturierter Daten, sondern eignet sich durchaus auch für erste Analysen von Daten, die lediglich in textueller und somit unstrukturierter Form vorliegen. Im Folgenden zeige ich, welche typischen Vorverarbeitungs- und Analyseschritte auf Textdaten leicht durchzuführen sind. Um uns das Leben etwas leichter zu machen, verwenden wir dafür die eine oder andere zusätzliche R-Library.

Die gezeigten Schritte zeigen natürlich nur einen kleinen Ausschnitt dessen, was man mit Textdaten machen kann. Der Link zum kompletten R-Code (.RMD) findet sich am Ende des Artikels.

Sentimentanalyse

Wir verwenden das Anwendungsgebiet der Sentimentanalyse für diese Demonstration. Mittels der Sentimentanalyse versucht man, Stimmungen zu analysieren. Im Prinzip geht es darum, zu erkennen, ob ein Autor mit einer Aussage eine positive oder negative Stimmung oder Meinung ausdrückt. Je nach Anwendung werden auch neutrale Aussagen betrachtet.

Daten einlesen

Datenquelle: ‘From Group to Individual Labels using Deep Features’, Kotzias et. al,. KDD 2015

Die Daten liegen als cvs vor: Die erste Spalte enhält jeweils einen englischen Satz, gefolgt von einem Tab, gefolgt von einer 0 für negatives Sentiment und einer 1 für positives Sentiment. Nicht alle Sätze in den vorgegebenen Daten sind vorklassifiziert.

Wir lesen 3 Dateien ein, fügen eine Spalte mit der Angabe der Quelle hinzu und teilen die Daten dann in zwei Datensätze auf. Der Datensatz labelled enthält alle vorklassifizierten Sätze während alle anderen Sätze in unlabelled gespeichert werden.

## 'readSentiment' liest csv ein, benennt die Spalten und konvertiert die Spalte 'sentiment' zu einem Faktor 
amazon <-readSentiment("amazon_cells_labelled.txt")
amazon$source <- "amazon"
imdb <-readSentiment("imdb_labelled.txt")
imdb$source <- "imdb"
yelp <-readSentiment("yelp_labelled.txt")
yelp$source <- "yelp"

allText <- rbindlist(list(amazon, imdb, yelp), use.names=TRUE)
allText$source <- as.factor(allText$source)

unlabelled <- allText[is.na(allText$sentiment), ]
labelled <- allText[!is.na(allText$sentiment), ]

Wir haben nun 3000 vorklassifizierte Sätze, die entweder ein positives oder ein negatives Sentiment ausdrücken:

text               sentiment 	source    
Length:3000        0:1500    	amazon:1000  
Class :character   1:1500    	imdb  :1000  
Mode  :character             	yelp  :1000

Textkorpus anlegen

Zuerst konvertieren wir den Datensatz in einen Korpus der R-Package tm:

library(tm)
corpus <- Corpus(DataframeSource(data.frame(labelled$text)))
# meta data an Korpus anfügen:
meta(corpus, tag = "sentiment", type="indexed") <- labelled$sentiment
meta(corpus, tag = "source", type="indexed") <- labelled$source

myTDM  <- TermDocumentMatrix(corpus, control = list(minWordLength = 1))

## verschieden Möglichkeiten, den Korpus bzw die TermDocumentMatrix zu inspizieren:
#inspect(corpus[5:10])
#meta(corpus[1:10])
#inspect(myTDM[25:30, 1])
# Indices aller Dokumente, die das Wort "good" enthalten:
idxWithGood <- unlist(lapply(corpus, function(t) {grepl("good", as.character(t))}))
# Indices aller Dokumente mit negativem Sentiment, die das Wort "good" enthalten:
negIdsWithGood <- idxWithGood &  meta(corpus, "sentiment") == '0'

Wir können uns nun einen Eindruck über die Texte verschaffen, bevor wir erste Vorverarbeitungs- und Säuberungsschritte durchführen:

  • Fünf Dokumente mit negativem Sentiment, die das Wort “good” enthalten: Not a good bargain., Not a good item.. It worked for a while then started having problems in my auto reverse tape player., Not good when wearing a hat or sunglasses., If you are looking for a good quality Motorola Headset keep looking, this isn’t it., However, BT headsets are currently not good for real time games like first-person shooters since the audio delay messes me up.
  • Liste der meist verwendeten Worte im Text: all, and, are, but, film, for, from, good, great, had, have, it’s, just, like, movie, not, one, phone, that, the, this, very, was, were, with, you
  • Anzahl der Worte, die nur einmal verwendet werden: 4820, wie z.B.: ‘film’, ‘ive, ’must’, ‘so, ’stagey’, ’titta
  • Histogramm mit Wortfrequenzen:

Plotten wir, wie oft die häufigsten Worte verwendet werden:

Vorverarbeitung

Es ist leicht zu erkennen, dass sogenannte Stoppworte wie z.B. “the”, “that” und “you” die Statistiken dominieren. Der Informationsgehalt solcher Stopp- oder Füllworte ist oft gering und daher werden sie oft vom Korpus entfernt. Allerdings sollte man dabei Vorsicht walten lassen: not ist zwar ein Stoppwort, könnte aber z.B. bei der Sentimentanalyse durchaus von Bedeutung sein.

Ein paar rudimentäre Vorverarbeitungen:

Wir konvertieren den gesamten Text zu Kleinbuchstaben und entfernen die Stoppworte unter Verwendung der mitgelieferten R-Stoppwortliste für Englisch (stopwords(“english”)). Eine weitere Standardoperation ist Stemming, das wir heute auslassen. Zusätzlich entfernen wir alle Sonderzeichen und Zahlen und behalten nur die Buchstaben a bis z:

replaceSpecialChars <- function(d) {
  ## normalerweise würde man nicht alle Sonderzeichen entfernen
  gsub("[^a-z]", " ", d)
}
# tolower ist eine built-in function
corpus <- tm_map(corpus, content_transformer(tolower)) 
# replaceSpecialChars ist eine selbst geschriebene Funktion:
corpus <- tm_map(corpus, content_transformer(replaceSpecialChars))
corpus <- tm_map(corpus, stripWhitespace)
englishStopWordsWithoutNot <- stopwords("en")[ - which(stopwords("en") %in% "not")]
corpus <- tm_map(corpus, removeWords, englishStopWordsWithoutNot)
## corpus <- tm_map(corpus, stemDocument, language="english")

myTDM.without.stop.words <- TermDocumentMatrix(corpus, 
                                      control = list(minWordLength = 1))

 

Schlagwortwolke bzw Tag Cloud

Schließlich erzeugen wir eine Tag-Cloud aller Worte, die mindestens 25 mal im Text verwendet werden. Tag-Clouds eignen sich hervorragend zur visuellen Inspektion von Texten, allerdings lassen sich daraus nur bedingt direkte Handlungsanweisungen ableiten:

wordfreq <- findFreqTerms(myTDM.without.stop.words, lowfreq=25)
termFrequency <- rowSums(as.matrix(myTDM.without.stop.words[wordfreq,])) 
# eine Alternative ist 'tagcloud'
library(wordcloud)
wordcloud(words=names(termFrequency),freq=termFrequency,min.freq=5,max.words=50,random.order=F,colors="red")

schlagwortwolke

Word-Assoziationen

Wir können uns für bestimmte Worte anzeigen lassen, wie oft sie gemeinsam mit anderen Worten im gleichen Text verwendet werden:

  • Worte, die häufig gemeinsam mit movie verwendet werden:
findAssocs(myTDM.without.stop.words, "movie", 0.13)
## $movie
##   beginning        duet fascinating        june       angel   astronaut 
##        0.17        0.15        0.15        0.15        0.14        0.14 
##         bec       coach     columbo   considers     curtain       dodge 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##     edition   endearing    funniest    girolamo         hes         ive 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##     latched         lid      makers     peaking     planned  restrained 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##       scamp     shelves     stratus       titta        ussr      vision 
##        0.14        0.14        0.14        0.14        0.14        0.14 
##       yelps 
##        0.14
  • Worte, die häufig gemeinsam mit product verwendet werden:
findAssocs(myTDM.without.stop.words, "product", 0.12)
## $product
##        allot     avoiding        beats   cellphones       center 
##         0.13         0.13         0.13         0.13         0.13 
##      clearer   contacting       copier       dollar    equipment 
##         0.13         0.13         0.13         0.13         0.13 
##      fingers      greater      humming        ideal      learned 
##         0.13         0.13         0.13         0.13         0.13 
##       lesson        motor        murky   negatively          oem 
##         0.13         0.13         0.13         0.13         0.13 
##     official       online       owning         pens    petroleum 
##         0.13         0.13         0.13         0.13         0.13 
##     planning      related replacementr    sensitive     shipment 
##         0.13         0.13         0.13         0.13         0.13 
##        steer      voltage        waaay        whose    worthless 
##         0.13         0.13         0.13         0.13         0.13

 

Text-Mining

Wir erzeugen einen Entscheidungsbaum zur Vorhersage des Sentiments. Entscheidungsbäume sind nicht unbedingt das Werkzeug der Wahl für Text-Mining aber für einen ersten Eindruck lassen sie sich bei kleinen Datensätzen durchaus gewinnbringend einsetzen:

trainingData <- data.frame(as.matrix(myDTM))
trainingData$sentiment <- labelled$sentiment
trainingData$source <- labelled$source

formula <- sentiment ~ . 

if (rerun) {
  tree <- rpart(formula, data = trainingData)
  save(tree, file=sprintf("%s-tree.RData", prefix))
} else {
  load(file=sprintf("c:/tmp/%s-tree.RData", prefix))
}

myPredictTree(tree)

 

##          isPosSentiment
## sentiment FALSE TRUE
##         0  1393  107
##         1   780  720

Eine Fehlerrate von über 50% auf den Trainingsdaten für positive Sentiments ist natürlich nicht berauschend und daher testen wir zum Schluß noch Support Vector Machines:

library(e1071)
  if (rerun) {
    svmModel <- svm(formula, data = trainingData)
    save(svmModel, file=sprintf("%s-svm.RData", prefix))
  } else {
    load(file=sprintf("c:/tmp/%s-svm.RData", prefix))
  }

myPredictSVM <- function(model) {
  predictions <- predict(model, trainingData)

  trainPerf <- data.frame(trainingData$sentiment, predictions, trainingData$source)
  names(trainPerf) <- c("sentiment", "isPosSentiment", "source")
  
  with(trainPerf, {
    table(sentiment, isPosSentiment, deparse.level = 2)
  })
  
}
myPredictSVM(svmModel)
##          isPosSentiment
## sentiment    FALSE 	TRUE
##         0 	1456   	  44
##         1   	  23 	1477

Die Ergebnisse sehen deutlich besser aus, müssten aber natürlich noch auf unabhängigen Daten verifiziert werden, um z. B. ein Overfittung zu vermeiden.

Download-Link zum kompletten R-Code für dieses Text-Mining-Beispiel: https://www.data-science-blog.com/download/textMiningTeaser.rmd

R für Process Mining & Projektmanagement – Literaturempfehlungen

Es gibt immer wieder Skriptsprachen, die neu am IT-Horizont geboren um Anwender werben. Der IT-Manager muß also stets entscheiden, ob er auf einen neuen Zug aufspringt oder sein bisheriges Programmierwerkzeug aktuellen Anforderungen standhält. Mein Skriptsprachenkompass wurde über frühere Autoren kalibriert, an die hier erinnert werden soll, da sie grundsätzliche Orientierungshilfen für Projektplanungen gaben.

Im Projektmanagement geht es stets um aufwandsbezogene Terminplanung, im CAFM-Projektmanagement  z. B. konkret um die Analyse und Schätzung geplanter und ungeplanter Maßnahmen, wie geplante Wartungen oder zufällige technische Störungen im Gebäudemanagement, um Wahrscheinlichkeiten.

Warum löst R die Terminplanung strategisch und praktisch besser als Python, Perl, Java oder etc.? Weil sich geschätzte Ereignisse in Zeitfenstern normalverteilt als so genannte Gaußsche Glockenkurve abbilden, einer statistischen Schätzung entsprechen.

Hier zwei Beispielgrafiken zum Thema Terminschätzung aus aktueller Literatur.

1. Standardnormalverteilung

Praxishandbuch Projektmanagement – inkl. Arbeitshilfen online von Günter Drews, Norbert Hillebrand, Martin Kärner, Sabine Peipe, Uwe Rohrschneider

Haufe-Lexware GmbH & Co. KG, Freiburg, 1. Auflage 2014 – Siehe z. B. Seite 241, Abb. 14 Normalverteilung als Basis von PERT (Link zu Google Books)


Praxishandbuch Projektmanagement – inkl. Arbeitshilfen online

2. Betaverteilung

Projektmanagement für Ingenieure: Ein praxisnahes Lehrbuch für den systematischen Projekterfolg von Walter Jakoby, Hochschule Trier

Springer Vieweg, Springer Fachmedien Wiesbaden 2015, 3, Auflage – Siehe z. B. Seite 215, Abb. 7.13 Beta-Verteilung (Link zu Google Books).


Projektmanagement für Ingenieure: Ein praxisnahes Lehrbuch für den systematischen Projekterfolg 

Eine objektorientierte Statistikprogrammiersprache mit über 7.000 Paketen weltweit lädt ein, nicht jede Funktion neu erfinden zu wollen und macht glaubhaft, dass kein Unternehmen der Welt über derart Programmierwissen und Kapazität verfügt, es besser zu können. Für statistische Berechnungen empfiehlt sich seit Jahren R, für mich spätestens seit 2003. Früheren Autoren war das grundlegend klar, daß deterministische Terminplanungen immer am Mangel stochastischer Methoden kranken. In meiner Studienzeit kursierte an der Martin Luther Universität Halle an der Saale der Witz, es gibt zwei Witze an der landwirtschaftlichen Fakultät, den Badewitz und den Howitz.  Doch das Buch vom Badewitz halte ich bis heute. Im Kapitel 5.3 Elemente der Zeitplanung fand ich dort in Abbildung 5.7 auf Seite 140 erstmals die Wahrscheinlichkeitsverteilung einer Vorgangsdauer als normalverteilte Grafik.

Vgl. Zur Anwendung ökonomisch-mathematischer Methoden der Operationsforschung, federführend Dr. sc. agr. Siegfried Badewitz, 1. Auflage 1981, erschienen im VEB Deutscher Landwirtschaftsverlag Berlin. Ein Grafikkünstler zur schnellen Visualisierung von Funktionen und Dichteverteilungen ist seit Jahren R. Zur R-Umsetzung empfehle ich gern meine R-Beispielbibel bei Xing.

Wer zur Statistik der Terminschätzung tiefer greifen will, kommt an Autoren wie Golenko u. a. nicht vorbei. Badewitz verwies z.B. auf Golenko’s Statistische Methoden der Netzplantechnik in seinem o.g. Buch (Link zu Google Books).


Statistische Methoden der NetzplantechnikHier empfehle ich zum Einstieg das Vorwort, das 2015 gelesen, aktuell noch immer gilt, nicht das Jahr seiner Niederschrift 1968 preisgibt:

Gegenwärtig beobachtet man häufig Situationen, in denen bei der Untersuchung von zufallsbeeinflußten Systemen die in ihnen auftretenden Zufallsparameter durch feste Werte (z. B. den Erwartungswert) ersetzt werden, wonach dann ein deterministisches Modell untersucht wird.

Und hier noch ein Beispiel von Seite 203:

Praktisch kann jede komplizierte logische Beziehung auf eine Kombination elementarer stochastischer Teilgraphen zurückgeführt werden.

Meine Empfehlung für Process Mining und Projektmanagement lautet daher – intelligente Stochstik statt altbackenem Determinismus.

 

Aus der Datenflut das Beste machen – Zertifikatskurs „Data Science“ in Brandenburg

Die Aufbereitung von Daten, ihre Analyse und Darstellung sind mittlerweile zu einer Wissenschaft für sich geworden – „Data Science“. Unternehmen sehen sich heute unabhängig von ihrer Größe von einer Vielzahl unterschiedlicher Daten herausgefordert: Neben klassischen Transaktionsdaten stehen heute z.B. Daten aus der Logistik (RFID, GIS), aus sozialen Medien, dem Internet der Dinge oder öffentlichen Quellen (Open Data / Public Data) zur Verfügung. Ein neuer Zertifikatskurs Data Science ermöglicht jetzt eine wissenschaftliche Weiterbildung zur Nutzung von Daten als „Rohstoff des 21. Jahrhunderts“.

Die Agentur für wissenschaftliche Weiterbildung und Wissenstransfer (AWW e.V.) bietet in Kooperation mit der Fachhochschule Brandenburg den berufsbegleitenden Zertifikatskurs mit nur wenigen Präsenzphasen ab Oktober an. Die wissenschaftliche Leitung hat Dr. Peter Lauf übernommen, ein erfahrener Praktiker, der zurzeit noch eine Professur für Quantitative Methoden und Data Mining an der Hochschule für Technik und Wirtschaft Berlin vertritt. Zertifiziert wird der Abschluss Data Scientist (FH).

Die Weiterbildung hat nur wenige Präsenzphasen an Freitagen und Samstagen und ist daher für Teilnehmer/innen aus dem ganzen Bundesgebiet geeignet – So kommen einige Teilnehmer auch aus Frankfurt am Main und München.

Wer sich schnell entscheidet, kann bis 16. Juli 2015 vom Frühbucherrabatt profitieren!

Der Inhalt des Kurses orientiert sich an einer bekannten Einteilung des amerikanischen Wirtschaftswissenschaftlers und Google-Chefökonomen Hal Varian: Ihm zufolge setzt sich die spezifische Wertschöpfungskette von Daten aus Zugriff, Verständnis, Verarbeitung, Analyse und Ergebniskommunikation zusammen. Data Science umfasst deshalb die Module Data Engineering (Zugriff, Verständnis, Verarbeitung), Quantitative Methoden und Data Mining (Analyse) sowie Storytelling: Kommunikation und Visualisierung der Ergebnisse (Ergebniskommunikation).

Die Weiterbildung vereinigt damit Fachwissen aus der Informatik mit quantitativen Methoden und Aspekten des Informations- und Kommunikationsdesigns. Wichtige Werkzeuge im Kurs sind die Statistiksprache R und Power Business Intelligence Tools. Auch auf Azure Machine Learning wird mit konkreten Beispielen Bezug genommen. Im Ergebnis sollen die Teilnehmer verschiedene Techniken zur Nutzung von Daten beherrschen und einen Überblick über die Voraussetzungen und möglichen Lösungsansätze im Bereich datengetriebener Projekte erhalten. Lernziel ist die reibungslose Kommunikation zwischen Management, Engineering und Administration.

Weitere Auskünfte erteilt Katja Kersten (Tel. 03381 – 355 754, E-Mail: katja.kersten@fh-brandenburg.de). Nähere Informationen im Internet sind unter www.aww-brandenburg.de erhältlich.