Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 2/2

Dies ist Teil 2/2 des Artikels, lesen Sie hier Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 1/2.

Auditbee – Datenanalyse mit Qlik Sense in der Wirtschaftsprüfung

Wir sind es mittlerweile gewohnt, vieles einfach per Knopfdruck mit unserer App zu erledigen. Warum sollte etwas anderes für die Datenanalyse gelten?

Das Ziel von auditbee ist, die Datenanalyse durchgängig in die Prüfung zu integrieren. Jeder Prüfer hat mit dem auditbee Dashboard die Möglichkeit, Daten schnell und einfach selbst zu analysieren. Nicht nur für Journal Entry Tests, sondern auch zur Prüfungsplanung, Verständnisgewinnung, Risikobeurteilung und Dokumentation.

Hierzu werden die aus der Finanzbuchhaltung extrahierten GDPdU-Daten vom auditbee Team als Service verarbeitet und dem Prüfer als abgestimmtes Modell zu Verfügung gestellt.

auditbee basiert auf der Business Intelligence Software Qlik Sense, eine in vielen Unternehmen weltweit eingesetzte Reporting Lösung. Mit Qlik Sense werden die Daten über grafische Objekte dargestellt, damit Sie für den Anwender leicht zu erfassen sind.

Mit auditbee auf Basis von Qlik Sense entsteht aus den Daten des Geschäftsjahres, dem Vorjahr und dem Folgejahr ein Modell mit verschiedenen Analysen zur Beurteilung von Geschäftsentwicklungen, für analytische Prüfungshandlungen und Journal Entry Tests. Darüber hinaus werden die Going Concern Annahme (Fortführungsprognose), Performance- und Risikoindikatoren automatisiert anhand von Erwartungswerten oder eines Risiko-Scores beurteilt.

In auditbee sind eine Vielzahl an Dashboards mit unterschiedlichen Themen eingerichtet. Jedes enthält vordefinierte Journal Entry Tests, um prüferische Fragen zu ergründen. Zudem ermöglichen die verschiedenen grafischen Objekte Ad-hoc Analysen – Zeitreihenentwicklung, Kennzahlen, Rangfolgen, etc. – um Auffälligkeiten auf den Grund zu gehen.

Abb1: Bilanzanalyse und Bestimmung der Wesentlichkeit

Abb1: Bilanzanalyse und Bestimmung der Wesentlichkeit

Abb2: Analyse des Buchungsverhaltens nach Nutzer, Erfassungsdatum und Posten

Abb2: Analyse des Buchungsverhaltens nach Nutzer, Erfassungsdatum und Posten

Abb3: Analyse des Zahlungsverhaltens nach Kunde und Zahlungsbedingung

Abb3: Analyse des Zahlungsverhaltens nach Kunde und Zahlungsbedingung

Der Audit Workflow führt den Prüfer durch die verschiedenen Prüfungsgebiete – von der Bilanzanalyse, über die Beurteilung von Performance- und Risikoindikatoren bis hin zu einer Vielzahl an themenbezogener Journal Entry Tests.

Abb4: Teilausschnitt des Audit Workflows in auditbee

Abb4: Teilausschnitt des Audit Workflows in auditbee

Prüfung mit auditbee – Beispiel: Beurteilung der zeitnahen Erfassung von Umsatzerlösen

Die Prüfung erfolgt immer nach einem ähnlichen Schema. Der Prüfer hat eine Frage, mit der er ein Fehlerrisiko einschätzen und Prüfungsaussagen treffen möchte. Mit der Frage, welche Umsatzbuchungen nicht zeitnah erfasst wurden, wird z.B. der periodengerechte Ausweis überprüft. Ein Kontoblatt kann diese Frage in der Regel nicht beantworten, weil das Erfassungsdatum nicht vorhanden ist. In auditbee sind jedoch alle extrahierten Felder aus der Finanzbuchhaltung miteinander als Modell verbunden. Deswegen können auch alle Datensätze daraufhin überprüft werden, wie groß die Zeitspanne zwischen dem Buchungs- und dem Erfassungsdatum ist. Das Erfassungsdatum ist das mit Eingabe im System protokolierte Datum. Das Buchungsdatum ist dagegen frei wählbar, sollte aber auf den Tag der Lieferung-/Leistungserbringung datiert sein.

Leistungen sind innerhalb weniger Tage abzurechnen und in der Buchhaltung zu erfassen (§ 239 Abs. 2 HGB). Wenn die Zeitspanne z.B. mehr als 30 Tage beträgt, gelten diese Buchungen als auffällig. Es besteht ein Risiko, dass entweder organisatorische Mängel bestehen (Freigaben bzw. Abrechnungen dauern zu lange) oder Umsätze abgesprochen und damit Fehlerhaft sein können. Buchungen am Jahresende tragen ein höheres Risiko. Rechnungen können z.B. nur deshalb gestellt worden sein, weil der Einkaufsverantwortliche des Kunden noch Budget hatte und dieses ausschöpfen wollte. Anders herum hat möglicherweise das Unternehmen vorzeitig Leistungen zum Jahresende abgerechnet, obwohl diese noch nicht vollständig erbracht sind. In beiden Fällen besteht das Risiko der Periodenverschiebung von Umsätzen.

Abb5: Übersicht Umsatzerlöse im Geschäftsjahr

Abb5: Übersicht Umsatzerlöse im Geschäftsjahr

Über die vordefinierte Journal Entry Test Abfrage – zeitnah BUDAT – werden dem Prüfer per Knopfdruck alle Buchungszeilen angezeigt, die das Merkmal – Erfassung zu Buchung > 30 Tage – aufweisen.

Abb6: JET-Abfrage – Alle Buchungen mit einer Zeitspanne > 30 Tagen

Von den Belegen wählt der Prüfer alle Buchungen per Dezember aus, um die richtige Periodenabgrenzung zu überprüfen.

Abb7: Dezemberbuchungen innerhalb der JET Analyse

Abb7: Dezemberbuchungen innerhalb der JET Analyse

Innerhalb der Umsatzbuchungen sind für den Prüfer solche Buchungen relevant, die an bestimmte Kunden gestellt wurden (wegen des Risikos auf dolose Handlungen).

Abb8: Filterung auffälliger Kunden

Abb8: Filterung auffälliger Kunden

Als letzten Filter wählt der Prüfer alle Beträge oberhalb der Nichtaufgriffsgrenze aus

"Abb9:

Abb9: Schichtungen nach Beträgen > 25k

Aus den verbleibenden Belegen wählt der Prüfer eine Stichprobe bewusst aus, um anhand von Nachweisen (Rechnungen, Lieferscheine, etc.) zu überprüfen, ob die Buchungen berechtigt, richtig und periodengerecht erfolgt sind. Hierzu kann er die Belegliste aus auditbee in Excel exportieren, um Sie dem Buchhalter als Belegauswahl zuzusenden. Außerdem dokumentiert der Prüfer seine Ergebnisse in der Qlik Sense Story.

Abb10: Strukturierte bewusste Belegauswahl – 4 von 13 Belege nach

Abb10: Strukturierte bewusste Belegauswahl – 4 von 13 Belege nach

Zusammenfassung und Ausblick

Datenanalysen ermöglichen dem Prüfer sehr tiefe Einblicke in die Geschäftsentwicklung des Mandanten. So kann er nicht nur sein Verständnis vom Unternehmen stetig weiterentwickeln, die Datenanalyse hilft ihm auch, Massendaten angemessen zu überprüfen.

Damit der Prüfer mit der Datenanalyse die Nadel im Heuhaufen finden, relevante Entwicklungen erkennen und Zusammenhänge besser verstehen kann, muss sie jedoch in die Prüfung integriert sein. Das bedeutet, dass sie nicht nur für Journal Entry Tests durch Spezialisten, genutzt wird, sondern jedes einzelne Teammitglied selbst anhand der Daten Auffälligkeiten leicht erkennen und überprüfen kann. Außerdem wird die Analyse zur Risikobeurteilung verwendet. Dadurch können unkritische Bereiche von weitergehenden Prüfungshandlungen ausgenommen werden. Durch die Fokussierung und das Filtern auffälliger Datensätze kann schließlich der Umfang von Einzelbelegprüfungen deutlich verringert werden.

auditbee übernimmt als Service die Datenaufbereitung und stellt dem Prüfer ein fertig abgestimmtes Dashboard-Modell zur Verfügung, dass der Prüfer mit der BI Software Qlik Sense nutzen kann. Damit baut die Kanzlei Risiken ab, weil Sie weniger von Spezialisten abhängig ist. Zum anderen enthält das auditbee Modell jede Menge menschlichen Sachverstand und Logik in Form von Journal Entry Test Abfragen, Kennzahlen bis hin zu dynamischen Beurteilungen. Dadurch spart sich der Prüfer die Zeit, die entsprechenden Fragen und Analysen selbst mit Excel oder einem anderen Softwarelösungen zu modellieren.

Wirtschaftsprüfung ist Teamarbeitet. Jeder bringt seine individuellen Stärken und Fachwissen ein. Deshalb braucht das Team immer auch jemanden, dessen Stärke in der Analyse liegt, um schnell und effizient Auffälligkeiten zu erkennen und diese durch richtige Fragen und Nachweise angemessen zu würdigen. Jedoch ist der Spezialist Dank auditbee nicht mehr alleine. Das ganze Team hat nun Zugriff auf alle GDPdU Daten aus der Finanzbuchhaltung und auch die Dokumentation erfolgt innerhalb einer Lösung – und das ist auditbee!

Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 1/2

ERP, CRM, FiBu – täglich durchlaufen unzählige Geschäftsprozesse die IT-Systeme von Unternehmen. Es entstehen Ströme aus Massendaten, die am Ende in der Finanzbuchhaltung münden und dort automatisch auf Konten erfasst werden.

Mit auditbee können Wirtschaftsprüfer diese Datenströme wirtschaftlich und einfach analysieren. auditbee integriert die Datenanalyse in den gesamten Prüfungsverlauf und macht Schluss mit ausgedruckten Kontenblättern, komplizierten Datenabfragen sowie dem Zufall bei der Fehlersuche.

Wirtschaftsprüfer und die Nadel im Heuhaufen

Die Finanzdaten von Unternehmen sind wichtig für viele Adressaten – Gesellschafter, Banken, Kunden, etc. Deswegen ist es die gesetzliche Aufgabe des Wirtschaftsprüfers, wesentliche Fehler in der Buchhaltung und dem Jahresabschluss aufzudecken. Dazu überprüft er einzelne Sachverhalte mit hohem Fehlerrisiko und Prozesse, bei denen systematische Fehler in Summe von Bedeutung für den Abschluss sein können (IDW PS 261 n.F.).

Die Prüfung gleicht jedoch der Suche nach der Nadel im Heuhaufen!

Fehler sind menschlich und können passieren. Das Problem ist, dass sie im gesamten Datenhaufen gut verborgen sein können – und je größer dieser ist, desto schwieriger wird die Suche. Neben Irrtümern können Fehler auch durch absichtliche Falschdarstellungen und bewusste Täuschungen entstehen. Um solche dolosen Handlungen festzustellen, hat der Prüfer häufig tief im Datenhaufen zu graben, weil sie gut versteckt sind. Deswegen sind auch nach international anerkannten Prüfungsgrundsätzen die Journalbuchungen zu analysieren (ISA 240.32).

Die Suche nach dem Fehler

Noch vor einigen Jahren bestand die Prüfung hauptsächlich darin, eine Vielzahl an bewusst ausgewählten Belegen als Stichprobe in Papier einzusehen und mit den Angaben in der Buchhaltung abzustimmen – analog mit Stift und Textmarker auf ausgedruckten Kontenblättern. Dafür mussten Unmengen Belege kopiert und Kontenblätter ausgedruckt werden. Das hat nicht nur Papier verschwendet, sondern auch sehr viel der begrenzten Zeit gekostet. Zu allen Übels mussten die so entstandenen Prüfungsakten noch Kistenweise zum Mandanten hin- und wieder zurück transportiert werden. Es gab keine digitale Alternative.

Heute haben viele Unternehmen ihre Belege digitalisiert und setzen Dokumentenmanagement-systeme ein. Eine enorme Arbeitserleichterung für den Prüfer, der jetzt alle Belege digital einsehen kann. Weil der Datenhaufen jedoch gleichzeitig immer weiter wächst, entstehen neue Herausforderungen. Die Datenmenge als Grundgesamtheit wirkt sich beispielsweise auf den Umfang einer Stichprobe aus. Um Massendaten aus automatisierten Geschäftsprozessen wirtschaftlich überprüfen zu können, sind daher Datenanalysen unerlässlich.

Mit dem BMF-Schreiben „Grundsätze zum Datenzugriff und zur Prüfbarkeit digitaler Unterlagen – GDPdU“ wurde im Jahr 2001 der Grundstein für die Datenanalyse in der Prüfung gelegt. Der Nachfolger „Grundsätze zur ordnungsmäßigen Führung und Aufbewahrung von Büchern, Aufzeichnungen und Unterlagen in elektronischer Form sowie zum Datenzugriff – GoBD“ wurde 2014 veröffentlicht. Mit den BMF-Schreiben hat eine gewisse Normierung der steuerlich relevanten Daten (GDPdU/GoBD-Daten) durch die Finanzverwaltung stattgefunden. Diese lassen sich aus jeder Buchhaltungssoftware extrahieren und umfassen sämtliche Journalbuchungen.

Mit Datenanalysen kann der Prüfer nicht nur das Unternehmen und dessen Entwicklung besser verstehen. Dank der GDPdU/GoBD-Daten können Fehler mit auditbee viel leichter gefunden werden, weil sich der Prüfer jeden Halm im Datenhaufen ganz genau ansehen, Auffälligkeiten erkennen und hinterfragen kann. Mit der Analyse und Risikobeurteilung wird zudem die Belegprüfung deutlich reduziert, weil sich der Prüfer bei der Auswahl auf auffällige und risikobehaftete Daten beschränken kann.

Integration der Datenanalyse in die Prüfung – Spezialisten oder Self-Service

Das Tagesgeschäft des Wirtschaftsprüfers ist sehr vielfältig – Prüfung, Unternehmensbewertung, Steuerberatung. Deshalb erfolgt die Datenanalyse regelmäßig durch Spezialisten. Das sind IT-affine Mitarbeiter innerhalb der Kanzlei, die sich im Rahmen von Projekten selbständig weitergebildet oder eine Qualifikation als CISA bzw. IT Auditor haben.

Der Spezialist überprüft die Journalbuchungen (Journal Entry Tests) mit Excel oder einer Analysesoftware für Prüfer (DATEV Datenanalyse, IDEA, ACL). Oft ist er aber nicht mehr an der weiteren Prüfung beteiligt. Stattdessen führt der Prüfer mit seinen Assistenten als Team vor Ort die Hauptprüfung durch. Dabei werden häufig Konten erneut für die Belegauswahl in Excel gezogen. Das führt nicht nur zu Medienbrüchen, sondern erhöht auch die Wahrscheinlichkeit für Doppelarbeit, Fehler und Missverständnisse.

Neben alten Gewohnheiten und Zeitdruck ist die Analysesoftware oft selbst ein Grund, weshalb die Datenanalyse in der Praxis selten in die Prüfung integriert ist. Schließlich erfordern die Softwarelösungen einiges an IT-Kenntnis in der Einrichtung und Bedienung. Zudem ist die Interpretation von überwiegend in Tabellen dargestellten Daten schwierig und umständlich.

Mit auditbee als vorbereitete Dashboard Lösung auf Basis von Qlik Sense kann jeder im Team seine Daten selbst analysieren. Damit wird die Datenanalyse in die Prüfung integriert und kann ihr volles Potential entfalten.

auditbee als Self-Service BI-Lösung lässt sich so einfach bedienen, dass das Prüfungsteam nicht mehr von einzelnen Spezialisten abhängig ist. Damit aber nicht jeder bei 0 anfängt, werden die Daten bereits vom auditbee Team als Service in die BI-Software Qlik Sense geladen und abgestimmt. Zudem sind bereits verschiedene Dashboards zur Analyse eingerichtet. Der einzelne Anwender kann sich mit auditbee Daten und Kennzahlen ansehen, ohne eine einzige Formel eingeben zu müssen. Die Navigation und das dynamische Filtern der Daten im gesamten Dashboard erfolgt mit der Maus und das nahezu in Echtzeit. Anstatt von Abfragen mit langen Ladezeiten und Duplizierung der Daten können diese sofort im gesamten auditbee Modell nach unterschiedlichen Dimensionen (mehrdimensional) analysiert werden.

Mit auditbee zur strukturierten Belegauswahl

Bei der traditionellen bewussten Auswahl sucht sich der Prüfer Belege nach eigenem Ermessen anhand der Informationen auf dem Kontoblatt aus. Das sind regelmäßig Betrag, Buchungsdatum oder Buchungstext. Diese Methode ist relativ einseitig, eindimensional und vorhersehbar, weil vom Prüfer eher größere Beträge oder auffällige Texte ausgewählt werden. Dadurch kann es sein, dass absichtliche Falschdarstellungen und Irrtümer bei betragsmäßig kleineren Belegen nicht in die Stichprobe einbezogen werden und somit ungeprüft bleiben.

Zufalls- sowie statistische Auswahlverfahren (u.a. Monetary Unit Sampling) können wegen der Schwächen der traditionellen Methode eine Alternative sein. Doch auch sie haben einen relevanten Nachteil. Der Umfang der Stichprobe ist oftmals sehr hoch, um ein hinreichendes Signifikanzniveau (Alpha 0,05) zu erreichen. Ein Grund für den Prüfer, sich möglicherweise doch für die bewusste Auswahl zu entscheiden, um die Zeit für Belegabstimmungen zu verkürzen.

Durch die Verbindung sämtlicher FiBu-Daten und der Darstellung weiterer Dimensionen – Referenz, Beleg Art, Erfassungsdatum, Debitor, etc. – ermöglicht auditbee dem Prüfer eine dritte Methode. Bei der strukturierten Belegauswahl fokussiert sich der Prüfer auf Auffälligkeiten und wählt seine Stichprobe aus einer deutlich kleineren Zahl an Belegen bewusst oder per Zufall aus.

Der Prüfer analysiert nicht alles auf einmal, sondern betrachtet nur solche Daten, die aus Sicht des Themas und der zu prüfenden Frage relevant sind. Beispiel: Es werden nur die Daten im Umsatzbereich betrachtet, die das Merkmal „nicht zeitnah erfasst“ aufweisen. Ausgehend von der Frage kategorisiert der Prüfer die Daten nach der Höhe des Fehlerrisikos (Risikobeurteilung nach IDW PS 261 n.F.). Beispielsweise können automatisierte Buchungen ein geringes Fehlerrisiko aufweisen, Sachbuchungen oder Buchungen bestimmter Mitarbeiter dagegen ein höheres. Nur noch Belege mit höherem Risiko sowie andere Auffälligkeiten ergründet der Prüfer weiter im Detail. Hierzu filtert er die Daten anhand der auffälligen Dimensionen (Erfasser, Debitor, Monat, etc.). Am Ende bleiben nur noch wenige auffällige Datensätze übrig, aus der der Prüfer seine Stichprobe auswählt.

Bezogen auf die Nadel im Heuhaufen zeigen die 3 Methoden folgendes Bild.

Methode 1: Der Prüfer trägt nur die großen Strohalme von der Oberfläche ab, um zu sehen, ob darunter die Nadel verborgen ist (traditionelle Belegauswahl anhand des Kontoblattes).

Methode 2: Der Prüfer greift an verschiedenen Stellen in den Heuhaufen hinein, um per Zufall die Nadel zu finden (statistische Zufallsauswahlverfahren).

Methode 3: Der Prüfer sieht sich den Heuhaufen erst genau an, ob irgendwelche Stellen durchgewühlt aussehen (Auffälligkeiten), hier trägt er den Teil ab (Filtern der auffälligen Daten) und durchsucht systematisch den kleinen Haufen (strukturierte Auswahl).

Dies ist Teil 2/2 des Artikels, lesen Sie hier den zweiten Artikel Wie Wirtschaftsprüfer mit auditbee die Nadel im Heuhaufen finden – Teil 2/2.

Mit Dashboards zur Prozessoptimierung

Geschäftlicher Erfolg ergibt sich oft aus den richtigen Fragen – zum Beispiel: „Wie kann ich sicherstellen, dass mein Produkt das beste ist?“, „Wie hebe ich mich von meinen Mitbewerbern ab?“ und „Wie baue ich mein Unternehmen weiter aus?“ Moderne Unternehmen gehen über derartige Fragen hinaus und stellen vielmehr die Funktionsweise ihrer Organisation in den Fokus. Fragen auf dieser Ebene lauten dann: „Wie kann ich meine Geschäftsprozesse so effizient wie möglich gestalten?“, „Wie kann ich Zusammenarbeit meiner Mitarbeiter verbessern?“ oder auch „Warum funktionieren die Prozesse meines Unternehmens nicht so, wie sie sollten?“


Read this article in English: 
“Process Paradise by the Dashboard Light”


Um die Antworten auf diese (und viele andere!) Fragen zu erhalten, setzen immer mehr Unternehmen auf Process Mining. Process Mining hilft Unternehmen dabei, den versteckten Mehrwert in ihren Prozessen aufzudecken, indem Informationen zu Prozessmodellen aus den verschiedenen IT-Systemen eines Unternehmens automatisch erfasst werden. Auf diese Weise kann die End-to-End-Prozesslandschaft eines Unternehmens kontinuierlich überwacht werden. Manager und Mitarbeiter profitieren so von operativen Erkenntnissen und können potenzielle Risiken ebenso erkennen wie Möglichkeiten zur Verbesserung.

Process Mining ist jedoch keine „Wunderwaffe“, die Daten auf Knopfdruck in Erkenntnisse umwandelt. Eine Process-Mining-Software ist vielmehr als Werkzeug zu betrachten, das Informationen erzeugt, die anschließend analysiert und in Maßnahmen umgesetzt werden. Hierfür müssen die generierten Informationen den Entscheidungsträgern jedoch auch in einem verständlichen Format zur Verfügung stehen.

Bei den meisten Process-Mining-Tools steht nach wie vor die Verbesserung der Analysefunktionen im Fokus und die generierten Daten müssen von Experten oder Spezialisten innerhalb einer Organisation bewertet werden. Dies führt zwangsläufig dazu, dass es zwischen den einzelnen Schritten zu Verzögerungen kommt und die Abläufe bis zur Ergreifung von Maßnahmen ins Stocken geraten.

Process-Mining-Software, die einen kooperativeren Ansatz verfolgt und dadurch das erforderliche spezifische Fachwissen verringert, kann diese Lücke schließen. Denn nur wenn Informationen, Hypothesen und Analysen mit einer Vielzahl von Personen geteilt und erörtert werden, können am Ende aussagekräftige Erkenntnisse gewonnen werden.

Aktuelle Process-Mining-Software kann natürlich standardisierte Berichte und Informationen generieren. In einem sich immer schneller ändernden Geschäftsumfeld reicht dies jedoch möglicherweise nicht mehr aus. Das Erfolgsgeheimnis eines wirklich effektiven Process Minings besteht darin, Herausforderungen und geschäftliche Möglichkeiten vorherzusehen und dann in Echtzeit auf sie zu reagieren.

Dashboards der Zukunft

Nehmen wir ein analoges Beispiel, um aufzuzeigen, wie sich das Process Mining verbessern lässt. Der technologische Fortschritt soll die Dinge einfacher machen: Denken Sie beispielsweise an den Unterschied zwischen der handschriftlichen Erfassung von Ausgaben und einem Tabellenkalkulator. Stellen Sie sich nun vor, die Tabelle könnte Ihnen genau sagen, wann Sie sie lesen und wo Sie beginnen müssen, und würde Sie auf Fehler und Auslassungen aufmerksam machen, bevor Sie überhaupt bemerkt haben, dass sie Ihnen passiert sind.

Fortschrittliche Process-Mining-Tools bieten Unternehmen, die ihre Arbeitsweise optimieren möchten, genau diese Art der Unterstützung. Denn mit der richtigen Process-Mining-Software können individuelle operative Cockpits erstellt werden, die geschäftliche Daten in Echtzeit mit dem Prozessmanagement verbinden. Der Vorteil: Es werden nicht nur einzelne Prozesse und Ergebnisse kontinuierlich überwacht, sondern auch klare Einblicke in den Gesamtzustand eines Unternehmens geboten.

Durch die richtige Kombination von Process Mining mit den vorhandenen Prozessmodellen eines Unternehmens werden statisch dargestellte Funktionsweisen eines bestimmten Prozesses in dynamische Dashboards umgewandelt. Manager und Mitarbeiter erhalten so Warnungen über potenzielle Probleme und Schwachstellen in Ihren Prozessen. Und denken Sie daran, dynamisch heißt nicht zwingend störend: Die richtige Process-Mining-Software setzt an der richtigen Stelle in Ihren Prozessen an und bietet ein völlig neues Maß an Prozesstransparenz und damit an Prozessverständnis.

Infolgedessen können Transformationsinitiativen und andere Verbesserungspläne jederzeit angepasst und umstrukturiert werden und Entscheidungsträger mittels automatisierter Nachrichten sofort über Probleme informiert werden, sodass sich Korrekturmaßnahmen schneller als je zuvor umsetzen lassen. Der Vorteil: Unternehmen sparen Zeit und Geld, da Zykluszeiten verkürzt, Engpässe lokalisiert und nicht konforme Prozesse in der Prozesslandschaft der Organisation aufgedeckt werden.

Dynamische Dashboards von Signavio

 Testen Sie Signavio Process Intelligence und erleben Sie selbst, wie die modernste und fortschrittlichste Process-Mining-Software Ihnen dabei hilft, umsetzbare Einblicke in die Funktionsweise Ihres Unternehmens zu erhalten. Mit Signavios Live Insights profitieren Sie von einer zentralen Ansicht Ihrer Prozesse und Informationen, die in Form eines Ampelsystems dargestellt werden. Entscheiden Sie einfach, welche Prozesse und Aktivitäten Sie innerhalb eines Prozesses überwachen möchten, platzieren Sie Indikatoren und wählen Sie Grenzwerte aus. Alles Weitere übernimmt Signavio Process Intelligence, das Ihre Prozessmodelle mit den Daten verbindet.

Lassen Sie veraltete Arbeitsweisen hinter sich. Setzen Sie stattdessen auf faktenbasierte Erkenntnisse, um Ihre Geschäftstransformation zu unterstützen und Ihre Prozessmanagementinitiativen schneller zum Erfolg zu führen. Erfahren Sie mehr über Signavio Process Intelligence oder registrieren Sie sich für eine kostenlose 30-Tage-Testversion über www.signavio.com/try.

Erfahren Sie in unserem kostenlosen Whitepaper mehr über erfolgreiches Process Mining mit Signavio Process Intelligence.