6 Steps of Process Mining – Infographic

Many Process Mining projects mainly revolve around the selection and introduction of the right Process Mining tools. Relying on the right tool is of course an important aspect in the Process Mining project. Depending on whether the process analysis project is a one-time affair or daily process monitoring, different tools are pre-selected. Whether, for example, a BI system has already been established and whether a sophisticated authorization concept is required for the process analyzes also play a role in the selection, as do many other factors.

Nevertheless, it should not be forgotten that process mining is not primarily a tool, but an analysis method, in which the first part is about the reconstruction of the processes from operational IT systems in a resulting process log (event log), the second step is about a (core) graph analysis to visualize the process flows with additional analysis/reporting elements. If this perspective on process mining is not lost sight of, companies can save a lot of costs because it allows them to concentrate on solution-oriented concepts.

However, completely independent of the tools, there is a very general procedure in this data-driven process analysis you should understand and which we would like to describe with the following infographic:

DATANOMIQ Process Mining - 6 Steps of Doing Process Mining Analysis

6 Steps of Process Mining – Infographic PDF Download.

Interested in introducing Process Mining to your organization? Do not hesitate to get in touch with us!

DATANOMIQ is the independent consulting and service partner for business intelligence, process mining and data science. We are opening up the diverse possibilities offered by big data and artificial intelligence in all areas of the value chain. We rely on the best minds and the most comprehensive method and technology portfolio for the use of data for business optimization.

Top 5 Email Verification and Validation APIs for your Product

If you have spent some time running a website or online business, you would be aware of the importance of emails.

What many see as a decadent communication medium still holds immense value for digital marketers.

More than 330 billion emails are sent every day, even in 2022.

While email marketing is very effective, it is very difficult to do it right. One of the key reasons being the many problems that email marketers face with their email lists. Are the email IDs correct? Do they have spam traps? Are these disposable email addresses? There are a multitude of questions to deal with in email marketing and newsletter campaigns.

Email verification and validation APIs help us deal with this problem. APIs integrate with your platform and automatically check all email addresses for spam, mistyping, fake email ids, and so on. 

Top 5 email verification and validation APIs for your product

Today we will talk about the 5 best APIs that you can use to validate and verify the email addresses in your mailing list. Using an API can be a gamechanger for many email marketers. Before we get into the top 5 list, let’s discuss why APIs are so effective and how they work. 

Why APIs are so efficient

The major reason APIs work so efficiently is that it does not require human supervision. APIs work automatically and users do not have to manually configure them each time. The ease of use is one among many reasons you should start using an email verification and validation API.

If you maintain a mailing list, you would also want to know where your effort is going. All email marketers spend considerable time perfecting their emails. On top of that, they need to use an email marketing platform like Klaviyo. An API ensures that your hard work does not go in vain. By filtering out fake and disposable email IDs, you get a better idea of where your mailing stand stands. As a result, when you use a platform like Klaviyo along with an email verification API, the results are much better. In case you want something other than Klaviyo, you can learn more about Klaviyo alternatives here. 

How email verification and validation APIs work

Email verification and validation APIs work primarily in 7 ways:

  • Syntax Check
  • Address Name Detection
  • DEA (disposable email address) Detection
  • Spam Trap Detection
  • DNSBL and URI DNSBL Check
  • MX Record Lookup
  • Active Mailbox Check

With the help of these email verification and validation methods, you will see much better results from your email marketing campaign. On top of that, your business will not be identified as spam and will help in building reputation and authority.

Now that we have some idea about what email verification APIs are and what they do, let’s head over to the list. 

1. Abstract API

Abstract API is one of the most popular email verification and validation APIs out there. Here are some of its key features:

  • MX record check
  • GDPR and CCPA compliant
  • Does not store any email
  • Role email check

If you have looked for email address validation API on the internet, you must have come across Abstract API. It is among the best in the business and also comes with affordable subscription plans.

Abstract API helps with bounce rate detection, spam signups, differentiating between personal and business email IDs, and a lot more. However, the most significant feature of Abstract API is that it allows up to 500 free email checks every month. That’s a great way to see whether the product works for you before subscribing to it.

Abstract API is user-friendly and budget-friendly, which makes it a top choice for many email marketers. Anyone new to using these tools can easily learn about them from Abstract API. For these reasons, Abstract API has the number one spot on our list. 

2. SendGrid Validation API

After Abstract API, the second product to have top-notch features is SendGrid Validation API.  Here are its key features:

  • Uses machine learning to verify email addresses in real-time
  • Accurately identifies all inactive or inaccurate email addresses
  • You can check how your email appears in different mailboxes
  • Gives risk scores for all email addresses

While most email verification and validation APIs work similarly, SendGrid Validation API takes it a notch higher with machine learning and artificial intelligence. Despite having advanced features and functionalities, SendGrid Validation API is not difficult to use.

SendGrid Validation API operates on the cloud and does not store any of your email addresses. OIn top of that, there are easy settings and configuration options that users can tweak with. However, SendGrid Validation API does not have any free offering. There are only two plans: pro and premier. Users have to pay $89.95 per month to access SendGrid Validation API.

If you are looking for advanced email verification and validation API, no need to look beyond SendGrid Validation API. It has everything you would need for a solid email marketing campaign apart from having many additional features. 

3. Captain Verify

Another email verification and validation API – Captain Verify – is a one-stop solution for all email verification needs. Here are its key features:

  • Get reports on the overall quality of your email address database
  • Affordable plans
  • Compliant with GDPR regulations
  • Export encrypted CSV files

Unlike other email verification and validation APIs, Captain Verify does not stop after verifying the emails for spam, fake or invalid addresses, and so on. It helps email marketers understand how their campaign is performing and gives detailed reports on returns on investment. It is one of the best APIs available for the overall growth of your mailing campaign.

If you are looking for something simple yet powerful, Captain Verify will be a great option. Along with the features we mentioned already, it also lets users filter and refine their email lists. It can help you understand the overall quality of your mailing list much better.

As you can see, Captain Verify ticks most of the boxes to be one of the best email verification and validation APIs out there. Anyone looking for a good email API should give it a go. The best thing is that users get all this and more at only $7 per 1000 emails. 

4. Mailgun

Mailgun earns the fourth spot on our list. However, that does not mean it is any way less than the previous options discussed. Here’s what it offers:

  • RFC standards compliant
  • Daily and hourly tracking of API usage
  • Has a bulk list validation tools for faster operations
  • Supports both CSV and JSON format
  • Track bounce and unsubscribe rates

Email marketers around the world prefer Mailgun for all their email verification and validation needs. It has multiple features that allow users to check their mailing list for fakes and scams. Apart from that, it also gives users a good idea of how their marketing campaign is performing.

Mailgun enjoys high ratings across review platforms like Capterra and G2. People use it for a wide range of purposes, but email verification and validation remain the most important. Mailgun keeps track of bounce rates, hard bounce rates, and unsubscribe rates. With the help of these stats, email marketers can measure how their campaign is doing.

If you are looking for a simple email verification and validation tool, Mailgun can be a good choice. It is worth trying for anyone who wants to take their email marketing to the next level.

5. Hunter

Our last entry to the list is Hunter. It is a well-known API that is widely used by email marketers. Here’s what it gets right:

  • Compare your mailing list with the Hunter mailing list for comparative quality analysis
  • SMTP checks, domain information verification, and multi-layer validation
  • Easy integration with Google Sheets
  • Supports both CSV and .txt formats

Hunter gives what it calls confidence scores which represent how strong or weak your mailing list is. This email verification and validation tool follows all the checks that we mentioned earlier, including SMTP verification, gibberish detection, MX record checks, and more. These features have worked together to make Hunter one of the most popular email verification and validation tools.

Hunter email verification API integrates easily with any platform and has a user-friendly interface. It also has a free plan that lets users check up to 50 emails for free. Giving it a try without spending money is very useful for anyone looking for a new email verification and validation API.

If you are looking for an email finder and email verifier rolled into one, Hunter is the best solution. With so many features and functionalities, it is one of the favorite email verification and validation APIs for thousands of marketers and entrepreneurs.

Conclusion

When used correctly, email verification and validation APIs can give any online business a significant boost. As an email marketer, digital marketer, website owner, or entrepreneur, you should be using one of these APIs. If you aren’t using one already, find your top pick from our list of the 5 best email verification and validation APIs.

How to choose the best pre-trained model for your Convolutional Neural Network?

Introduction to Transfer Learning 

Let’s start by defining this term that is increasingly used in Data Science:

Transfer Learning refers to the set of methods that allow the transfer of knowledge acquired from solving a given problem to another problem.

Transfer Learning has been very successful with the rise of Deep Learning.  Indeed, the models used in this field often require high computation times and important resources. However, by using pre-trained models as a starting point, Transfer Learning makes it possible to quickly develop high-performance models and efficiently solve complex problems in Computer Vision.

Usual Machine Learning Approach vs Transfer Learning

As most of the Deep learning technics, Transfer Learning is strongly inspired by the process with which we learn.

Let’s take the example of someone who masters the guitar and wants to learn to play the piano. He can capitalize on his knowledge of music to learn to play a new instrument. In the same way, a car recognition model can be quickly adapted to truck recognition.

How is Transfer Learning concretely implemented to solve Computer Vision problems?

Now that we have defined Transfer Learning, let’s look at its application to Deep Learning problems, a field in which it is currently enjoying great success.

The use of Transfer Learning methods in Deep Learning consists mainly in exploiting pre-trained neural networks

Generally, these models correspond to very powerful algorithms that have been developed and trained on large databases and are now freely shared.

In this context, 2 types of strategies can be distinguished:

  1. Use of pre-trained models as feature extractors:

The architecture of Deep Learning models is very often presented as a stack of layers of neurons. These layers learn different features depending on the level at which they are located. The last layer (usually a fully connected layer, in the case of supervised learning) is used to obtain the final output. The figure below illustrates the architecture of a Deep Learning model used for cat/dog detection. The deeper the layer, the more specific features can be extracted.

 

Architecture of CNN

The idea is to reuse a pre-trained network without its final layer. This new network then works as a fixed feature extractor for other tasks.

To illustrate this strategy, let’s take the case where we want to create a model able to identify the species of a flower from its image. It is then possible to use the first layers of the convolutional neural network model AlexNet, initially trained on the ImageNet image database for image classification.

  1. Fitting of pre-trained models:

This is a more complex technique, in which not only the last layer is replaced to perform classification or regression, but other layers are also selectively re-trained. Indeed, deep neural networks are highly configurable architectures with various hyperparameters. Moreover, while the first layers capture generic features, the last layers focus more on the specific task at hand.

So the idea is to freeze (i.e. fix the weights) of some layers during training and refine the rest to meet the problem. 

This strategy allows to reuse the knowledge in terms of the global architecture of the network and to exploit its states as a starting point for training. It thus allows to obtain better performances with a shorter training time.

The figure below summarizes the main Transfer Learning approaches commonly used in Deep Learning.

 

Re-use of pre-trained machine learning models in transfer learning

How to choose your pre-trained CNN ?

TensorFlow and Pytorch have built very accessible libraries of pre-trained models easily integrable to your pipelines, allowing the simple leveraging of the Transfer learning power.
In the first part you discovered what a pre-trained model is, let’s now dig into how to choose between the (very) large catalog of models accessible in open-source.

An unresolved question:

As you could have expected, there is no simple answer to this question. Actually, many developers just stick to the models they are used to and that performed well in their previous projects.
However, it is still possible to follow a few guidelines that can help you decide.

Criteria:

The two main aspects to take into account are the same as most of the machine learning tasks :
⦁ Accuracy : The Higher, the better
⦁ Speed : The Faster, the better

The dream being having a model that has a super fast training with an excellent accuracy. But as you could expect, usually to have a better accuracy, a deeper model is needed, therefore a model that takes more time to train. Thus, the goal is to maximize the tradeoff between accuracy and complexity. You can observe this tradeoff in the following graph taken from the Efficient Net model original paper.

Accuracy on Imagenet

As you can observe on this graph, bigger models are not always better. There is always a risk that a more complex model overfits your data, because it can give too much importance to subtle details in features. Knowing that the best is to start with the smallest model, that is what’s done in the industry. A “good-enough” model that is small and therefore quickly trained is preferred. Of course if you aim for great accuracy with no interest in a quick training then you can target the large model and even try ensemble techniques combining multiple models power.

Most performant models at this time :

Here are a few models that are widely used today in the field of computer vision. From image classification to complex image captioning, those structures offers great performances :

  • ResNet50
  • EfficientNet
  • Inceptionv3

ResNet 50 : ResNet was developed by Microsoft and aims at resolving the ‘vanishing gradient problem’. It allows the creation of a very deep model (up to a hundred layers).

Top-1 accuracy : 74.9%

Top-5 accuracy : 92.1%

Size : 98MB

Parameters : 26 millions

EfficientNet : This model is a state-of-the art convolutional neural network trained by Google. It is based on the same construction as ResNet but with an intelligent rescaling method.

Top-1 accuracy : 77.1%

Top-5 accuracy : 93.3.0%

Size : 29MB

Parameters : 5 millions

InceptionV3 : Inception Networks (GoogLeNet/Inception v1) have proved to be more computationally efficient, both in terms of the number of parameters generated by the network and the economical cost incurred. It is based on Factorized Convolutions.

Top-1 accuracy : 77.9%

Top-5 accuracy : 93.7%

Size : 92MB

Parameters : 24 millions

Final Note: 

To summarize, in this article, we have seen that Transfer Learning is the ability to use existing knowledge, developed to solve a given problem, to solve a new problem. We saw the top 3 State-of-the-Art pre-trained models for image classification. Here I summarized the performance and some detail on each of those models.

tabel of pre-trained ai models

However, as you have now understood, this is a continuously growing domain and there is always a new model to look forward to and push the boundaries further. The best way to keep up is to read papers introducing new model construction and try the most performing new releases.

 

Seq2seq models and simple attention mechanism: backbones of NLP tasks

This is the second article of my article series “Instructions on Transformer for people outside NLP field, but with examples of NLP.”

1 Machine translation and seq2seq models

I think machine translation is one of the most iconic and commercialized tasks of NLP. With modern machine translation you can translate relatively complicated sentences, if you tolerate some grammatical errors. As I mentioned in the third article of my series on RNN, research on machine translation already started in the early 1950s, and their focus was translation between English and Russian, highly motivated by Cold War. In the initial phase, machine translation was rule-based, like most students do in their foreign language classes. They just implemented a lot of rules for translations. In the next phase, machine translation was statistics-based. They achieved better performance with statistics for constructing sentences. At any rate, both of them highly relied on feature engineering, I mean, you need to consider numerous rules of translation and manually implement them. After those endeavors of machine translation, neural machine translation appeared. The advent of neural machine translation was an earthshaking change of machine translation field. Neural machine translation soon outperformed the conventional techniques, and it is still state of the art. Some of you might felt that machine translation became more or less reliable around that time.

Source: Monty Python’s Life of Brian (1979)

I think you have learnt at least one foreign or classical language in school. I don’t know how good you were at the classes, but I think you had to learn some conjugations of them and I believe that was tiresome to most of students. For example, as a foreign person, I still cannot use “der”, “die”, “das” properly. Some of my friends recommended I do not care them for the time being while I speak, but I usually care grammar very much. But this method of learning language is close to the rule base machine translation, and modern neural machine translation basically does not rely on such rules.

As far as I understand, machine translation is pattern recognition learned from a large corpus. Basically no one implicitly teach computers how grammar works. Machine translation learns very complicated mapping from a source language to a target language, based on a lot of examples of word or sentence pairs. I am not sure, but this might be close to how bilingual kids learn how the two languages are related. You do not need to navigate the translator to learn specific grammatical rules.

Source: Monty Python’s Flying Circus (1969)

Since machine translation does not rely on manually programming grammatical rules, basically you do not need to prepare another specific network architecture for another pair of languages. The same method can be applied to any pairs of languages, as long as you have an enough size of corpus for that. You do not have to think about translation rules between other pairs of languages.

Source: Monty Python’s Flying Circus (1969)

*I do not follow the cutting edge studies on machine translation, so I am not sure, but I guess there are some heuristic methods for machine translation. That is, designing a network depending on the pair of languages could be effective. When it comes grammatical word orders, English and Japanese have totally different structures, I mean English is basically SVO and Japanese is basically SOV. In many cases, the structures of sentences with the same meaning in both of the languages are almost like reflections in a mirror. A lot of languages have similar structures to English, even in Asia, for example Chinese. On the other hand relatively few languages have Japanese-like structures, for example Korean, Turkish. I guess there would be some grammatical-structure-aware machine translation networks.

Not only machine translations, but also several other NLP tasks, such as summarization, question answering, use a model named seq2seq model (sequence to sequence model). As well as other deep learning techniques, seq2seq models are composed of an encoder and a decoder. In the case of seq2seq models, you use RNNs in both the encoder and decoder parts. For the RNN cells, you usually use a gated RNN such as LSTM or GRU because simple RNNs would suffer from vanishing gradient problem when inputs or outputs are long, and those in translation tasks are long enough. In the encoder part, you just pass input sentences. To be exact, you input them from the first time step to the last time step, every time giving an output, and passing information to the next cell via recurrent connections.

*I think you would be confused without some understandings on how RNNs propagate forward. You do not need to understand this part that much if you just want to learn Transformer. In order to learn Transformer model, attention mechanism, which I explain in the next section is more important. If you want to know how basic RNNs work, an article of mine should help you.

*In the encoder part of the figure below, the cell also propagate information backward. I assumed an encoder part with bidirectional RNNs, and they “forward propagate” information backwards. But in the codes below, we do not consider such complex situation. Please just keep it in mind that seq2seq model could use bidirectional RNNs.

At the last time step in the encoder part, you pass the hidden state of the RNN to the decoder part, which I show as a yellow cell in the figure below, and the yellow cell/layer is the initial hidden layer of the first RNN cell of the decoder part. Just as normal RNNs, the decoder part start giving out outputs, and passing information via reccurent connections. At every time step you choose a token to give out from the vocabulary you use in the task. That means, each cell of decoder RNNs does a classification task and decides which word to write out at the time step. Also, very importantly, in the decoder part, the output at one time step is the input at the next time step, as I show as dotted lines in the figure below.

*The translation algorithm I explained depends on greedy decoding, which has to decide a token at every time step. However it is easy to imagine that that is not how you translate a word. You usually erase the earlier words or you construct some possibilities in your mind. Actually, for better translations you would need decoding strategies such as beam search, but it is out of the scope of at least this article. Thus we are going to make a very simplified translator based on greedy decoding.

2 Learning by making

*It would take some hours on your computer to train the translator if you do not use a GPU. I recommend you to run it at first and continue reading this article.

Seq2seq models do not have that complicated structures, and for now you just need to understand the points I mentioned above. Rather than just formulating the models, I think it would be better to understand this model by actually writing codes. If you copy and paste the codes in this Github page or the official Tensorflow tutorial, installing necessary libraries, it would start training the seq2seq model for Spanish-English translator. In the Github page, I just added comments to the codes in the official tutorial so that they are more understandable. If you can understand the codes in the tutorial without difficulty, I have to say this article itself is not compatible to your level. Otherwise, I am going to help you understand the tutorial with my original figures. I made this article so that it would help you read the next article. If you have no idea what RNN is, at least the second article of my RNN series should be helpful to some extent.

*If you try to read the the whole article series of mine on RNN, I think you should get prepared. I mean, you should prepare some pieces of paper and a pen. It would be nice if you have some stocks of coffee and snacks. Though I do not think you have to do that to read this article.

2.1 The corpus and datasets

In the codes in the Github page, please ignore the part sandwiched by “######”.  Handling language data is not the focus of this article. All you have to know is that the codes below first create datasets from the Spanish-English corpus in http://www.manythings.org/anki/ , and you datasets for training the translator as the tensors below.

Each token is encoded with integers as the codes below, thus after encoding, the Spanish sentence “Todo sobre mi madre.” is [1, 74, 514, 19, 237, 3, 2].

2.2 The encoder

The encoder part is relatively simple. All you have to keep in mind is that you put input sentences, and pass the hidden layer of the last cell to the decoder part. To be more concrete, an RNN cell receives an input word every time step, and gives out an output vector at each time step, passing hidden states to the next cell. You make a chain of RNN cells by the process, like in the figure below. In this case “time steps” means the indexes of the order of the words. If you more or less understand how RNNs work, I think this is nothing difficult. The encoder part passes the hidden state, which is in yellow in the figure below, to the decoder part.

Let’s see how encoders are implemented in the code below. We use a type of RNN named GRU (Gated Recurrent Unit). GRU is simpler than LSTM (Long Short-Term Memory). One GRU cell gets an input every time step, and passes one hidden state via recurrent connections. As well as LSTM, GRU is a gated RNN so that it can mitigate vanishing gradient problems. GRU was invented after LSTM for smaller computation costs. At time step (t) one GRU cell gets an input \boldsymbol{x}^{(t)} and passes its hidden state/vector \boldsymbol{h}^{(t)} to the next cell like the figure below. But in the implementation, you put the whole input sentence as a 16 dimensional vector whose elements are integers, as you saw in the figure in the last subsection 2.1. That means, the ‘Encoder’ class in the implementation below makes a chain of 16 GRU cells every time you put an input sentence in Spanish, even if input sentences have less than 16 tokens.

*TO BE  VERY HONEST, I am not sure why the encoder part of  seq2seq models are implemented this way in the codes below. In the implementation below, the number of total time steps in the encoder part is fixed to 16. If input sentences have less than 16 tokens, it seems the RNN cells get no inputs after the time step of the token “<end>”. As far as I could check, if RNN cells get no inputs, they repeats giving out similar 1024-d vectors. I think in this implementation, RNN cells after the <end> token, which I showed as the dotted RNN cells in the figure above, do not change so much. And the encoder part passes the hidden state of the 16th RNN cell, which is in yellow, to the decoder.

2.3 The decoder

The decoder part is also not that hard to understand. As I briefly explained in the last section, you initialize the first cell of the decoder, using the hidden layer of the last cell the encoder. During decoding, I mean while writing a translation, at the beginning you put the token “<start>” as the first input of the decoder. Given the input “<start>”, the first cell outputs “all” in the example in the figure below, and the output “all” is the input of the next cell. The output of the next cell “about” is also passed to the next cell, and you repeat this till the decoder gives out the token “<end>”.

A more important point is how to get losses in the decoder part during training. We use a technique named teacher enforcing during training the decoder part of a seq2seq model. This is also quite simple: you just have to make sure you input a correct answer to RNN cells, regardless of the outputs generated by the cell last time step. You force the decoder to get the correct input every time step, and that is what teacher forcing is all about.

You can see how the decoder part and teacher forcing is implemented in the codes below. You have to keep it in mind that unlike the ‘Encoder’ class, you put a token into a ‘Decoder’ class every time step. To be exact you also need the outputs of the encoder part to calculate attentions in the decoder part. I am going to explain that in the next subsection.

2.4 Attention mechanism

I think you have learned at least one foreign language, and usually you have to translate some sentences. Remember the processes of writing a translation of a sentence in another language. Imagine that you are about to write a new word after writing some. If you are not used to translations in the language, you must have cared about which parts of the original language correspond to the very new word you are going to write. You have to pay “attention” to the original sentence. This is what attention mechanism is all about.

*I would like you to pay “attention” to this section. As you can see from the fact that the original paper on Transformer model is named “Attention Is All You Need,” attention mechanism is a crucial idea of Transformer.

In the decoder part you initialize the hidden layer with the last hidden layer of the encoder, and its first input is “<start>”.  The decoder part start decoding, , as I explained in the last subsection. If you use attention mechanism in the seq2seq model, you calculate attentions every times step.  Let’s consider an example in the figure below, where the next input in the decoder is “my”, and given the token “my”, the GRU cell calculates a hidden state at the time step. The hidden state is the “query” in this case, and you compare the “query” with the 6 outputs of the encoder, which are “keys”. You get weights/scores, I mean “attentions”, which is the histogram in the figure below.

And you reweight the “values” with the weights in the histogram. In this case the “values” are the outputs of the encoder themselves. You used use the reweighted “values” to calculate the hidden state of the decoder at the times step again. And you used the hidden state updated by the attentions to predict the next word.

*In the implementation, however, the size of the output of the ‘Encoder’ class is always (16, 2024). You calculate attentions for all those 16 output vectors, but virtually only the first 6 1024-d output vectors important.

Summing up the points I have explained, you compare the “query” with the “keys” and get a scores/weights for the “values.” Each score/weight is in short relevance between the “query” and each “key”. And you reweight the “values” with the scores/weights.  In the case of attention mechanism in this article, we can say that “values” and “keys” are the same. You would also see that more clearly in the implementation below.

You especially have to pay attention to the terms “query”, “key”, and “value.” “Keys” and “values” are basically in the same language, and in the case above, they are in Spanish. “Queries” and “keys” can be in either different or the same. In the example above, the “query” is in English, and the “keys” are in Spanish.

You can compare a “query” with “keys” in various ways. The implementation uses the one called  Bahdanau’s additive style, and in Transformer, you use more straightforward ways. You do not have to care about how Bahdanau’s additive style calculates those attentions. It is much more important to learn the relations of “queries”, “keys”, and “values” for now.

*A problem is that Bahdanau’s additive style is slightly different from the figure above. It seems in Bahdanau’s additive style, at the time step (t) in the decoder part, the query is the hidden state at the time step (t-1). You would notice that if you closely look at the implementation below.As you can see in the figure above, you can see that you have to calculate the hidden state of the decoder cell two times at the time step (t): first in order to generate a “query”, second in order to predict the translated word at the time step. That would not be so computationally efficient, and I guess that is why Bahdanau’s additive style uses the hidden layer at the last time step as a query rather than calculating hidden layers twice.

2.5 Translating and displaying attentions

After training the translator for 20 epochs, I could translate Spanish sentences, and the implementation also displays attention scores for between the input and output sentences. For example the translation of the inputs “Todo sobre mi madre.” and “Habre con ella.” were “all about my mother .” and “i talked to her .” respectively, and the results seem fine. One powerful advantage of using attention mechanism is you can display this type of word alignment, I mean correspondences of words in a sentence, easily as in the heat maps below. The yellow parts shows high scores of attentions, and you can see that the distributions of relatively highs scores are more or less diagonal, which implies that English and Spanish have similar word orders.

For other inputs like “Mujeres al borde de un ataque de nervious.” or “Volver.”, the translations are not good.

You might have noticed there is one big problem in this implementation: you can use only the words appeared in the corpus. And actually I had to manually add some pairs of sentences with the word “borde” to the corpus to get the translation in the figure.

* I make study materials on machine learning, sponsored by DATANOMIQ. I do my best to make my content as straightforward but as precise as possible. I include all of my reference sources. If you notice any mistakes in my materials, including grammatical errors, please let me know (email: yasuto.tamura@datanomiq.de). And if you have any advice for making my materials more understandable to learners, I would appreciate hearing it.

AI Voice Assistants are the Next Revolution: How Prepared are You?

By 2022, voice-based shopping is predicted to rise to USD 40 billion, based on the data from OC&C Strategy Consultants. We’re in an era of ‘voice’ where drastic transformation is seen between the way AI and voice recognition are changing the way we live.

According to the survey, the surge of voice assistants is said to be driven by the number of homes that used smart speakers, as such that the rise is seen to grow from 13% to 55%. Nonetheless, Amazon will be one of the leaders to dominate the new channel having the largest market share.

Perhaps this is the first time you’ve heard about the voice revolution. Well, why not, based on multiple researchers, it is estimated that the number of voice assistants will grow to USD 8 billion by 2023 from USD 2.5 billion in 2018.

But what is voice revolution or voice assistant or voice search?

It was only until recently that the consumers have started learning about voice assistants which further predicts to exist in the future.

You’ve heard of Alexa, Cortana, Siri, and Google Assistant, these technologies are some of the world’s greatest examples of voice assistants. They will further help to drive consumer behavior as well as prepare the companies and adjust based on the industry demands. Consumers can now transform the way they act, search, and advertise their brand through voice technology.

Voice search is a technology to help users or consumers perform a search on the website by simply asking a question on their smartphone, their computer, or their smart device.

The voice assistant awareness: Why now?

As surveyed by PwC, amongst the 90% respondents, about 72% have been recorded to use voice assistant while merely 10% said they were clueless about voice-enabled devices and products. It is noted, the adoption of voice-enabled was majorly driven by children, young consumers, and households earning an income of around >USD100k.

Let us have a glance to ensure the devices that are used mainly for voice assistance: –

  • Smartphone – 57%
  • Desktop – 29%
  • Tablet – 29%
  • Laptop – 29%
  • Speaker – 27%
  • TV remote – 21%
  • Car navigation – 20%
  • Wearable – 14%

According to the survey, most consumers that use voice-assistants were the younger generation, aged between 18-24.

While individuals between the ages 25-49 were said to use these technologies in a much more statistical manner, and are called the “heavy users.”

Significance of mobile voice assistants: What is the need?

Although mobile is accessible everywhere, you will merely find three out of four consumers using mobile voice assistants in their household i.e. 74%.

Mobile-based AI chatbots have taken our lives by storm, thus providing the best solution to both the customers and agents in varied areas – insurance, travel, and education, etc.

A certain group of individuals said they needed privacy while speaking to their device and that sending a voice command in public is weird.

Well, this simply explains why 18-24 aged group individuals prefer less use of voice assistants. However, this age group tends to spend more time out of their homes.

Situations where voice assistants can be used – standalone speakers Vs mobile

Cooking

  • Standalone speakers – 65%
  • Mobile – 37%

Multitasking

  • Standalone speakers – 62%
  • Mobile – 12%

Watching TV

  • Standalone speakers – 57%
  • Mobile – 43%

In bed

  • Standalone speakers – 38%
  • Mobile – 37%

Working

  • Standalone speakers – 29%
  • Mobile – 25%

Driving

  • Standalone speakers – 0%
  • Mobile – 40%

By the end of 2020, nearly half of all the searches made will be voice-based, as predicted by Comscore, a media analytics firm.

Don’t you think voice-based assistant is changing the way businesses function? Thanks to the advent of AI!

  • A 2018 study on AI chatbots and voice assistants by Spiceworks said, 24% of businesses that were spread largely, and 16% of smaller businesses have already started using AI technologies in their workplaces. While 25% of the business market is expected to adopt AI within the next 12 months.

Surprisingly, voice-based assistants such as Siri, Google Assistant, and Cortana are some of the most prominent technologies these businesses are using in their workstations.

Where will the next AI voice revolution take us?

Voice-authorized transactions

Paypal, an online payment gateway now leverages Siri and Alexa’s voice recognition capability, thus, allowing users to make payments, check their balance, and ask payments from people via voice command.

Voice remote control – AI-powered

Communications conglomerate Comcast, an American telecommunications and media conglomerate introduces their first-ever X1 voice remote control that provides both natural image processing and voice recognition.

With the help of deep learning, the X1 can easily come up with better search results with just a press of the button telling what your television needs to do next.

Voice AI-enabled memos and analytics

Salesforce recently unveiled Einstein Voice which is an AI assistant that helps in entering critical data the moment it hears, making use of the voice command. This AI assistant also initiates in interpreting voice memos. Besides this, the voice bots accompanying Einstein Voice also helps the company create their customized voice bots to answer customer queries.

Voice-activated ordering

It is astonishing to see how Domino’s is using voice-activated feature automate orders made over the phone by customers. Well, welcome to the era of voice revolution.

This app, developed by Nuance Communications already has a Siri like voice recognition feature that allows customers to place their orders just like how they would be doing it in front of the cash counter making your order to take place efficiently.

As more businesses look forward to breaking down the roadblocks between a consumer and a brand, voice search now projects to become an impactful technology of bridging the gap.

Business Data is changing the world’s view towards Green Energy

Energy conservation is one of the main stressed points all around the globe. In the past 30 years, researches in the field of energy conservation and especially green energy have risen to another level. The positive outcomes of these researches have given us a gamut of technologies that can aid in preserving and utilize green energy. It has also reduced the over-dependency of companies on fossil fuels such as oil, coal, and natural gas.

Business data and analytics have all the power and the potential to take the business organizations forward in the future and conquer new frontiers. Seizing the opportunities presented by Green energy, market leaders such as Intel and Google have already implemented it, and now they enjoy the rich benefits of green energy sources.

Business data enables the organizations to keep an eye on measuring the positive outcomes by adopting the green energies. According to a report done by the World energy outlook, the global wind energy capacity will increase by 85% by the year 2020, reaching 1400 TWh. Moreover, in the Paris Summit, more than 170 countries around the world agreed on reducing the impact of global warming by harnessing energy from green energy sources. And for this to work, Big Data Analytics will play a pivotal role.

Overview of Green energy

In simpler terms, Green Energy is the energy coming from natural sources such as wind, sun, plants, tides, and geothermal heat. In contrast to fossil fuels, green energy resources can be replenished in a short period, and one can use them for longer periods. Green energy sources have a minimal ill effect on the environment as compared to fossil fuels. In addition to this, fossil fuels can be replaced by green energy sources in many areas like providing electricity, fuel for motor vehicles, etc..

With the help of business data, organizations throughout the world can change the view of green energy. Big Data can show how different types of green energy sources can help businesses and accelerate sustainable expansion.

Below are the different types of green energy sources:

  • Wind Power
  • Solar Power
  • Geothermal Energy
  • Hydropower
  • Biofuels
  • Bio-mass

Now we present before you a list of advantages that green energy or renewable energy sources have brought to the new age businesses.

Profits on the rise

If the energy produced is more than the energy used, the organizations can sell it back to the grids and earn profit out of it. Green energy sources are renewable sources of energy, and with precise data, the companies will get an overall estimation of the requirement of energy.

With Big Data, the organizations can know the history of the demographical location before setting up the factory. For example, if your company is planning to setup a factory in the coastal region, tidal and wind energy would be more beneficial as compared to solar power. Business data will give the complete analysis of the flow of the wind so that the companies can ascertain the best location of the windmill; this will allow them to store the energy in advance and use it as per their requirement. It not only saves money but also provides an extra source of income to the companies. With green energy sources, the production in the company can increase to an unprecedented level and have sustainable growth over the years.

Synchronizing the maintenance process

If there is a rapid inflow of solar and wind energy sources, the amount of power produced will be huge. Many solar panels and windmills are operating in a solar power plant or in a wind energy source, and with many types of equipment, it becomestoo complex to manage. Big Data analytics will assist the companies in streamlining all the operations to a large extent for their everyday work without any hassle.

Moreover, the analytics tool will convey the performance of renewable energy sources under different weather conditions. Thus, the companies will get the perfect idea about the performance of the green energy sources, thus enabling them to take necessary actions as and when required.

Lowering the attrition rate

Researchers have found that more number of employees want to be associated with companies that support green energies. By opting for green energy sources and investing in them, companies are indirectly investing in keeping the workforce intact and lowering the attrition rate. Stats also show the same track as nearly 50% of the working professionals, and almost 2/3rd of the millennial population want to be associated with the companies who are opting for the green energy sources and have a positive impact on environmental conservation.

The employees will not only wish to stay with the organizations for a long time but will also work hard for the betterment of the organization. Therefore, you can concentrate on expanding the business rather than thinking about the replacement of the employees.

Lowering the risk due to Power Outage

The Business Data Analytics will continuously keep updating the requirements of power needed to run the company. Thus the organizations can cut down the risk of the power outage and also the expenses related to it. The companies will know when to halt the energy transmission as they would know if the grid is under some strain or not.

Business analytics and green energy provide a planned power outage to the companies, which is cost-efficient and thus can decrease the product development cost.  Apart from this, companies can store energy for later usage. Practicing this process will help save a lot of money in the long run, proving that investment in green energy sources is a smart investment.

Reducing the maintenance cost

An increasing number of organizations are using renewable sources of energy as it plays a vital role in decreasing production and maintenance costs. The predictive analysis technology helps renewable energy sources to produce more energy at less cost, thus reducing the cost of infrastructure.

Moreover, data analytics will make green energy sources more bankable for companies. As organizations will have a concrete amount of data related to the energy sources, they can use it wisely on a more productive basis

Escalating Energy Storage

Green energy sources can be stored in bulk and used as per requirement by the business organizations. Using green energy on a larger basis will even allow companies to completely get rid of fossil fuels and thus work towards the betterment of the environment. Big Data analytics with AI and cloud-enabled systems help organizations store renewable energies such as Wind and Solar.

Moreover, it gathers information for the businesses and gives the complete analysis of the exact amount of energy required to complete a particular task. The data will also automate cost savings as it can predict the client’s needs. Based on business data, companies can store renewable energy sources in a better manner.

With Business data analytics, the companies can store energy when it is cheap and use it according to the needs when the energy rates go higher. Although predicting the requirement of storage is a complicated process, with Artificial Intelligence (AI) at work, you can analyze the data efficiently.

Bundling Up

Green energy sources will play a pivotal role in deciding the future of the businesses as fossil fuels are available in a certain limit. Moreover, astute business data analysts will assist the organizations to not only use renewable energy sources in a better manner but also to form a formidable workforce. The data support in the green energy sector will also provide sustainable growth to the companies, monitor their efforts, and assist them in the long run.

Customer Journey Mapping: The data-driven approach to understanding your users

Businesses across the globe are on a mission to know their customers inside out – something commonly referred to as customer-centricity. It’s an attempt to better understand the needs and wants of customers in order to provide them with a better overall experience.

But while this sounds promising in theory, it’s much harder to achieve in practice. To really know your customer you must not only understand what they want, but you also need to hone in on how they want it, when they want it and how often as well.

In essence, your business should use customer journey mapping. It allows you to visualise customer feelings and behaviours through the different stages of their journey – from the first interaction, right up until the point of purchase and beyond.

The Data-Driven Approach 

To ensure your customer journey mapping is successful, you must conduct some extensive research on your customers. You can’t afford to make decisions based on feelings and emotions alone. There are two types of research that you should use for customer journey mapping – quantitative and qualitative research.

Quantitative data is best for analysing the behaviour of your customers as it identifies their habits over time. It’s also extremely useful for confirming any hypotheses you may have developed. That being so, relying solely upon quantitative data can present one major issue – it doesn’t provide you with the specific reason behind those behaviours.

That’s where qualitative data comes to the rescue. Through data collection methods like surveys, interviews and focus groups, you can figure out the reasoning behind some of your quantitative data trends. The obvious downside to qualitative data is its lack of evidence and its tendency to be subjective. Therefore, a combination of both quantitative and qualitative research is most effective.

Creating A Customer Persona

A customer persona is designed to help businesses understand the key traits of specific groups of people. For example, those defined by their age range or geographic location. A customer persona can help improve your customer journey map by providing more insight into the behavioural trends of your “ideal” customer. 

The one downside to using customer personas is that they can be over-generalised at times. Just because a group of people shares a similar age, for example, it does not mean they all share the same beliefs and interests. Nevertheless, creating a customer persona is still beneficial to customer journey mapping – especially if used in combination with the correct customer journey analytics tools.

All Roads Lead To Customer-centricity 

To achieve customer-centricity, businesses must consider using a data-driven approach to customer journey mapping. First, it requires that you achieve a balance between both quantitative and qualitative research. Quantitative research will provide you with definitive trends while qualitative data gives you the reasoning behind those trends. 

To further increase the effectiveness of your customer journey map, consider creating customer personas. They will give you further insight into the behavioural trends within specific groups. 

This article was written by TAP London. Experts in the Adobe Experience Cloud, TAP London help brands organise data to provide meaningful insight and memorable customer experiences. Find out more at wearetaplondon.com.

5 Applications for Location-Based Data in 2020

Location-based data enables giving people relevant information based on where they are at any given moment. Here are five location data applications to look for in 2020 and beyond. 

1. Increasing Sales and Reducing Frustration

One 2019 report indicated that 89% of the marketers who used geo data saw increased sales within their customer bases. Sometimes, the ideal way to boost sales is to convert what would be a frustration into something positive. 

A French campaign associated with the Actimel yogurt brand achieved this by sending targeted, encouraging messages to drivers who used the Waze navigation app and appeared to have made a wrong turn or got caught in traffic. 

For example, a driver might get a message that said, “Instead of getting mad and honking your horn, pump up the jams! #StayStrong.” The three-month campaign saw a 140% increase in ad recall. 

More recently, home furnishing brand IKEA launched a campaign in Dubai where people can get free stuff for making a long trip to a store. The freebies get more valuable as a person’s commute time increases. The catch is that participants have to activate location settings on their phones and enable Google Maps. Driving five minutes to a store got a person a free veggie hot dog, and they’d get a complimentary table for traveling 49 minutes. 

2. Offering Tailored Ad Targeting in Medical Offices

Pharmaceutical companies are starting to rely on companies that send targeted ads to patients connected to the Wi-Fi in doctors’ offices. One such provider is Semcasting. A recent effort involved sending ads to cardiology offices for a type of drug that lowers cholesterol levels in the blood. 

The company has taken a similar approach for an over-the-counter pediatric drug and a medication to relieve migraine headaches, among others. Such initiatives cause a 10% boost in the halo effect, plus a 1.5% uptick in sales. The first perk relates to the favoritism that people feel towards other products a company makes once they like one of them.

However, location data applications related to health care arguably require special attention regarding privacy. Patients may feel uneasy if they believe that companies are watching them and know they need a particular kind of medical treatment. 

3. Facilitating the Deployment of the 5G Network

The 5G network is coming soon, and network operators are working hard to roll it out. Statistics indicate that the 5G infrastructure investment will total $275 billion over seven years. Geodata can help network brands decide where to deploy 5G connectivity first.

Moreover, once a company offers 5G in an area, marketing teams can use location data to determine which neighborhoods to target when contacting potential customers. Most companies that currently have 5G within their product lineups have carefully chosen which areas are at the top of the list to receive 5G, and that practice will continue throughout 2020. 

It’s easy to envision a scenario whereby people can send error reports to 5G providers by using location data. For example, a company could say that having location data collection enabled on a 5G-powered smartphone allows a technician to determine if there’s a persistent problem with coverage.

Since the 5G network is still, it’s impossible to predict all the ways that a telecommunications operator might use location data to make their installations maximally profitable. However, the potential is there for forward-thinking brands to seize. 

4. Helping People Know About the Events in Their Areas

SoundHound, Inc. and Wcities recently announced a partnership that will rely on location-based data to keep people in the loop about upcoming local events. People can use a conversational intelligence platform that has information about more than 20,000 cities around the world. 

Users also don’t need to mention their locations in voice queries. They could say, for example, “Which bands are playing downtown tonight?” or “Can you give me some events happening on the east side tomorrow?” They can also ask something associated with a longer timespan, such as “Are there any wine festivals happening this month?”

People can say follow-up commands, too. They might ask what the weather forecast is after hearing about an outdoor event they want to attend. The system also supports booking an Uber, letting people get to the happening without hassles. 

5. Using Location-Based Data for Matchmaking

In honor of Valentine’s Day 2020, students from more than two dozen U.S colleges signed up for a matchmaking opportunity. It, at least in part, uses their location data to work. 

Participants answer school-specific questions, and their responses help them find a friend or something more. The platform uses algorithms to connect people with like-minded individuals. 

However, the company that provides the service can also give a breakdown of which residence halls have the most people taking part, or whether people generally live off-campus. This example is not the first time a university used location data by any means, but it’s different from the usual approach. 

Location Data Applications Abound

These five examples show there are no limits to how a company might use location data. However, they must do so with care, protecting user privacy while maintaining a high level of data quality. 

5 Things You Should Know About Data Mining

The majority of people spend about twenty-four hours online every week. In that time they give out enough information for big data to know a lot about them. Having people collecting and compiling your data might seem scary but it might have been helpful for you in the past.

 

If you have ever been surprised to find an ad targeted toward something you were talking about earlier or an invention made based on something you were googling, then you already know that data mining can be helpful. Advanced education in data mining can be an awesome resource, so it may pay to have a personal tutor skilled in the area to help you understand. 

 

It is understandable to be unsure of a system that collects all of the information online so that they can learn more about you. Luckily, so much data is put out every day it is unlikely data mining is focusing on any of your important information. Here are a few statistics you should know about mining.

 

1. Data Mining Is Used In Crime Scenes

Using a variation of earthquake prediction software and data, the Los Angeles police department and researchers were able to predict crime within five hundred feet. As they learn how to compile and understand more data patterns, crime detecting will become more accurate.

 

Using their data the Los Angeles police department was able to stop thief activity by thirty-three percent. They were also able to predict violent crime by about twenty-one percent. Those are not perfect numbers, but they are better than before and will get even more impressive as time goes on. 

 

The fact that data mining is able to pick up on crime statistics and compile all of that data to give an accurate picture of where crime is likely to occur is amazing. It gives a place to look and is able to help stop crime as it starts.

 

2. Data Mining Helps With Sales

A great story about data mining in sales is the example of Walmart putting beer near the diapers. The story claims that through measuring statistics and mining data it was found that when men purchase diapers they are also likely to buy a pack of beer. Walmart collected that data and put it to good use by putting the beer next to the diapers.

 

The amount of truth in that story/example is debatable, but it has made data mining popular in most retail stores. Finding which products are often bought together can give insight into where to put products in a store. This practice has increased sales in both items immensely just because people tend to purchase items near one another more than they would if they had to walk to get the second item. 

 

Putting a lot of stock in the data-gathering teams that big stores build does not always work. There have been plenty of times when data teams failed and sales plummeted. Often, the benefits outweigh the potential failure, however, and many stores now use data mining to make a lot of big decisions about their sales.

 

3. It’s Helping With Predicting Disease 

 

In 2009 Google began work to be able to predict the winter flu. Google went through the fifty million most searched words and then compared them with what the CDC was finding during the 2003-2008 flu seasons. With that information google was able to help predict the next winter flu outbreak even down to the states it hit the hardest. 

 

Since 2009, data mining has gotten much better at predicting disease. Since the internet is a newer invention it is still growing and data mining is still getting better. Hopefully, in the future, we will be able to predict disease breakouts quickly and accurately. 

 

With new data mining techniques and research in the medical field, there is hope that doctors will be able to narrow down problems in the heart. As the information grows and more data is entered the medical field gets closer to solving problems through data. It is something that is going to help cure diseases more quickly and find the root of a problem.

 

4. Some Data Mining Gets Ignored

Interestingly, very little of the data that companies collect from you is actually used. “Big data Companies” do not use about eighty-eight percent of the data they have. It is incredibly difficult to use all of the millions of bits of data that go through big data companies every day.

 

The more people that are used for data mining and the more data companies are actually able to filter through, the better the online experience will be. It might be a bit frightening to think of someone going through what you are doing online, but no one is touching any of the information that you keep private. Big data is using the information you put out into the world and using that data to come to conclusions and make the world a better place.

 

There is so much information being put onto the internet at all times. Twenty-four hours a week is the average amount of time a single person spends on the internet, but there are plenty of people who spend more time than that. All of that information takes a lot of people to sift through and there are not enough people in the data mining industry to currently actually go through the majority of the data being put online.

 

5. Too Many Data Mining Jobs

Interestingly, the data industry is booming. In general, there are an amazing amount of careers opening on the internet every day. The industry is growing so quickly that there are not enough people to fill the jobs that are being created.

 

The lack of talent in the industry means there is plenty of room for new people who want to go into the data mining industry. It was predicted that by 2018 there would be a shortage of 140,000 with deep analytical skills. With the lack of jobs that are being discussed, it is amazing that there is such a shortage in the data industry. 

 

If big data is only able to wade through less than half of the data being collected then we are wasting a resource. The more people who go into an analytics or computer career the more information we will be able to collect and utilize. There are currently more jobs than there are people in the data mining field and that needs to be corrected.

 

To Conclude

The data mining industry is making great strides. Big data is trying to use the information they collect to sell more things to you but also to improve the world. Also, there is something very convenient about your computer knowing the type of things you want to buy and showing you them immediately. 

 

Data mining has been able to help predict crime in Los Angeles and lower crime rates. It has also helped companies know what items are commonly purchased together so that stores can be organized more efficiently. Data mining has even been able to predict the outbreak of disease down to the state.

 

Even with so much data being ignored and so many jobs left empty, data mining is doing incredible things. The entire internet is constantly growing and the data mining is growing right along with it. As the data mining industry climbs and more people find their careers mining data the more we will learn and the more facts we will find.

 

How Finance Organizations Are Dealing with The Growing Demand for Instant Response Times

The financial industry is one of the most innovative industries that has evolved at an incredibly fast-paced over the past decade. Finance is a complex industry that requires a delicate balance between optimal convenience and security. 

With security being the most important aspect, the role of AI has increased in importance and various financial organizations are taking strides to innovate unique solutions to meet the growing demand for faster and instant response rates. 

In a recent study, it was found that automation and digital intelligence save US banks over $1trillion on an annual basis. From a world perspective, more countries in different parts of the world are adopting AI tools to meet the growing demand for instant response time.

The client experience

Despite the fast rate of digital integration into various industries, clients still want to feel a personal connection to a brand experience. The advances in machine learning have allowed for a vast improvement in personalized services using customer data. This feature uses AI tools to better understand and respond to client needs. 

A feature of this nature allows financial organizations to develop improved products and increase speeds in response rates. The client not only experiences faster service but also gains access to products that are relevant to their needs and interested.

The improved customer experience has also improved by eliminating the need to go to the physical office of a financial institution to solve a problem. The incorporation of chatbots for customer service allows clients to easily solve queries remotely. 

A recent example is the Bank of America’s chatbot, known as Erica, who is accessible at all times of the day is currently used by a million people. This eliminates having to deal with human assistants meaning that it is easier to access solutions. Customer service is on the areas that allow financial institutions to thrive and the client is increasingly demanding optimal customer service. 

Improved security and fraud prevention 

More financial organizations are making use of biometric data to record customer data. Some financial institutions have decided to replace passwords, thus simplifying client verification. Despite the simplicity, it offers a higher level of security beyond a simple pin code. 

In the future, clients are anticipated to simply use their biometrics to access their funds at an ATM or the bank. Another aspect of improving response times to limit cybercrime and prevent fraud by easily identifying client patterns. The knowledge of client patterns allows clients to be contacted in the event of unusual activities. 

Disruption from startup innovation

The term disruption has transformed into a positive term in the past decade because disruptors have created technology that speeds up and streamlines payments, product maintenance for clients and increasing the value chain. 

Financial institutions are finding ways to work collaboratively with disruptors and innovative FinTech companies to create improved technology-driven solutions. The culture of disruption has allowed financial institutions to deliver more innovative money management solutions and simple avenues to process transactions with minimal delays. 

Disruptors generally evolve at a rapid pace and are also becoming institutions that are becoming standalone financial service providers. The expanded competition only creates room for a wide range of institutions to choose from dedicated to solving client problems. 

Using robotics to eliminate the risk

The growing alliance between financial services and technology companies focused on AI allows the financial industry to have a better understanding of consumer patterns to develop products relevant to them. 

The joy of incorporating AI tools means that the client does not have to resort to interacting with a bank teller to solve an issue. The integration of AI tools is a good way to ensure that tasks are performed with minimal human error and eliminate hurdles that arise due to inaccuracies. 

NLP AI Technology has also worked towards assisting financial institutions make informed decisions by developing different useful apps. For example, there are apps that use NLP to gather data on influencers, marketers and blog posts, that data is then used to advise financiers on how to invest. There is also other software that helps digitize financial documentation processes using NLP and that is just a few examples amongst quite a few.

Taking advantage of the sharing economy 

A recent innovation in finance has been the recognition of the power of a shared economy which has been realized in industries such as transport and hospitality. The client is always looking for fast means to meet their needs and the cheapest possible options. 

The rise of digital currencies and the decentralized model have shown banks that people respond to a system that allows for decentralized asset sharing. 

With the rise of cryptocurrency, financial institutions have also started exploring the potential of employing blockchain to create a system that presents a public ledger and improve internal operation within an organization to deliver at high speed. 

Moving infrastructure to the cloud

Financial institutions are growing more and more to use the cloud to manage their operations and this allows for easier management. Financial institutions realize the importance of automating processes such as data management, CRM, accounting and even HR. 

Using analytical tools allows for the fast-tracking of data gathering and delivering solutions to clients. This allows functions like client payment, statement generation, credit checks and more to become automated and more accurate. 

Once again, the issue of cybersecurity is forefronted in machines ‘taking over’ and the concern stems from the fact that the software is being sourced from third parties and requirements in the industry are highly sophisticated. 

The rapid growth of data-driven solutions has placed pressure on financial institutions to work with trustworthy service providers or develop inhouse data management systems to avoid third-party interactions. 

Conclusion

The language of convenience is one that is universal; everyone wants everything to work faster, be delivered to their doorstep and accommodate their needs. The financial industry is no exception to these expectations from customers. Finance organizations are taking the leap into incorporating AI tools to partly manage operations because it simplifies monitoring, reporting and processing large volumes of data. 

The sophistication of analytical tools ensures that issues are resolved before they become larger issues that are beyond an organization’s control. It is certainly exciting to see how financial industries and organizations will transform in 2020 to incorporate tech tools to streamline security and operations.