Was ist eigentlich der Beruf des Quants? Vergleich zum Data Scientist.

Quants kennt man aus Filmen wie Margin Call, The Hummingbird Project oder The Big Short. Als coole Typen oder introvertierte Nerds dargestellt, geht es in diesen Filmen im Kern um sogenannte Quantitative Analysts, oder kurz Quants, die entweder die großen Trading Deals abschließen oder Bankenpleiten früher als alle anderen Marktteilnehmer erkennen, stets mit Computern und Datenzugriffen ausgestattet, werfen Sie tiefe Blicke in die Datenbestände von Finanzinstituten und Märken, das alles unter Einsatz von Finanzmathematik.

Quants sind in diesen und anderen Filmen (eine Liste für das persönliche Abendprogramm füge ich unten hinzu) die Helden, manchmal auch die Gangster oder eine Mischung aus beiden. Den Hackern nicht unähnlich, scheinen sie in Filmen geradezu über Super-Kräfte zu verfügen, dem normalen Menschen, ja sogar dem erfahrenen Banken-Manager gegenüber deutlich überlegen zu sein. Nicht von ungefähr daher auch “Quant”, denn die Kurzform gefällt mit der namentlichen Verwechslungsgefahr gegenüber der kaum verstandenen Quantenphysik, mit der hier jedoch kein realer Bezug besteht.
Auf Grundlage der Filme zu urteilen, scheint der Quant dem Data Scientist in seiner Methodik dem Data Scientist ebenbürtig zu sein, wenn auch mit wesentlich prominenterer Präsenz in Kinofilmen.

Kleiner Hinweis zu den Geschlechtern: Mit Quant, Analyst und Scientist sind stets beide biologische Geschlechter gemeint. In den Filmen scheinen diese nahezu ausschließlich männlich zu sein, in der Realität aber habe ich in etwa genauso viele weibliche wie männliche Quants und Data Scientists kennenlernen dürfen.

Was unterscheidet also einen Quant von einem Data Scientist?

Um es gleich vorweg zu nehmen: Gar nicht so viel, aber dann doch ganze Welten.

Während die Bezeichnung des Berufes Data Scientists bereits ausführlich erläutert wurde – siehe den Data Science Knowledge Stack – haben wir uns auf dieser Seite noch gar nicht mit dem Quantitative Analyst befasst, der ausgeschriebenen Bezeichnung des Quants. Vom Wortlaut der Berufsbezeichnung her betrachtet gehören Quants zu den Analysten oder genauer zu den Financial Analysts. Sie arbeiten oft in Banken oder auch Versicherungen. In letzteren arbeiten sie vor allem an Analysen rund um Versicherungs- und Liquiditätsrisiken. Auch andere Branchen wie der Handel oder die Energiebranche arbeiten mit Quantitativen Analysten, z. B. bei der Optimierung von Preisen und Mengen.

Aus den Filmen kennen wir Quants beinahe ausschließlich aus dem Investmentbanking und Risikomanagement, hier sind sie die Ersten, die Finanzschwierigkeiten aufdecken oder neue Handelschancen entdecken, auf die andere nicht kommen. Die Außenwahrnehmung ist denen der Hacker gar nicht so unähnlich, tatsächlich haben sie auch Berührungspunkte (nicht aber Überlappungen in ihren Arbeitsbereichen) zumindest mit forensischen Analysten, wenn es um die Aufdeckung von Finanzskandalen bzw. dolose Handlungen (z. B. Bilanzmanipulation, Geldwäsche oder Unterschlagung) geht. Auch bei Wirtschaftsprüfungsgesellschaften arbeiten Quants, sind dort jedoch eher als Consultants für Audit oder Forensik bezeichnet. Diese setzen ebenfalls vermehrt auf Data Science Methoden.

In ihrer Methodik sind sie sowohl in Filmen als auch in der Realität der Data Science nicht weit entfernt, so analysieren Sie Daten oft direkt auf der Datenbank oder in ihrem eigenen Analysesystem in einer Programmiersprache wie R oder Python. Sie nutzen dabei die Kunst der Datenzusammenführung und -Visualisierung, arbeiten auf sehr granularen Daten, filtern diese entsprechend ihres Analysezieles, um diese zu einer Gesamtaussage z. B. über die Liquiditätssituation des Unternehmens zu verdichten. Im Investmentbanking nutzen Quants auch Methoden aus der Statistik und des maschinellen Lernens. Sie vergleichen Daten nach statistischen Verteilungen und setzen auf Forecasting-Algorithmen zur Optimierung von Handelsstrategien, bis hin zum Algorithmic Trading.

Quants arbeiten, je nach Situation und Erfahrungsstufe, auch mit den Methoden aus der Data Science. Ein Quant kann folglich ein Data Scientist sein, ist es jedoch nicht zwingend. Ein Data Scientist ist heutzutage darüber hinaus jedoch ein genereller Experte für Statistik und maschinelles Lernen und kann dies nahezu branchenunabhängig einbringen. Andererseits spezialisieren sich Data Scientists mehr und mehr auf unterschiedliche Themenbereiche, z. B. NLP, Computer Vision, Maschinen-Sensordaten oder Finanz-Forecasts, womit wir bei letzterem wieder bei der quantitativen Finanz-Analyse angelangt sind. Die Data Science tendiert darüber hinaus jedoch dazu, sich nahe an die Datenbereitstellung (Data Engineering) – auch unstrukturierte Daten – sowie an die Modell-Bereitstellung (Deployment) anzuknüpfen (MLOp).

Fazit zum Vergleich beider Berufsbilder

Der Vergleich zwischen Quant und Data Scientist hinkt, denn beide Berufsbezeichnungen stehen nicht auf der gleichen Ebene, ein Quant kann auch ein Data Scientist sein, muss es jedoch nicht. Beim Quant handelt es sich, je nach Fähigkeit und Tätigkeitsbedarf, um einen Data Analyst oder Scientist, der insbesondere Finanzdaten auf Chancen und Risiken hin analysiert. Dies kann ich nahezu allen Branchen erfolgen, haben in Hollywood-Filmen ihre Präsenz dem Klischee entsprechend in einer Investmentbank und sind dort tiefer drin als alle anderes (was der Realität durchaus entsprechen kann).

Quants in Kino + TV

Lust auf abgehobene Inspiration aus Hollywood? Hier Liste an Filmen mit oder sogar über Quants [in eckigen Klammern das Kernthema des Films]:

  • The Hummingbird Project (2018)  [High Frequency Trading & Forensic Analysis]
  • Money Monster (2016) [Drama, hat Bezug zu Algorithmic Trading]
  • The Big Short (2015) [Finanzkrisen – Financial Risk Analysis]
  • The Wall Street Code (2013) [Dokumentation über Algorithmic Trading]
  • Limitless (2011) [nur kurze Szenen mit leichtem Bezug zu Financial Trading Analysis]
  • Money and Speed: Inside the Black Box (2011) [Dokumentation zu Financial Analysis bzgl. des Flash Crash]
  • Margin Call (2011) [Bankenkrise, Vorhersage dank Financial Risk Analysis]
  • Too Big To Fail (2011) [Bankenkrise, Vorhersage dank Financial Risk Analysis]
  • The Bank (2001) [Algorithmic Trading & Financial Risk Analysis]

Meine besondere Empfehlung ist “Margin Call” von 2011. Hier kommt die Bedeutung der Quants im Investment Banking besonders eindrucksvoll zur Geltung.

Data Scientists in Kino + TV

Data Scientists haben in Hollywood noch nicht ganz die Aufmerksamkeit des Quants bekommen, ein bisschen etwas gibt es aber auch hier zur Unterhaltung, ein Auszug:

  • The Imitation Game (2014) [leichter Bezug zur Data Science, Entschlüsselung von Texten, leichter Hacking-Bezug]
  • Moneyball (2011) [Erfolg im Baseball mit statistischen Analysen – echte Data Science!]
  • 21 (2008) [reale Mathematik wird verwendet, etwas Game Theory und ein Hauch von Hacking]
  • Clara – A Billion Stars (2018) [Nutzung von Datenanalysen zur Suche nach Planeten in der Astronomie]
  • NUMB3RS (2005 – 2010) [Serie über die Aufklärung von Verbrechen mit Mathematik, oft mit Data Science]

Meine persönliche Empfehlung ist Moneyball von 2011. Hier wurde zum ersten Mal im Kino deutlich, dass Statistik kein Selbstzweck ist, sondern sogar bei Systemen (z. B. Spielen) mit hoher menschlicher Individualität richtige Vorhersagen treffen kann.

7 Gründe, warum es sich jetzt lohnt, Python zu lernen

Hot Skill: Python

7 Gründe, warum es sich jetzt lohnt, Python zu lernen

Die digitale Transformation nimmt Fahrt auf und stellt sowohl Arbeitgeber:innen als auch Arbeitnehmer:innen vor neue Herausforderungen. Um mit dieser Entwicklung Schritt zu halten, lohnt es sich, auf den Zug aufzuspringen und das eigene Portfolio um wichtige Schlüsselkompetenzen zu erweitern. Doch in der heutigen Zeit, wo täglich mehr Lernoptionen und -angebote auf den Markt drängen, ist es besonders wichtig, die eigene, knappe Zeit in die richtigen, zukunftsträchtigen Fähigkeiten zu investieren.

Infolge des rasanten, digitalen Wandels haben sich neue, wichtige Qualifikationen herauskristallisiert, die sich langfristig für Lernwillige auszahlen. Insbesondere technische Fähigkeiten werden von Unternehmen dringend benötigt, um den eigenen Marktanteil zu verteidigen. Unter allen möglichen Qualifikationen hat sich eine bestimmte Fähigkeit in den letzten Jahren von vielversprechend zu unverzichtbar gemausert: Die Programmiersprache Python. Denn Python ist insbesondere in den vergangenen fünf Jahren dem Image des Underdogs entwachsen und hat sich zum Champion unter den Tech-Skills entwickelt.

Wer jetzt denkt, dass Python als Programmiersprache nur für ITler und Tech Nerds lohnenswert ist: Weit gefehlt! Viele Unternehmen beginnen gerade erst die wahren Möglichkeiten von Big Data und künstlicher Intelligenz zu erschließen und Führungskräfte suchen aktiv nach Mitarbeiter:innen, die in der Lage sind, diese Transformation durch technische Fähigkeiten zu unterstützen. Wenn Sie sich in diesem Jahr weiterentwickeln möchten und nach einer Fähigkeit Ausschau halten, die Ihre Karriere weiter voranbringt und langfristig sichert, dann ist dies der ideale Zeitpunkt für Sie, sich mit Python weiterzuqualifizieren.

Nicht nur für Schlangenbeschwörer: Warum es sich jetzt lohnt, Python zu lernen

Falls Sie bei dem Wort Python eher an glänzende Schuppen denken als an Programmcode, dann lassen Sie uns Ihnen etwas Kontext geben: Python ist eine Programmiersprache, die für die Entwicklung von Software genutzt wird. Als serverseitige Sprache ist sie die Logik und das Fundament hinter Benutzereingaben und der Interaktion von Datenbanken mit dem Server. Python ist Open-Source, kostenlos und kann von jedem benutzt und verändert werden, weshalb ihre Verwendung besonders in der Datenwissenschaft sehr beliebt ist. Nicht zuletzt lebt Python von seiner Community, einer engagierten Gemeinschaft rund um die Themen künstliche Intelligenz, maschinelles Lernen, Datenanalyse und -modellierung, mit umfangreichen Ressourcen und über 137.000 Bibliotheken wie TensorFlow, Scikit-learn und Keras.

In der Data Science wird Python verwendet, um große Mengen komplexer Daten zu analysieren und aus ihnen relevante Informationen abzuleiten. Lohnt es sich also, Python zu lernen? Absolut! Laut der Stack Overflow Developer Survey wurde Python 2020 als die drittbeliebteste Technologie des Jahres eingestuft. Sie gilt als eine der angesagtesten Fähigkeiten und als beliebteste Programmiersprache in der Welt nach Angaben des PYPL Popularität der Programmiersprache Index. Wir haben 7 Gründe zusammengefasst, warum es sich jetzt lohnt, Python zu lernen:.

1. An Vielseitigkeit kaum zu übertreffen

Python ist ein wahrer Allrounder unter den Hard Skills! Ein wesentlicher Vorteil von Python ist, dass es in einer Vielzahl von Fachbereichen eingesetzt werden kann. Die häufigsten Bereiche, in denen Python Verwendung findet, sind u. a.:

  • Data Analytics & Data Science
  • Mathematik
  • Web-Entwicklung
  • Finanzen und Handel
  • Automatisierung und künstliche Intelligenz
  • Spieleentwicklung

2. Zahlt sich mehrfach aus

Diejenigen, für die sich eine neue Fähigkeit doppelt lohnen soll, liegen mit Python goldrichtig. Python-Entwickler:innen zählen seit Jahren zu den Bestbezahltesten der Branche. Und auch Data Scientists, für deren Job Python unerlässlich ist, liegen im weltweiten Gehaltsrennen ganz weit vorn. Die Nachfrage nach Python-Entwickler:innen ist hoch – und wächst. Und auch für andere Abteilungen wird die Fähigkeit immer wertvoller. Wer Python beherrscht, wird nicht lange nach einem guten Job Ausschau halten müssen. Unter den Top 10 der gefragtesten Programmier-Skills nach denen Arbeitgeber:innen suchen, liegt Python auf Platz 7. Die Arbeitsmarktaussichten sind also hervorragend.

3. Schnelle Erfolge auch für Neulinge

2016 war das schillernde Jahr, in dem Python Java als beliebteste Sprache an US-Universitäten ablöste und seitdem ist die Programmiersprache besonders unter Anfänger:innen sehr beliebt. In den letzten Jahren konnte Python seine Pole Position immer weiter ausbauen. Und das mit gutem Grund: Python ist leicht zu erlernen und befähigt seine Nutzer:innen dazu, eigene Webanwendungen zu erstellen oder simple Arbeitsabläufe zu automatisieren. Dazu bringt Python eine aufgeräumte und gut lesbare Syntax mit, was sie besonders einsteigerfreundlich macht. Wer mit dem Programmieren anfängt, will nicht mit einer komplizierten Sprache mit allerhand seltsamen Ausnahmen starten. Mit Python machen Sie es sich einfach und sind dennoch effektiv. Ein Doppelsieg!

4. Ideal für Zeitsparfüchse

Mit der Python-Programmierung erwarten Sie nicht nur schnelle Lernerfolge, auch Ihre Arbeit wird effektiver und damit schneller. Im Gegensatz zu anderen Programmiersprachen, braucht die Entwicklung mit Python weniger Code und damit weniger Zeit. Für alle Fans von Effizienz ist Python wie gemacht. Und sie bietet einen weiteren großen Zeitbonus. Unliebsame, sich wiederholende Aufgaben können mithilfe von Python automatisiert werden. Wer schon einmal Stunden damit verbracht hat, Dateien umzubenennen oder Hunderte von Tabellenzeilen zu aktualisieren, der weiß, wie mühsam solche Aufgaben sein können. Umso schöner, dass diese Aufgaben von jetzt an von Ihrem Computer erledigt werden könnten.

5. Über den IT-Tellerrand hinaus

Ob im Marketing, Sales oder im Business Development, Python hat sich längst aus seiner reinen IT-Ecke heraus und in andere Unternehmensbereiche vorgewagt. Denn auch diese Abteilungen stehen vor einer Reihe an Herausforderungen, bei denen Python helfen kann: Reporting, Content-Optimierung, A/B-Tests, Kundensegmentierung, automatisierte Kampagnen, Feedback-Analyse und vieles mehr. Mit Python können Erkenntnisse aus vorliegenden Daten gewonnen werden, besser informierte, datengetriebene Entscheidungen getroffen werden, viele Routineaktivitäten automatisiert und der ROI von Kampagnen erhöht werden.

6. Programmieren für Big Player

Wollten Sie schon immer für einen Tech-Giganten wie Google oder Facebook arbeiten? Dann könnte Python Ihre goldene Eintrittskarte sein, denn viele große und vor allem technologieaffine Unternehmen wie YouTube, IBM, Dropbox oder Instagram nutzen Python für eine Vielzahl von Zwecken und sind immer auf der Suche nach Nachwuchstalenten. Dropbox verwendet Python fast für ihr gesamtes Code-Fundament, einschließlich der Analysen, der Server- und API-Backends und des Desktop-Clients. Wenn Sie Ihrem Lebenslauf einen großen Namen hinzufügen wollen, sollte Python auf demselben Blatt zu finden sein.

7. Ein Must-Have für Datenprofis

Besonders Pythons Anwendung in der Datenwissenschaft und im Data Engineering treibt seine Popularität in ungeahnte Höhen. Aber was macht Python so wichtig für Data Science und Machine Learning? Lange Zeit wurde R als die beste Sprache in diesem Spezialgebiet angesehen, doch Python bietet für die Data Science zahlreiche Vorteile. Bibliotheken und Frameworks wie PyBrain, NumPy und PyMySQL für KI sind wichtige Argumente. Außerdem können Skripte erstellt werden, um einfache Prozesse zu automatisieren. Das macht den Arbeitsalltag von Datenprofis besonders effizient.

Investieren Sie in Ihre berufliche Zukunft und starten Sie jetzt Ihre Python-Weiterbildung! Egal, ob Programmier-Neuling oder Data Nerd: Die Haufe Akademie bietet die passende Weiterbildung für Sie: spannende Online-Kurse für Vollberufstätige und Schnelldurchläufer:innen im Bereich Python, Daten und künstliche Intelligenz.

In Kooperation mit stackfuel.

Quellen:

Get in IT: “WELCHE PROGRAMMIERSPRACHE SOLLTEST DU LERNEN?” [11.06.2021]

Coding Nomads: “Why Learn Python? 6 Reasons Why it’s So Hot Right Now.” [11.06.2021]