In-memory Caching in Finance

Big data has been gradually creeping into a number of industries through the years, and it seems there are no exceptions when it comes to what type of business it plans to affect. Businesses, understandably, are scrambling to catch up to new technological developments and innovations in the areas of data processing, storage, and analytics. Companies are in a race to discover how they can make big data work for them and bring them closer to their business goals. On the other hand, consumers are more concerned than ever about data privacy and security, taking every step to minimize the data they provide to the companies whose services they use. In today’s ever-connected, always online landscape, however, every company and consumer engages with data in one way or another, even if indirectly so.

Despite the reluctance of consumers to share data with businesses and online financial service providers, it is actually in their best interest to do so. It ensures that they are provided the best experience possible, using historical data, browsing histories, and previous purchases. This is why it is also vital for businesses to find ways to maximize the use of data so they can provide the best customer experience each time. Even the more traditional industries like finance have gradually been exploring the benefits they can gain from big data. Big data in the financial services industry refers to complex sets of data that can help provide solutions to the business challenges financial institutions and banking companies have faced through the years. Considered today as a business imperative, data management is increasingly leveraged in finance to enhance processes, their organization, and the industry in general.

How Caching Can Boost Performance in Finance

In computing, caching is a method used to manage frequently accessed data saved in a system’s main memory (RAM). By using RAM, this method allows quick access to data without placing too much load on the main data stores. Caching also addresses the problems of high latency, network congestion, and high concurrency. Batch jobs are also done faster because request run times are reduced—from hours to minutes and from minutes to mere seconds. This is especially important today, when a host of online services are available and accessible to users. A delay of even a few seconds can lead to lost business, making both speed and performance critical factors to business success. Scalability is another aspect that caching can help improve by allowing finance applications to scale elastically. Elastic scalability ensures that a business is equipped to handle usage peaks without impacting performance and with the minimum required effort.

Below are the main benefits of big data and in-memory caching to financial services:

  • Big data analytics integration with financial models
    Predictive modeling can be improved significantly with big data analytics so it can better estimate business outcomes. Proper management of data helps improve algorithmic understanding so the business can make more accurate predictions and mitigate inherent risks related to financial trading and other financial services.
    Predictive modeling can be improved significantly with big data analytics so it can better estimate business outcomes. Proper management of data helps improve algorithmic understanding so the business can make more accurate predictions and mitigate inherent risks related to financial trading and other financial services.
  • Real-time stock market insights
    As data volumes grow, data management becomes a vital factor to business success. Stock markets and investors around the globe now rely on advanced algorithms to find patterns in data that will help enable computers to make human-like decisions and predictions. Working in conjunction with algorithmic trading, big data can help provide optimized insights to maximize portfolio returns. Caching can consequently make the process smoother by making access to needed data easier, quicker, and more efficient.
  • Customer analytics
    Understanding customer needs and preferences is the heart and soul of data management, and, ultimately, it is the goal of transforming complex datasets into actionable insights. In banking and finance, big data initiatives focus on customer analytics and providing the best customer experience possible. By focusing on the customer, companies are able to Ieverage new technologies and channels to anticipate future behaviors and enhance products and services accordingly. By building meaningful customer relationships, it becomes easier to create customer-centric financial products and seize market opportunities.
  • Fraud detection and risk management
    In the finance industry, risk is the primary focus of big data analytics. It helps in identifying fraud and mitigating operational risk while ensuring regulatory compliance and maintaining data integrity. In this aspect, an in-memory cache can help provide real-time data that can help in identifying fraudulent activities and the vulnerabilities that caused them so that they can be avoided in the future.

What Does This Mean for the Finance Industry?

Big data is set to be a disruptor in the finance sector, with 70% of companies citing big data as a critical factor of the business. In 2015 alone, financial service providers spent $6.4 billion on data-related applications, with this spending predicted to increase at a rate of 26% per year. The ability to anticipate risk and pre-empt potential problems are arguably the main reasons why the finance industry in general is leaning toward a more data-centric and customer-focused model. Data analysis is also not limited to customer data; getting an overview of business processes helps managers make informed operational and long-term decisions that can bring the company closer to its objectives. The challenge is taking a strategic approach to data management, choosing and analyzing the right data, and transforming it into useful, actionable insights.

Turbocharge Business Analytics With In-memory Computing

One of the customer traits that’s been gradually diminishing through the years is patience; if a customer-facing website or application doesn’t deliver real-time or near-instant results, it can be a reason for a customer to look elsewhere. This trend has pushed companies to turn to in-memory computing to get the speed needed to address customer demands in real-time. It simplifies access to multiple data sources to provide super-fast performance that’s thousands of times faster than disk-based storage systems. By storing data in RAM and processing in parallel against the full dataset, in-memory computing solutions allow for real-time insights that lead to informed business decisions and improved performance.

The in-memory computing solutions market has been on the rise in recent years because it has been heralded as the platform that will accelerate IT modernization. In-memory data grids, in particular, show great promise because it addresses the main limitation of an in-memory relational database. While the latter is designed to scale up, the former is designed to scale out. This scalability is one of the main draws of an in-memory data grid, since a scale-up architecture is not sustainable in the long term and will always have a breaking point. In-memory data grids on the other hand, benefit from horizontal scalability and computing elasticity. Scaling an in-memory data grid is as simple as adding nodes to a cluster and removing it when it’s no longer needed. This is especially useful for businesses that demand speed in the management of hundreds of terabytes of data across multiple networked computers in geographically distributed data centers.

Since big data is complex and fast-moving, keeping data synchronized across data centers is vital to preserve data integrity. Keeping data in memory removes the bottleneck caused by constant access to disk -based storage and allows applications and their data to collocate in the same memory space. This allows for optimization that allows the amount of data to exceed the amount of available memory. Speed and efficiency is also improved by keeping frequently accessed data in memory and the rest on disk, consequently allowing data to reside both in memory and on disk.

Future-proofing Businesses With In-memory Computing

Data analytics is as much a part of every business as other marketing and business intelligence tools. Because data constantly grows at an exponential rate, in-memory computing serves as the enabler of data analytics because it provides speed, high availability, and straightforward scalability. Speeds more than 100 times faster than other solutions enable in-memory computing solutions to provide real-time insights that are applicable in a host of industries and use cases.

Location-based Marketing

A report from 2019 shows that location-based marketing helped 89% of marketers increase sales, 86% grow their customer base, and 84% improve customer engagement. Location data can be leveraged to identify patterns of behavior by analyzing frequently visited locations. By understanding why certain customers frequent specific locations and knowing when they are there, you can better target your marketing messages and make more strategic customer acquisitions. Location data can also be used as a demographic identifier to help you segment your customers and tailor your offers and messaging accordingly.

Fraud Detection

In-memory computing helps improve operational intelligence by detecting anomalies in transaction data immediately. Through high-speed analysis of large amounts of data, potential risks are detected early on and addressed as soon as possible. Transaction data is fast-moving and changes frequently, and in-memory computing is equipped to handle data as it changes. This is why it’s an ideal platform for payment processing; it helps make comparisons of current transactions with the history of all transactions on record in a matter of seconds. Companies typically have several fraud detection measures in place, and in-memory computing allows running these algorithms concurrently without compromising overall system performance. This ensures responsiveness of systems despite peak volume levels and avoids interruptions to customer service.

Tailored Customer Experiences

The real-time insights delivered by in-memory computing helps personalize experiences based on customer data. Because customer experiences are time-sensitive, processing and analyzing data at super-fast speeds is vital in capturing real-time event data that can be used to craft the best experience possible for each customer. Without in-memory computing, getting real-time data and other necessary information that ensures a seamless customer experience would have been near impossible.

Real-time data analytics helps provide personalized recommendations based on both existing and new customer data. By looking at historical data like previously visited pages and comparing them with newer data from the stream, businesses can craft the proper messaging and plan the next course of action. The anticipation and forecasting of customers’ future actions and behavior is the key to improving conversion rates and customer satisfaction—ultimately leading to higher revenues and more loyal customers.

Conclusion

Big data is the future, and companies that don’t use it to their advantage would find it hard to compete in this ever-connected world that demands results in an instant. Processing and analyzing data can only become more complex and challenging through time, and for this reason, in-memory computing should be a solution that companies should consider. Aside from improving their business from within, it will also help drive customer acquisition and revenue, while also providing a viable low-latency, high throughput platform for high-speed data analytics.

Data Science on a large scale – can it be done?

Analytics drives business

In today’s digital world, data has become the crucial success factor for businesses as they seek to maintain a competitive advantage, and there are numerous examples of how companies have found smart ways of monetizing data and deriving value accordingly.

On the one hand, many companies use data analytics to streamline production lines, optimize marketing channels, minimize logistics costs and improve customer retention rates.  These use cases are often described under the umbrella term of operational BI, where decisions are based on data to improve a company’s internal operations, whether that be a company in the manufacturing industry or an e-commerce platform.

On the other hand, over the last few years, a whole range of new service-oriented companies have popped up whose revenue models wholly depend on data analytics.  These Data-Driven Businesses have contributed largely to the ongoing development of new technologies that make it possible to process and analyze large amounts of data to find the right insights.  The better these technologies are leveraged, the better their value-add and the better for their business success.  Indeed, without data and data analytics, they don’t have a business.

Data Science – hype or has it always been around?Druck

In my opinion, there is too much buzz around the new era of data scientists.  Ten years ago, people simply called it data mining, describing similar skills and methods.  What has actually changed is the fact that businesses are now confronted with new types of data sources such as mobile devices and data-driven applications rather than statistical methodologies.  I described that idea in detail in my recent post Let’s replace the Vs of Big Data with a single D.

But, of course, you cannot deny that the importance of these data crunchers has increased significantly. The art of mining data mountains (or perhaps I should say “diving through data lakes”) to find appropriate insights and models and then find the right answers to urgent, business-critical questions has become very popular these days.

The challenge: Data Science with large volumes?

Michael Stonebraker, winner of the Turing Award 2014, has been quoted as saying: “The change will come when business analysts who work with SQL on large amounts of data give way to data EXASOL Pipelinescientists, which will involve more sophisticated analysis, predictive modeling, regressions and Bayesian classification. That stuff at scale doesn’t work well on anyone’s engine right now. If you want to do complex analytics on big data, you have a big problem right now.”

And if you look at the limitations of existing statistical environments out there using R, Python, Java, Julia and other languages, I think he is absolutely right.  Once the data scientists have to handle larger volumes, the tools are just not powerful and scalable enough.  This results in data sampling or aggregation to make statistical algorithms applicable at all.

A new architecture for “Big Data Science”

We at EXASOL have worked hard to develop a smart solution to respond to this challenge.  Imagine that it is possible to use raw data and intelligent statistical models on very large data sets, directly at the place where the data is stored.  Where the data is processed in-memory to achieve optimal performance, all distributed across a powerful MPP cluster of servers, in an environment where you can now “install” the programming language of your choice.

Sounds far-fetched?  If you are not convinced, then I highly recommend you have a look at our brand-new in-database analytic programming platform, which is deeply integrated in our parallel in-memory engine and extensible through using nearly any programming language and statistical library.

For further information on our approach to big data science, go ahead and download a copy of our technical whitepaper:  Big Data Science – The future of analytics.