Künstliche Intelligenz und Vorurteil

Kaum ein anderes technologisches Thema heutzutage wird hinsichtlich gesellschaftlicher Auswirkungen so kontrovers diskutiert wie das der Künstlichen Intelligenz (KI). Während das Wörtchen „KI“ bei den einen Zukunftsvisionen hervorruft, in welchen technologischer Fortschritt menschliche Probleme wie Hunger, Krankheit und Klimawandel reduziert hat, zeichnen andere düstere Bilder von Orwell‘schen Überwachungsstaaten und technologischen Apokalypsen.

Starke, schwache KI

Es ist die Unschärfe des Begriffes „KI“, welcher eine derart große Bandbreite an Zukunftsszenarien ermöglicht. Für diejenigen, welche sich an solch spekulativen Debatten beteiligen, beutet KI „starke KI“ – eine künstliche Intelligenz, deren intellektuellen Fähigkeiten die eines Menschen erreichen oder gar übertreffen. Und so spannend die Diskussion über starke KI auch ist – sie ist reine Spekulation. Heute existierende KI ist weit, sehr weit von starker KI entfernt. Worüber wir heutzutage verfügen ist die sogenannte „schwache KI“ – Algorithmen, die spezifische Anwendungsprobleme (z.B. Bilderkennung, Spracherkennung, Übersetzung, Go spielen) lösen können. Und das mitunter sehr viel besser als Menschen.

Wo heutzutage „KI“ draufsteht, sind innen überwiegend Algorithmen aus dem Bereich des maschinellen Lernens (allen voran Deep Learning) am Werk. Diese Algorithmen können selbständig die Vorgehensweise erlernen, die zum Beispiel nötig ist, um einen gegebenen Input (z.B. ein Bild) auf einen gegebenen Output (z.B. eine Kategorie, welche den Bildinhalt beschreibt) abzubilden. Aber selbst diese „schwache KI“ birgt beträchtliches Potential – denken wir an mögliche Verbesserungen z.B. im Bereich der Medizin, Logistik, Verkehrssicherheit oder Energie- und Ressourcennutzung! Angesichts der Chancen, heutige Prozesse und Anwendungen zu verbessern, haben wir allen Grund, dem Einsatz von KI aufgeschlossen gegenüber zu stehen. Vorausgesetzt natürlich, dass KI verantwortungsvoll, „ethisch“ und sicher eingesetzt wird.

KI auf Abwegen

Ethische Herausforderungen von KI ergeben sich dabei zum einen durch die Zielsetzung. Wie ein Hammer für den Nagel an der Wand oder für den Hinterkopf eines Gegners verwendet werden kann, kann auch KI für böse Ziele missbraucht werden. Nur, dass KI im Zweifel deutlich größeren Schaden anrichten kann als ein einfacher Hammer. Und so sollten wir angesichts der Risiken dringend international diskutieren, wie wir uns hinsichtlich militärischer Anwendungen von KI verhalten wollen.

Zum anderen dringen besonders aus den USA, in denen KI Algorithmen schon heute in deutlich größerem Ausmaß eingesetzt werden als in Deutschland, immer wieder beunruhigende Nachrichten über voreingenommene KI Algorithmen. Zum ersten fand eine Studie kürzlich heraus, dass kommerziell erhältliche Gesichtserkennungsalgorithmen für Frauen bzw. dunkelhäutige Menschen schlechter funktionieren als für Männer bzw. hellhäutige Menschen. Mit der unschönen Konsequenz, dass es z.B. bei einem Abgleich mit Verbrecherfotos bei Menschen mit dunkler Hautfarbe deutlich häufiger zu falschen Übereinstimmungen kommen kann als bei Menschen heller Hautfarbe. Zum zweiten wurde vor kurzem bekannt, dass eine experimentell von einem großen Technologiekonzern zur Bewertung von Bewerbungen verwendete KI von Frauen stammende Bewerbungen systematisch schlechter bewertete als von Männern stammende Bewerbungen.

Wie KI zu Vorurteilen kommt

Um die Ursachen für vorurteilsbehaftete KI besser zu verstehen, lohnt es sich, einen Blick hinter die Kulissen zu werfen. Denn wie jede Technologie existiert auch KI nicht im luftleeren Raum. Dies lässt sich leicht anhand der Faktoren verdeutlichen, welche zum Erfolg heutiger KI beigetragen haben: bessere Hardware, cleverere Algorithmen und größere Datenmengen. Und gerade diese Daten sind es, durch welche Vorurteile in KI Einzug halten können.

Die Vorstellung von „neutralen Daten“ ist nämlich eine Wunschvorstellung. Im besten Fall spiegeln Daten die Welt wider, in der wir leben.       Eine Welt zum Beispiel, in der in Technologiekonzernen typischerweise deutlich mehr Männer beschäftigt sind als Frauen – was eine auf dem Personalbestand eines Technologiekonzerns trainierte KI dazu veranlassen kann, zu „schlussfolgern“, dass männliche Bewerber im Auswahlverfahren zu bevorzugen sind. Oder eine Welt, in der Länder bzw. gesellschaftliche Schichten innerhalb eines Landes unterschiedlichen Zugang zu modernen Technologien oder auch Bildung haben. Eine Ungleichheit, die sich als Dominanz westlicher Industrienationen in der geografischen Zusammensetzung von zum Training von KI-Algorithmen verwendeter Datensätze auswirken kann. Eine Dominanz, die wiederum zur Folge haben kann, dass derart trainierte KI-Algorithmen besonders gut für Menschen aus westlichen Industrienationen funktionieren. Ganz zu schweigen von der Voreingenommenheit der menschlichen Wahrnehmung, welche die Zusammensetzung von Daten beeinflusst – denken wir an das begrenzte Spektrum der Bilder, welche uns zuerst zu dem Begriff „Genie“ in den Sinn kommen.

Aber nicht nur die verwendeten Trainingsdaten, sondern auch bei der Entwicklung von KI getroffenen Design-Entscheidungen können negative Auswirkungen haben. Wenn bei einem nicht perfekt funktionierenden Bilderkennungsalgorithmus potentiell abwertende Kategorien zur Klassifikation zur Verfügung stehen, kann dies dazu führen, dass – wie in der Vergangenheit geschehen – dunkelhäutige Menschen als Gorillas klassifiziert werden. Wenn bei der Evaluation eines z.B. für die Gesichtserkennung eingesetzten KI-Algorithmus nur die Genauigkeit über alle Bevölkerungsgruppen hinweg berücksichtigt wird, können Ungleichheiten in der Genauigkeit nicht entdeckt werden, was zu Problemen bei der Anwendung führen kann. Denn Nutzer von KI-Algorithmen vermuten zumeist, dass die Algorithmen für alle denkbaren Anwendungszwecke geeignet sind.

Werte statt Wegsehen

Entgegen der verbreiteten Auffassung sind KI Algorithmen also nicht notwendigerweise vorurteilsfrei – sie können menschliche Voreingenommenheit bzw. gesellschaftliche Ungleichheit widerspiegeln. Da Algorithmen anders und in anderem Maß als Menschen eingesetzt werden, kann das bei blauäugiger Verwendung dazu führen, dass bestehende Ungleichheiten nicht nur bestärkt, sondern sogar vergrößert werden. Richtig angewendet können Algorithmen jedoch helfen, implizite und explizite Vorurteile menschlicher Entscheider zu mindern. Denn wie wir durch viele Studien wissen, ist die Liste der kognitiven Verzerrungen, die wir Menschen aufweisen, lang.

Es ist für den verantwortlichen Einsatz von KI in einem sensiblen Kontext somit essenziell, zu wissen, welche „ethischen“ Kriterien KI für den konkreten Anwendungsfall erfüllen muss. So kann sichergestellt werden, dass die KI den Anforderungen entspricht, bevor sie angewendet wird – oder aber, dass sie solange nicht angewendet wird, wie sie den Anforderungen nicht entspricht. Und mittels Transparenz, Überwachung und Feedback-Möglichkeiten lässt sich vermeiden, dass ein selbst-verbessernder KI-Algorithmus im Laufe der Zeit das ihm gesteckte Ziel verfehlt.

Für viele Anwendungsfälle sind derartige ethische Fragen jedoch vernachlässigbar, denken wir zum Beispiel an die Vorhersage von Maschinenausfällen oder die Extraktion strukturierter Daten aus unstrukturierten Dokumenten. Aber es ist nichtsdestotrotz gut und wichtig, Ethik und KI zusammen zu denken. Denn dies ermöglicht es uns, sicherzustellen, dass wir KI auf die bestmögliche Weise einsetzen. Denn das enorme Potential von KI gibt uns die Chance, den Status quo nachhaltig positiv zu verändern – technologisch wie ethisch.

Data Leader Days 2018 – Review

Das Who’s Who der Datenwirtschaft auf den Data Leader Days 2018

Berlin, Dezember 2018: Die Data Leader Days am 14./15. November 2018 im Berliner Spreespeicher haben erneut die Entscheider aus der Business- und Digitalwelt versammelt und wichtige Impulse ausgesendet. Die in diesem Jahr zum dritten Mal stattfindende Veranstaltung verzeichnete mit knapp 300 Teilnehmern einen enormen Besucherzuwachs. Organisiert wurde die Konferenz von DATANOMIQ und dem Connected Industry.

Der Auftakttag stand ganz unter dem Zeichen von Commercial und Finance Data: Besondere Highlights waren hier die Vorträge von Dr. Joachim Schmalzl, Vorstandsmitglied des Dt. Sparkassen- und Giroverbands, der auf die Fortschritte der Sparkassen bei der Umsetzung von digitalen Innovationen einging sowie Marcus Hartmann, Chief Data Officer der ProSieben Sat. 1 Media mit seiner Keynote. Im Fokus des zweiten Tages standen Industrial und Automotive Data. Hier konnten Digitalmanager von BASF, Heidelberger Druckmaschinen, E.ON, Wittenstein, Vodafone, Schaeffler und Airbus anhand von Live Demos und Use Cases die Themen Data Science & Machine Learning, Data Engineering sowie Data Visualization vorstellen.

Die Data Leader Days freuen sich auch im nächsten Jahr wieder auf eine große Resonanz. Das Event findet wieder in Berlin am 13./14. November 2019 statt.

Data Leader Days Sponsors and Audience

Fuzzy Matching mit dem Jaro-Winkler-Score zur Auswertung von Markenbekanntheit und Werbeerinnerung

Für Unternehmen sind Markenbekanntheit und Werbeerinnerung wichtige Zielgrößen, denn anhand dieser lässt sich ableiten, ob Konsumenten ein Produkt einer Marke kaufen werden oder nicht. Zielgrößen wie diese werden von Marktforschungsinstituten über Befragungen ermittelt. Dafür wird in regelmäßigen Zeitabständen eine gleichbleibende Anzahl an Personen befragt, ob diese sich an Marken einer bestimmten Branche erinnern oder sich an Werbung erinnern. Die Personen füllen dafür in der Regel einen Onlinefragebogen aus.

Die Ergebnisse der Befragung liegen in einer Datenmatrix (siehe Tabelle) vor und müssen zur Auswertung zunächst bearbeitet werden.

Laufende Nummer Marke 1 Marke 2 Marke 3 Marke 4
1 ING-Diba Citigroup Sparkasse
2 Sparkasse Consorsbank
3 Commerbank Deutsche Bank Sparkasse ING-DiBa
4 Sparkasse Targobank

Ziel ist es aus diesen Daten folgende 0/1 codierte Matrix zu generieren. Wenn eine Marke bekannt ist, wird in die zur Marke gehörende Spalte eine Eins eingetragen, ansonsten eine Null.

Alle Marken ING-Diba Citigroup Sparkasse Targobank
ING-Diba, Citigroup, Sparkasse 1 1 1 0
Sparkasse, Consorsbank 0 0 1 0
Commerzbank, Deutsche Bank, Sparkasse, ING-Diba 1 0 0 0
Sparkasse, Targobank 0 0 1 1

Der Workflow um diese Datentransformation durchzuführen ist oftmals mittels eines Teilstrings einer Marke zu suchen ob diese in einem über alle Nennungen hinweg zusammengeführten String vorkommt oder nicht (z.B. „argo“ bei Targobank). Das Problem dieser Herangehensweise ist, dass viele falsch geschriebenen Wörter so nicht erfasst werden und die Erfahrung zeigt, dass falsch geschriebene Marken in vielfältigster Weise auftreten. Hier mussten in der Vergangenheit Mitarbeiter sich in stundenlangem Kampf durch die Ergebnisse wühlen und falsch zugeordnete oder nicht zugeordnete Marken händisch korrigieren und alle Variationen der Wörter notieren, um für die nächste Befragung das Suchpattern zu optimieren.

Eine Alternative diesen aufwändigen Workflow stellt die Ermittlung von falsch geschriebenen Wörtern mittels des Jaro-Winkler-Scores dar. Dafür muss zunächst die Jaro-Winkler-Distanz zwischen zwei Strings berechnet werden. Diese berechnet sich wie folgt:

d_j = frac{1}{3}(frac{m}{|s_1|}+frac{m}{|s_2|}+frac{m - t}{m})

  • m: Anzahl der übereinstimmenden Buchstaben
  • s: Länge des Strings
  • t: Hälfte der Anzahl der Umstellungen der Buchstaben die nötig sind, damit Strings identisch sind. („Ta“ und „gobank“ befinden sich bereits in der korrekten Reihenfolge, somit gilt: t = 0)

Aus dem Ergebnis lässt sich der Jaro-Winkler Score berechnen:
d_w = d_j + (l_p (1 - d_j))
ist dabei die Jaro-Winkler-Distanz, l die Länge der übereinstimmenden Buchstaben von Beginn des Wortes bis zum maximal vierten Buchstaben und p ein konstanter Faktor von 0,1.

Für die Strings „Targobank“ und „Tangobank“ ergibt sich die Jaro-Winkler-Distanz:

d_j = frac{1}{3}(frac{8}{9}+frac{8}{9}+frac{8 - 0}{9})

Daraus wird im nächsten Schritt der Jaro-Winkler Score berechnet:

d_w = 0,9259 + (2 cdot 0,1 (1 - 0,9259)) = 0,9407407

Bisherige Erfahrungen haben gezeigt, dass sich Scores ab 0,8 bzw. 0,9 am besten zur Suche von ähnlichen Wörtern eignen. Ein Schwellenwert darunter findet sehr viele Wörter, die sich z.B. auch anderen Wörtern zuordnen lassen. Ein Schwellenwert über 0,9 identifiziert falsch geschriebene Wörter oftmals nicht mehr.

Nach diesem theoretischen Exkurs möchte ich nun zeigen, wie sich das Ganze praktisch anwenden lässt. Da sich das Ganze um ein fiktives Beispiel handelt, werden zur Demonstration der Praxistauglichkeit Fakedaten mit folgendem Code erzeugt. Dabei wird angenommen, dass Personen unterschiedlich viele Banken kennen und diese mit einer bestimmten Wahrscheinlichkeit falsch schreiben.

# Erstellung von Fakeantworten
set.seed(1234)
library(stringi)
library(tidyr)
library(RecordLinkage)
library(xlsx)
library(tm)
library(qdap)
library(stringr)
library(openxlsx)

konsonant <- c("r", "n", "g", "h", "b")
vokal <- c("a", "e", "o", "i", "u")

# Funktion, die mit einer zu bestimmenden Wahrscheinlichkeit, einen zufälligen Buchstaben erzeugt.
generate_wrong_words <- function(x, p, k = TRUE) {
  if(runif(1, 0, 1) > p) { # Zufallswert zwischen 0 und 1
    if(k == TRUE) { # Konsonant oder Vokal erzeugen
      string <- konsonant[sample.int(5, 1)] # Zufallszahl, die Index des Konsonnanten-Vektors bestimmt.
    } else {
      string <- vokal[sample.int(5, 1)] # Zufallszahl, die Index eines Vokal-Vecktors bestimmt.
    }
  } else {
    string <- x
  }
  return(string)
}

randombank <- function(x) {
  random_num <- runif(1, 0, 1)
  if(random_num  > x) { ## Wahrscheinlichkeit, dass Person keine Bank kennt.
    number <- sample.int(7, 1)
    if(number == 1) {
      bank <- paste0("Ta", generate_wrong_words(x = "r", p = 0.7), "gob", generate_wrong_words(x = "a", p = 0.9), "nk")
    } else if (number == 2) {
      bank <- paste0("Ing-di", generate_wrong_words(x = "b", p = 0.6), "a")
    } else if (number == 3) {
      bank <- paste0("com", generate_wrong_words(x = "m", p = 0.7), "erzb", generate_wrong_words(x = "a", p = 0.8), "nk")
    } else if (number == 4){
      bank <- paste0("Deutsch", generate_wrong_words(x = "e", p = 0.6, k = FALSE), " Ban", generate_wrong_words(x = "k", p = 0.8))
    } else if (number == 5) {
      bank <- paste0("Spark", generate_wrong_words(x = "a", p = 0.7, k = FALSE), "sse")
    } else if (number == 6) {
      bank <- paste0("Cons", generate_wrong_words(x = "o", p = 0.7, k = FALSE), "rsbank")
    } else {
      bank <- paste0("Cit", generate_wrong_words(x = "i", p = 0.7, k = FALSE), "gro", generate_wrong_words(x = "u", p = 0.9, k = FALSE), "p")
    }
  } else {
    bank <- "" # Leerer String, wenn keine Bank bekannt.
  }
  return(bank)
}


# DataFrame erzeugen, in dem Werte gespeichert werden.
df_raw <- data.frame(matrix(ncol = 8, nrow = 2500))

# Erzeugen von richtig und falsch geschrieben Banken mit einer durch bestimmten Variabilität an Banken, welche die Personen kennen.
for(i in 1:2500) {
  df_raw [i, 1] <- i # Laufende Nummer des Befragten
  df_raw [i, 2] <- randombank(x = 0.05)
  if(df_raw [i, 2] == "") { df_raw [i, 3] <- "" } else {df_raw [i, 3] <- randombank(x = 0.1)}
  if(df_raw [i, 3] == "") { df_raw [i, 4] <- "" } else {df_raw [i, 4] <- randombank(x = 0.1)}
  if(df_raw [i, 4] == "") { df_raw [i, 5] <- "" } else {df_raw [i, 5] <- randombank(x = 0.15)} 
  if(df_raw [i, 5] == "") { df_raw [i, 6] <- "" } else {df_raw [i, 6] <- randombank(x = 0.15)}
  if(df_raw [i, 6] == "") { df_raw [i, 7] <- "" } else {df_raw [i, 7] <- randombank(x = 0.2)} 
  if(df_raw [i, 7] == "") { df_raw [i, 8] <- "" } else {df_raw [i, 8] <- randombank(x = 0.2)} 
}
colnames(df_raw)[1] <- "lfdn"

Ausführen:

head(df_raw)

Nun werden die Inhalte der Spalten in eine einzige Spalte zusammengefasst und jede Marke per Komma getrennt.

df <- unite(df_raw, united, c(2:ncol(df_raw)), sep = ",")
colnames(df)[2] <- "text"
# Gesuchte Banken (nur korrekt geschrieben)
startliste <- c("Targobank", "Ing-DiBa", "Commerzbank", "Deutsche Bank", "Sparkasse", "Consorsbank", "Citigroup")

Damit Sonderzeichen, Leerzeichen oder Groß- und Kleinschreibung keine Rolle spielen, werden alle Strings vereinheitlicht und störende Zeichen entfernt.

dftext <- tolower(dftext)
dftext <- str_trim(dftext)
dftext <- gsub(" ", "", dftext)
dftext <- gsub("[?]", "", dftext)
dftext <- gsub("[-]", "", dftext)
dftext <- gsub("[_]", "", dftext)

startliste <- tolower(startliste)
startliste <- str_trim(startliste)
startliste <- gsub(" ", "", startliste)
startliste <- gsub("[?]", "", startliste)
startliste <- gsub("[-]", "", startliste)
startliste <- gsub("[_]", "", startliste)

Im nächsten Schritt wird geprüft welche Schreibweisen überhaupt existieren. Dafür eignet sich eine Word-Frequency-Matrix, mit der alle einzigartigen Wörter und deren Häufigkeiten in einem Vektor gezählt wird.

words <- as.data.frame(wfm(dftext)) # Jedes einzigartige Wort und dazugehörige Häufigkeiten. words <- rownames(words) # wfm zählt Häufigkeiten jedes Wortes und schreibt Wörter in rownames, wir brauchen jedoch das Wort selbst. </pre> Danach wird eine leere Liste erstellt, in der iterativ für jedes Element des Suchvektors ein Charactervektor erzeugt wird, der Wörter enthält, die einen Jaro-Winker Score von 0,9 oder höher besitzen. <pre class="theme:github lang:r decode:true ">for(i in 1:length(startliste)) {   finalewortliste[[i]] <- words[which(jarowinkler(startliste[[i]], words) > 0.9)] } </pre> Jetzt wird ein leerer DataFrame erzeugt, der die Zeilenlänge des originalen DataFrames besitzt sowie die Anzahl der Marken als Spaltenlänge. <pre class="theme:github lang:r decode:true ">finaldf <- data.frame(matrix(nrow = nrow(df), ncol = length(startliste))) colnames(finaldf) <- startliste </pre> Im nächsten Schritt wird nun aus den ähnlichen Wörtern mit einer oder-Verknüpfung einen String erzeugt, der alle durch den Jaro-Winkler-Score identifizierten Wörter beinhaltet. Wenn ein Treffer gefunden wird, wird in der Suchspalte eine Eins eingetragen, ansonsten eine Null. <pre class="theme:github lang:r decode:true ">for(i in 1:ncol(finaldf)) {   finaldf[i] <- ifelse(str_detect(dftext, paste(finalewortliste[[i]], collapse = "|")) == TRUE, 1, 0) 
}

Zuletzt wird eine Spalte erzeugt, in die eine Eins geschrieben wird, wenn keine der Marken gefunden wurde.

finaldfkeinedergeannten <- ifelse(rowSums(finaldf) > 0, 0, 1) # Wenn nicht mindestens eine der gesuchten Banken bekannt </pre> Nach der fertigen Berechnung der Matrix können nun die finalen KPI´s berechnet und als Report in eine .xlsx Datei geschrieben werden. <pre class="theme:github lang:r decode:true "># Prozentuale Anteile berechnen. anteil <- as.data.frame(t(sapply(finaldf, sum) / nrow(finaldf) * 100)) # Ordne dem DataFrame die ursprünglichen Nenneungen zu. finaldf <- cbind(dftext, finaldf)
colnames(finaldf)[1] <- "text"

# Ergebnisse in eine .xlsx Datei schreiben.
wb <- createWorkbook()
addWorksheet(wb, "Ergebnisse")    
writeData(wb, "Ergebnisse", anteil, startCol = 2, startRow = 1, rowNames = FALSE)
writeData(wb, "Ergebnisse", finaldf, startCol = 1, startRow = 4, rowNames = FALSE)
saveWorkbook(wb, paste0("C:/Users/User/Desktop/Results_", Sys.Date(), ".xlsx"), overwrite = TRUE)  

Dieses Vorgehen kann natürlich nicht verhindern, dass sich jemand mit kritischem Auge die Daten anschauen muss. In mehreren Tests ergaben sich bei einer Fallzahl von ~10.000 Antworten Genauigkeiten zwischen 95% und 100%, was bisherige Ansätze um ein Vielfaches übertrifft.9407407

Cloudera beschleunigt die KI-Industrialisierung mit Cloud nativer Machine-Learning-Plattform

Neues Cloudera-Angebot vereinfacht Machine-Learning-Workflows mit einer einheitlichen Erfahrung für Data Engineering und Data Science auf Kubernetes.

München, Palo Alto (Kalifornien), 5. Dezember 2018 – Cloudera, Inc. (NYSE: CLDR) hat eine Vorschau auf eine neue, Cloud-basierte Machine-Learning-Plattform der nächsten Generation auf Basis von Kubernetes veröffentlicht. Das kommende Cloudera Machine Learning erweitert das Angebot von Cloudera für Self-Service Data Science im Unternehmen. Es bietet eine schnelle Bereitstellung und automatische Skalierung sowie eine containerisierte, verteilte Verarbeitung auf heterogenen Rechnern. Cloudera Machine Learning gewährleistet auch einen sicheren Datenzugriff mit einem einheitlichen Erlebnis in lokalen, Public-Cloud- und hybriden Umgebungen.

Im Gegensatz zu Data-Science-Tools, die nur Teile des Machine-Learning-Workflows adressieren oder nur für die Public Cloud verfügbar sind, kombiniert Cloudera Machine Learning Data Engineering und Data Science, auf beliebigen Daten und überall. Darüber hinaus werden Datensilos aufgelöst, um den kompletten Machine-Learning-Workflow zu vereinfachen und zu beschleunigen. Unternehmen können ab sofort hier Zugang zu einer Vorabversion von Cloudera Machine Learning anfragen.

Container und das Kubernetes-Ökosystem ermöglichen die Agilität der Cloud in verschiedenen Umgebungen mit einer konsistenten Erfahrung und ermöglichen die Bereitstellung skalierbarer Services für die IT in hybriden und Multi-Cloud-Implementierungen. Gleichzeitig sind Unternehmen bestrebt, komplette Machine-Learning-Workflows zu operationalisieren und zu skalieren. Mit Cloudera Machine Learning können Unternehmen Machine Learning von der Forschung bis zur Produktion beschleunigen. Benutzer sind in der Lage, Umgebungen einfach bereitzustellen und Ressourcen zu skalieren und müssen so weniger Zeit für die Infrastruktur und können mehr Zeit für Innovationen aufwenden.

Zu den Fähigkeiten gehören:

  • Nahtlose Portierbarkeit über Private Cloud, Public Cloud und Hybrid Cloud auf Basis von Kubernetes.

  • Schnelle Cloud-Bereitstellung und automatische Skalierung.

  • Skalierbares Data Engineering und Machine Learning mit nahtloser Abhängigkeitsverwaltung durch containerisiertes Python, R und Spark-on-Kubernetes.

  • Hochgeschwindigkeits-Deep-Learning mit verteiltem GPU-Scheduling und Training.

  • Sicherer Datenzugriff über HDFS, Cloud Object Stores und externe Datenbanken hinweg.

„Teams produktiver zu machen, ist entscheidend für die Skalierung von Machine Learning im Unternehmen. Modelle konsistent über eine hochskalierbare, transparente Infrastruktur zu erstellen und einzusetzen und dabei überall auf Daten zuzugreifen, erfordert aber eine neuartige Plattform”, sagt Hilary Mason, General Manager, Machine Learning bei Cloudera. „Cloudera Machine Learning vereint die kritischen Funktionen von Data Engineering, kollaborativer Exploration, Modelltraining und -bereitstellung in einer Cloud-basierten Plattform, die dort läuft, wo Sie sie benötigen – mit den integrierten Sicherheits-, Governance- und Managementfunktionen, die unsere Kunden nachfragen.”

„Bei Akamai haben wir ausgereifte Web-Sicherheitssysteme auf der Grundlage einer umfassenden Datenanalyse und -verarbeitung aufgebaut. Dabei ist uns bewusst geworden, dass Geschwindigkeit und Skalierbarkeit entscheidend für die Erkennung von Anomalien im Internet sind”, sagt Oren Marmor, DevOps Manager, Web Security bei Akamai. „Die Agilität, die Docker und Kubernetes Apache Spark verleihen, ist für uns ein wichtiger Baustein, sowohl für Data Science als auch für Data Engineering. Wir freuen uns sehr über die Einführung der kommenden Cloudera Machine Learning Plattform. Die Möglichkeit, mit der Plattform das Abhängigkeitsmanagement von Betriebssystemen und Bibliotheken zu vereinfachen, ist eine vielversprechende Entwicklung.”


Matt Brandwein, Senior Director of Products bei Cloudera, erläutert im Video, wie die neue Cloudera Plattform Teams in die Lage versetzt, Machine Learning im Unternehmen zu entwickeln und einzusetzen.

Mit Cloudera Machine Learning sowie der Forschung und fachkundigen Beratung durch die Cloudera Fast Forward Labs bietet Cloudera einen umfassenden Ansatz zur Beschleunigung der Industrialisierung von KI.

Um Kunden dabei zu unterstützen, KI überall zu nutzen, hat das Applied Research Team von Cloudera kürzlich Federated Learning eingeführt, um Machine-Learning-Modelle von der Cloud bis zum Edge einzusetzen, gleichzeitig den Datenschutz zu gewährleisten und den Aufwand für die Netzwerkkommunikation zu reduzieren. Der Bericht bietet eine detaillierte, technische Erläuterung des Ansatzes sowie praktische technische Empfehlungen, die sich mit Anwendungsfällen in den Bereichen Mobilfunk, Gesundheitswesen und Fertigung befassen, einschließlich IoT-gesteuerter Predictive Maintenance.

„Federated Learning beseitigt Hindernisse für die Anwendung von Machine Learning in stark regulierten und wettbewerbsorientierten Branchen. Wir freuen uns sehr, unseren Kunden helfen zu können, damit Starthilfe für die Industrialisierung der KI zu erhalten”, so Mike Lee Williams, Forschungsingenieur bei Cloudera Fast Forward Labs.


Mike Lee Williams, Research Engineer bei den Cloudera Fast Forward Labs, erklärt im Video, wie Machine-Learning-Systeme mit Hilfe von Federated Learning ohne direkten Zugriff auf Trainingsdaten aufgebaut werden können. 

Über Cloudera

Bei Cloudera glauben wir, dass Daten morgen Dinge ermöglichen werden, die heute noch unmöglich sind. Wir versetzen Menschen in die Lage, komplexe Daten in klare, umsetzbare Erkenntnisse zu transformieren. Wir sind die moderne Plattform für Machine Learning und Analysen, optimiert für die Cloud. Die größten Unternehmen der Welt vertrauen Cloudera bei der Lösung ihrer herausforderndsten, geschäftlichen Probleme. Weitere Informationen finden Sie unter de.cloudera.com/.