Praxisbeispiel: Data Science im Marketing

Wie Sie mit Data Science die Conversion-Rate in Ihrem Online-Shop erhöhen

Die Fragestellung: Ein Hersteller von Elektrogeräten lancierte einen neuen Online-Shop, um einen neuen Vertriebskanal zu schaffen, der unabhängig von stationären Einzelhändlern und Amazon ist. Obwohl der Online-Shop von Interessent:innen häufig besucht wurde, war die Conversion-Rate zu niedrig und der Umsatz somit zu gering.

Die zentrale Frage war nun: Wie kann die Conversion-Rate erhöht werden, um den Umsatz über den neuen Vertriebskanal zu erhöhen?

Was ist eine Conversion-Rate? Die Conversion-Rate ist eine Marketing-Kennzahl, die in diesem Beispiel das Verhältnis der Besucher:innen des Online-Shops zu den getätigten Käufen meint. Halten sich viele Besucher:innen im Online-Shop auf und sind die Warenkorb-Abschlüsse dennoch gering, so ist die Conversion-Rate niedrig. Das Ziel ist es, die Conversion-Rate zu steigern, also dafür zu sorgen, dass Besucher:innen, die sich im Online-Shop befinden und dort etwas in den Warenkorb legen, auch einen Kauf tätigen.

VorgehenUm zu verstehen, warum eine Bestellung abgeschlossen bzw. nicht abgeschlossen wurde, wurden verschiedene Daten aus dem Web-Analytics-System des Online-Shops untersucht. Dazu gehörten im Wesentlichen Daten zu Besucherhandlungen auf der Website, die automatisch getrackt, also aufgezeichnet werden, wie z. B. Button & Link-Klicks, Bildergalerie öffnen, Produktvideo ansehen, Produktbeschreibung ausklappen, Time on page usw.

Mit diesen Daten wurden drei Analyseverfahren durchgeführt.

1) Website-Besucher verstehen

Zunächst wurden mit einer explorativen Datenanalyse die Website-Besucher:innen und deren Bedürfnisse untersucht. Über die meisten der Besucher:innen lagen bereits Daten vor, da sie in der Vergangenheit bereits Käufe auf der Website getätigt hatten und dafür ein Konto angelegt hatten. Darüber hinaus wurde untersucht, über welche Kanäle die Besucher:innen in den Online-Shop gelangten, beispielsweise über Google oder Facebook. Informationen zu Gerät, Standort, Browser und Betriebssystem waren ebenfalls verfügbar.

Anhand dieser unterschiedlichen Parameter wurden die Benutzerdaten einem Analyseverfahren, dem sog. Clustering, unterzogen, bei dem die Website-Besucher:innen aufgrund ihrer Ähnlichkeiten in verschiedenen Eigenschaften in Gruppen („Cluster“) eingeteilt wurden.

Beispiel: Besucher über Android-Smartphones und Chrome-Browser, die zwischen 17 und 19 Uhr am Samstag auf der Website sind, kaufen eher familienbezogene Produkte.

Daraufhin konnte man neue Website-Besucher:innen aufgrund der verschiedenen Eigenschaften meist recht eindeutig einem Cluster zuordnen, da ähnliche Besucher:innen tendenziell ein ähnliches Verhalten auf einer Website zeigen. Dieses Clustering lieferte dem Unternehmen bereits wertvolle Informationen. So konnten auf dieser Informationsgrundlage individuelle Marketingstrategien für verschiedene Zielgruppen entwickelt, das Werbe-Targeting angepasst und spezifische Sonderangebote erstellt werden.

Beispiel: Besucher über Android-Smartphones und Chrome-Browsern, die zwischen 17 und 19 Uhr am Samstag auf der Website sind, bekommen ein Sonderangebot für ein familienbezogenes Produkt, wie beispielsweise ein Babyfon ausgespielt.

In vielen Fällen reicht eine solche Analyse bereits aus, um die Conversion-Rate eines Online-Shops spürbar zu steigern. In diesem Projekt wurden jedoch noch zwei weitere Analyseschritte durchgeführt.

2) Conversion Path verstehen und Engpässe nachvollziehen

Der nächste Schritt bestand darin, den Conversion Path der Kund:innen zu untersuchen. Der Conversion Path umfasst alle Handlungen von Kund:innen vom Ankommen auf der Website über den Besuch verschiedener Seiten bis hin zum finalen Kauf bzw. Kaufabbruch. Bei der Analyse wurden alle Conversion Paths auf Gemeinsamkeiten und Unterschiede untersucht, um bestimmte Muster abzuleiten. Von besonderem Interesse waren mögliche Gründe, aus denen Besucher:innen ihre Sitzung vor Kaufabschluss abbrachen. Es stellte sich heraus, dass Besucher:innen ihre Sitzung vor allem dann abbrachen, wenn es für ein Produkt kein Produktvideo gab bzw. das Produktvideo nicht gefunden wurde. Diese mangelnde Produktinformation konnte anschließend gezielt bearbeitet werden, woraufhin sich die Conversion-Rate deutlich verbesserte.

3) Next-best-Action vorhersagen

Im dritten Schritt des Projektes zur Steigerung der Conversion-Rate wurde der Ansatz der Next-best-Action (NBA) gewählt. Damit wurde hier ein weiterer Schritt von der reinen Analyse von bereits vorhandenen Daten hin zur Vorhersage zukünftigen Verhaltens gewählt.

Was bedeutet Next-best-action? Next-best-action (NBA) ist eine Marketingstrategie, die darauf abzielt, Informationen über einzelne Kund:innen zu sammeln und zu nutzen, um einen Kauf anzuregen. Wie der Name schon sagt, wird versucht zu ermitteln, welcher der nächste beste Schritt im Verkaufsprozess für jede:n einzelne:n Kunde:in ist.

Mithilfe der allgemeinen Informationen über die Website-Besucher:innen und der Conversion Paths konnten unterschiedliche Aktionen identifiziert werden, die einen Kauf wahrscheinlicher machen würden. Dazu gehörte z. B., den Besucher:innen das Produktvideo anzuzeigen, einen Rabatt-Code oder ein Sonderangebot für eine spezielle Produktkategorie anzubieten oder ein Chat-Fenster für den Kundensupport zu öffnen.

Somit half die NBA-Vorhersage dabei, die Conversion erneut deutlich zu steigern, indem für jede:n Website-Besucher:in eine individuelle Aktion vorgeschlagen werden konnte.

Ergebnisse:

In diesem Projekt konnte die Marketingabteilung des Elektrogeräte-Herstellers durch drei verschiedene Analyseansätze die Conversion-Rate im Online-Shop deutlich verbessern:

  • Mithilfe des Clustering war das Unternehmen in der Lage, individuelle Marketingstrategien für verschiedene Zielgruppen zu entwickeln, das Werbe-Targeting anzupassen und spezifische Sonderangebote zu erstellen.
  • Durch die Analyse der Conversion Paths konnten produkt- und produktbeschreibungsspezifische Engpässe identifiziert und anschließend gezielt behoben werden.
  • Mit der NBA-Analyse konnten nächste beste Schritte für jede:n einzelne:n Kunde:in bestimmt und automatisch ausgelöst werden.

Web Scraping mit und ohne Code

Wenn Sie ein kleines Start-up haben, möchten Sie möglicherweise nicht mit anderen Unternehmen zusammenarbeiten, um Marketinginformationen zu erhalten, die für Ihr Geschäft wichtig sind. Das ist aber nicht nötig, denn bei fast allen erfolgreichen Unternehmen bekommt man online alle Daten, die man braucht, nur mit eigenem Wissen und ein paar nützlichen Web-Tools.

Aber um die erhaltenen Daten in Ihren Marketing- und anderen Strategien verwenden zu können, müssen Sie sie in die richtige Form bringen. Wie kann man Daten aus dem Internet extrahieren, verarbeiten, bereinigen und auch visualisieren? Welche Aktivitäten sind legal und welche nicht?

Mit Web Scraping die richtigen Daten extrahieren

Web Scraping bezieht sich auf die Verwendung eines Programms oder Algorithmus, um große Datenmengen aus dem Internet zu extrahieren und zu verarbeiten. Egal, ob Sie Datenwissenschaftler, Ingenieur oder jemand sind, der große Mengen an Datensätzen analysiert, die Möglichkeit, Daten aus dem Internet zu sammeln, ist in allen Bereichen nützlich, vom Sport bis zum Vertrieb.

Angenommen, Sie haben Daten im Internet gefunden und es gibt keine direkte Möglichkeit, sie herunterzuladen. In diesem Fall wäre Web Scraping mit Code wie etwa mit R oder Python eine Gelegenheit, mit der Sie Daten in eine verwendbare Form extrahieren können, die importiert werden kann.

Parsen von Webseiten mit Beautiful Soup

Wenn Sie Jupyter Notebook verwenden, sollten Sie damit beginnen, die erforderlichen Module zu importieren – seaborn, pandas, numpy, matplotlib.pyplot. Wenn Sie Jupyter Notebook nicht installiert haben, können Sie es mit der online verfügbaren Anaconda Python-Distribution installieren. Stellen Sie sicher, dass sie die integrierte %matplotlib enthält, um Diagramme einfach anzuzeigen.

Um Webseiten zu analysieren, sollten Sie auch einige Bibliotheken importieren:

  • Das Modul urllib.request wird zum Öffnen von URLs verwendet.
  • Das Paket Beautiful Soup wird verwendet, um Daten aus HTML-Dateien zu extrahieren.
  • Die Beautiful Soup-Bibliothek heißt bs4, was für Beautiful Soup Version 4 steht.

Nach dem Importieren der erforderlichen Module sollten Sie die URL mit dem Datensatz angeben und an urlopen() übergeben, um den HTML-Code der Seite abzurufen:

url = “http://www.webseite-beispiel.com/beitrag”

html = urlopen(url)

Das Erhalten der HTML-Seite ist nur der erste Schritt. Der nächste Schritt besteht darin, ein Beautiful Soup-Objekt aus HTML zu erstellen. Dies geschieht, indem der HTML-Code an die Funktion BeautifulSoup() übergeben wird.

Das Paket Beautiful Soup wird zum Analysieren von HTML verwendet, d. h. es nimmt rohen HTML-Text und parst ihn in Python-Objekte. Das zweite Argument „lxml“ ist der HTML-Parser:

soup = BeautifulSoup(html, ‘lxml’)

type(soup)

bs4.BeautifulSoup

Mit dem Soup-Objekt können Sie interessante Informationen über die Website extrahieren, die Sie scrapen, z. B. den Titel der Seite abrufen:

title = soup.title

print(title)

Sie können auch den Text einer Webseite abrufen und schnell ausdrucken, um zu sehen, ob er Ihren Erwartungen entspricht. Sie können den HTML-Code einer Webseite anzeigen, indem Sie mit der rechten Maustaste auf eine beliebige Stelle auf der Webseite klicken und „Inspizieren“ („Inspect“) auswählen.

Als Nächstes können Sie die Suppenmethode find_all() verwenden, um nützliche HTML-Tags von der Webseite zu extrahieren. Beispiele für nützliche Tags sind <a> für Hyperlinks, <table> für Tabellen, <tr> für Tabellenzeilen, <th> für Tabellenköpfe und <td> für Tabellenzellen.

Wenn es Ihnen schwer fällt, die notwendigen Informationen mithilfe von Code aus der ausgewählten Website zu extrahieren, macht das nichts. Heutzutage gibt es mehrere wirklich hochwertige Software, mit der Sie dies in wenigen Minuten ohne Python-Kenntnisse tun können.

Auf diese Weise treffen Sie den neuen Standard im Web Scraping. Mit den besten Tools können Sie nicht nur Informationen aus allen öffentlichen Quellen extrahieren, sondern sie auch im gewünschten Format und am richtigen Ort speichern.

Ist Web Scraping legal?

Web Scraping gibt es schon lange und in guter Verfassung ist es eine wichtige Säule des Webs. „Gute Bots“ ermöglichen es beliebten Diensten und Unternehmen, viele nützliche Aktionen auszuführen:

  • Suchmaschinen, Webinhalte zu indexieren
  • Preisvergleichsdiensten, den Verbrauchern Geld zu sparen
  • Marktforschern, Stimmungen in sozialen Netzwerken einzuschätzen

Allerdings gibt es auch „Bad Bots“. Sie extrahieren Inhalte von einer Website mit der Absicht, sie für Zwecke zu verwenden, die außerhalb der Kontrolle des Eigentümers der Website liegen. Bad Bots machen 20 Prozent des gesamten Webverkehrs aus und werden verwendet, um eine Vielzahl von böswilligen Aktivitäten wie Denial-of-Service-Angriffe, Online-Betrug, Kontohijacking, Datendiebstahl, Diebstahl geistigen Eigentums, nicht autorisiertes Scannen auf Schwachstellen, Spam und Betrug mit digitaler Werbung durchzuführen.

Was ist also legal und was ist illegal? Web Scraping und Crawling ist per se nicht illegal. Schließlich kann man seine eigene Website problemlos scrapen oder crawlen.

Startups mögen es, weil es eine kostengünstige und leistungsstarke Möglichkeit ist, Daten zu sammeln, ohne dass eine Partnerschaft erforderlich ist. Großunternehmen nutzen Scraper zu ihrem eigenen Vorteil, wollen aber auch nicht, dass andere Bots in Bezug auf sie einsetzen.

Die meisten Websites haben keinen Web-Scraping-Schutz. Sollten Unternehmen Web Scraping verhindern? Während die Gerichte versuchen, über die Rechtmäßigkeit des Scrapings zu entscheiden, werden Unternehmen immer noch ihre Daten gestohlen und die Geschäftslogik ihrer Websites missbraucht.

Aber anstatt sich an das Gesetz zu wenden, um dieses technologische Problem letztendlich zu lösen, kann man es mit Anti-Bot- und Scraping-Technologien bekämpfen.

Interview Benjamin Aunkofer - Business Intelligence und Process Mining ohne Vendor-Lock-In

Interview – Business Intelligence und Process Mining ohne Vendor Lock-in!

Das Format Business Talk am Kudamm in Berlin führte ein Interview mit Benjamin Aunkofer zum Thema “Business Intelligence und Process Mining nachhaltig umsetzen”.

In dem Interview erklärt Benjamin Aunkofer, was gute Business Intelligence und Process Mining ausmacht und warum Unternehmen in jedem Fall daran arbeiten sollten, den gefürchteten Vendor Lock-In zu vermeiden, der gerade insbesondere bei Process Mining droht, jedoch leicht vermeidbar ist.

Nachfolgend das Interview auf Youtube sowie die schriftliche Form zum Nachlesen:


Interview – Process Mining, Business Intelligence und Vendor Lock

1 – Herr Aunkofer, wir wollen uns heute über Best Practice bei der Verarbeitung von Daten unterhalten. Welche Fehler sollten Unternehmen unbedingt vermeiden, wenn sie ihre Daten zur Modellierung aufbereiten?

Mittlerweile weiß ja bereits jeder Laie, dass die Datenaufbereitung und -Modellierung einen Großteil des Arbeitsaufwandes in der Datenanalyse einnehmen, sei es nun für Business Intelligence, also Reporting, oder für Process Mining. Für Data Science ja sowieso. Vor einen Jahrzehnt war es immer noch recht üblich, sich einfach ein BI Tool zu nehmen, sowas wie QlikView, Tableau oder PowerBI, mittlerweile gibt es ja noch einige mehr, und da direkt die Daten reinzuladen und dann halt loszulegen mit dem Aufbau der Reports.

Schon damals in Ansätzen, aber spätestens heute gilt es zu recht als Best Practise, die Datenanbindung an ein Data Warehouse zu machen und in diesem die Daten für die Reports aufzubereiten. Ein Data Warehouse ist eine oder eine Menge von Datenbanken.

Das hat den großen Vorteil, dass die Daten auf einer Ebene modelliert werden, für die es viele Experten gibt und die technologisch auch sehr mächtig ist, nicht auf ein Reporting Tool beschränkt ist.
Außerdem veraltet die Datenbanktechnologie nur sehr viel langsamer als die ganzen Tools, in denen Analysen stattfinden.

Im Process Mining sind ja nun noch viele Erstinitiativen aktiv und da kommen die Unternehmen nun erst so langsam auf den Trichter, dass so ein Data Warehouse hier ebenfalls sinnvoll ist. Und sie liegen damit natürlich vollkommen richtig.

2 – Warum ist es so wichtig einen Vendor Lock zu umgehen?

Na die ganze zuvor genannte Arbeit für die Datenaufbereitung möchte man keinesfalls in so einem Tool haben, das vor allem für die visuelle Analyse gemacht wird und viel schnelleren Entwicklungszyklen sowie einem spannenden Wettbewerb unterliegt. Sind die ganzen Anbindungen der Datenquellen, also z. B. dem ERP, CRM usw., sowie die Datenmodelle für BI oder Process Mining direkt an das Tool gebunden, dann fällt es schwer z. B. von PowerBI nach Tableau oder SuperSet zu wechseln, von Celonis nach Signavio oder welches Tool auch immer. Die Migrationsaufwände sind dann ein ziemlicher Showstopper.

Bei Datenbanken sind Migrationen auch nicht immer ein Spaß, die Aufwände jedoch absehbarer und vor allem besteht selten die Notwendigkeit dazu, die Datenbanktechnologie zu wechseln. Das ist quasi die neutrale Zone.

3 – Bei der Nutzung von Daten fallen oft die Begriffe „Process Mining“ und „Business Intelligence“. Was ist darunter zu verstehen und was sind die Unterschiede zwischen PM und BI?

Business Intelligence, oder BI, geht letztendlich um die zur Verfügungstellung von guten Reports für das Management bis hin zu jeden Mitarbeiter des Unternehmens, manchmal aber sogar bis zum Kunden oder Lieferanten, die in Unternehmensprozesse inkludiert werden sollen. BI ist gewissermaßen schon seit zwei Jahrzehnten ein Trend, entwickelt sich aber auch immer weiter, mit immer größeren Datenmengen, in Echtzeit usw.

Process Mining ist im Grunde eng mit der BI verwandt, man kann auch sagen, dass es ein BI für Prozessanalysen ist. Bei Process Mining nehmen wir uns die Log-Daten von operativen IT-Systemen vor, in denen Unternehmensprozesse erfasst sind. Vornehmlich ERP-Systeme, CRM-Systeme, Dokumentenmangement-Systeme usw.
Die Daten bereiten wir in sogenannte Event Logs, also Prozessprotokolle, auf und laden sie dann ein eines der vielen Process Mining Tools, egal in welches. In diesen Tools kann man dann Prozess wirklich visuell betrachten, filtern und analysieren, rekonstruiert aus den Daten, spiegeln sie die tatsächlichen operativen Vorgänge wieder.

Auch bei Process Mining tut sich gerade viel, Machine Learning hält Einzug ins Process Mining, Prozesse können immer granularer analysiert werden, auch unstrukturierte Daten können unter Einsatz von AI mit in die Analyse einbezogen werden usw.
Der Markt bereinigt sich übrigens auch dadurch, dass Tool für Tool von größeren Software-Häusern aufgekauft werden. Also der Tool-Markt ist gerade ganz krass im Wandel und das wird die nächsten Jahre auch so bleiben.

4 – Wie ist denn die Best Practice bei der Speicherung, Aufbereitung und Modellierung von Daten?

BI und Process Mining sind eigentlich eher Methoden der Datenanalytik als einfach nur Tools. Es ist ein komplexes System. Ganz klar hierfür ist der Aufbau eines Data Warehouses, dass aus Datensicht quasi so eine Art Middleware ist und Daten zentral allen Tools bereitstellt. Viele Unternehmen haben ja um einiges mehr als nur ein Tool im Haus, die kann man dann auch alle weiterhin nutzen.

Was gerade zum Trend wird, ist der Aufbau eines Data Lakehouses. Ein Lakehouse inkludiert auch clevere Art und Weise auch einen Data Lake.

Den Unterschied kann man sich wie folgt vorstellen: Ein Data Warehouse ist wie das Regel zu Hause mit den Ordnern zum Abheften aller wichtigen Dokumente, geordnet nach … Ordner, Rubrik, Sortierung nach Datum oder alphabetisch. Allerdings macht es auch große Mühe, diese Struktur zu verwalten, alles ordentlich abzuheften und sich überhaupt erstmal eine Logik dafür zu erarbeiten. Ein Data Lake ist dann sowas wie die eine böse Schublade, die man eigentlich gar nicht haben möchte, aber in die man dann alle Briefe, Dokumente usw. reinwirft, bei denen man nicht weiß, ob man diese noch braucht. Die Inhalte des Data Lakes sind bestenfalls etwas vorsortiert, aber eigentlich hofft man ja nicht, da wieder irgendwas drin wiederfinden zu müssen.

5 – Sie haben ja einen guten Marktüberblick: Wie gut sind deutsche Unternehmen in diesen Bereichen aufgestellt?

Grundsätzlich schon mal gar nicht so schlecht, wie oft propagiert wird. In beinahe jedem deutschen Unternehmen existiert mittlerweile ein Data Warehouse sowie Initiativen zur Einführung von BI, Process Mining und Data Science bzw. KI, in Konzernen natürlich stets mehrere. Was ich oft vermisse, ist so eine gesamtheitliche Sicht auf die Dinge, es gibt ja viele Nischenexperten, die sich auf eines dieser Themen stürzen, es aber nicht in Verbindung zu den anderen Themen betrachten. Z. B. steht auch KI nicht für sich alleine, sondern kann sowohl der Business Intelligence als auch Process Mining über den Querverweis befähigen, z. B. zur Berücksichtigung von unstrukturierten Daten, oder ausbauen mit Vorhersagen, z. B. Umsatz-Forecasts. Das ist alles eine Datenevolution, vom ersten Report von Unternehmenskennzahlen über die Analyse von Prozessen bis hin zu KI-getriebenen Vorhersagesystemen.

6 – Wo sehen Sie den größten Nachholbedarf?

Da mache ich es kurz: Unternehmen brauchen Datenstrategien und ein Big Picture, wie sie Daten richtig nutzen, dabei dann auch die unterschiedlichen Methoden der Nutzung dieser Daten richtig kombinieren.

Sehen Sie die zwei anderen Video-Interviews von Benjamin Aunkofer:

Interview Benjamin Aunkofer – Datenstrategien und Data Teams entwickeln!