Six ways process mining in 2020 can save your business transformation

The lack of information about existing processes kills 70% of large transformation projects and around 50% of RPA projects…alarming statistics. Triggering this failure rate is a lack of understanding about existing processes, and the disconnect between the discovery, visualization, analysis, and execution of existing data. So, banish the process guesswork! Utilizing process mining technology unlocks the information, visibility, and quantifiable numbers needed to improve end-to-end processes for sustainable transformation.


Read this article in German:

Wie Process Mining 2020 Ihre erfolgreiche Geschäftstransformation 2020 sicherstellt

 


Process mining in 2020

Your data fingerprint

If we consider the figures again (from McKinsey and Ernst & Young (EY) respectively), the digitization of products and services is forcing companies of all shapes and sizes, and in all industries, to dramatically reconsider their existing business models and the processes they implement. Because all activities are different, process mining uses the unique data—your company’s business fingerprint—to automatically piece together a digital representation of all your existing business processes.

This digital evidence enables us to visualize exactly how processes are operating (both the conventional path and variable executions) down to individual process instances. In other words, you can unearth processes which lie unseen or dormant, revealing hidden value, and providing an instant understanding of complex processes in minutes rather than days.

Triggering dormant success

Then, with standardized and configurable notifications and KPIs, you can further understand the immediate impact of any process change made—meaning that failure rates decrease, and company confidence is improved. And that’s not all: everyone from new employees to the C-suite can better visualize, understand, and explain their organization’s processes. This ensures that the right process change is secure and that improvement has the intended impact, every time.

Unleash the power of process

In business, we all answer to somebody, and it is critical to connect problems to real solutions. The everyday functions of companies—the processes upon which they are built—are the connection to business tech, from “process” mining to robotic “process” automation. Without process understanding, the tech is redundant because we have no idea how work has flowed in an existing application. Process is the lifeblood of operations.

Process mining: your point of differentiation

Transformative digital technology integration

In addition to the DVA of process mining—discover, visualize, analyze—is the power to monitor real-time process execution automatically from your existing data. This simple point and click assessment can provide an instant understanding of complex processes. Within transformation projects, which by their very nature require the profound transformation of business and organizational activities, processes, competencies, and models, process mining provides the visual map to facilitate immediate action.

This self-sustaining approach across an entire organization is what leads to genuinely sustainable outcomes, and builds a process culture within an organization. By taking this holistic approach, digital transformation and excellence professionals will find it easier to leverage processes, justify their projects and programs, and address behavioral change challenges.

This includes the facilitation of transformative digital technology integration, operational agility and flexibility, leadership and culture, and workforce enablement.

Three ways process mining can save your business in a transformation project:

  • You require 100% operational transparency: To chart all your transactions requires complete process transparency. This capability allows the direct comparison of actual operations to the ways that processes were designed to occur. This conformance checking can automatically identify the highest priority issues and tasks, and highlight root causes, so we can take immediate action.
  • You must reduce costs and increase efficiency: Signavio research shows that almost 60% of companies incurred additional charges from suppliers due to process inefficiencies. Process mining can help your business reduce costs because it finds vulnerabilities and deviations, whilst highlighting what is slowing you down, including the bottlenecks and inefficiencies hampering revenue. Process mining beefs up operational health via process improvements and pre-emptive strategies.
  • You must optimize the buying and selling cycle: Is shipping taking too long? Which of your suppliers supports you least? Who is outperforming whom? Process mining is your one-click trick to finding these answers and identifying which units are performing best and which are wasting time and money.

Process mining and robotic process automation (RPA)

The beneficial fusion of both technologies

Robotic process automation (RPA) provides a virtual workforce to automatize manual, repetitive, and error-prone tasks. However, successful process automation requires exact knowledge about the intended (and potential) benefits, effective training of the robots, and continuous monitoring of their performance. With this, process mining supports organizations throughout the lifecycle of RPA initiatives by monitoring and benchmarking robots to ensure sustainable benefits.

Upgrade robot-led automation

These insights are especially valuable for process miners and managers with a particular interest in process automation. To further upgrade the impact of robot-led automation, there is also a need for a solid understanding of legacy systems, and an overview of automation opportunities. Process mining tools provide critical insights throughout the entire RPA journey, from defining the strategy to continuous improvement and innovation.

 Three ways process mining can save your business in an RPA lifecycle project

  • You require process overviews, based on specific criteria: To provide a complete overview of end-to-end processes, involves the identification of high ROI processes suitable for RPA implementation. This, in turn, helps determine the best-case process flow/path, enabling you to spot redundant processes, which you may not be aware of, before automating.
  • You are unsure how best to optimize human-digital worker cycles: By mining the optimal process flow/path, we can better discover inefficient human-robot hand-off, providing quantifiable data on the financial impact of any digital worker or process. This way, we can compare human vs. digital labor in terms of accuracy, efficiency, cost, and project duration.
  • You need to understand better how RPA supports legacy processes and systems: RPA enables enterprises to keep legacy systems by making integration with cloud and web/app-based services, transforming abilities to connect legacy with modern tools, applications, and even mobile apps. Efficiency and effectiveness will be improved across crucial departments, including HR, finance, and legal.

Process mining for improved customer experience and mapping

Reconfigure customer delight

The integration of process mining with other technologies is also essential in growing the process excellence and management market. With process management, we already talk about customer engagement, which empowers companies to shift away from lopsided efficiency goals, which often frustrate customers, towards all-inclusive effectiveness goals, built around delighting customers at the lowest organizational cost possible.

Further, the application of process mining within customer journey mapping (CJM)—especially when linked to the underlying processes—offers the bundled capability of better business understanding and outside-in customer perspective, connected to the processes that deliver them. So, by connecting process mining with a customer-centric view across producing, marketing, selling, and providing products and services, customer delight becomes a strategic catalyst for success.

Unlock the full potential of process

Trigger process mining initiatives with Signavio Process Intelligence, and see how it can help your organization uncover the hidden value of process, generate fresh ideas, and save time and money. Discover more in our white paper, Managing Successful Process Mining Initiatives with Signavio Process Intelligence.

Looking for the ‘aha moment’: An expert’s insights on process mining

Henny Selig is a specialist in process mining, with significant expertise in the implementation of process mining solutions and supporting customers with process analysis. As a Solution Owner at Signavio, Henny is also well versed in bringing Signavio Process Intelligence online for businesses of all shapes and sizes. In this interview, Henny shares her thoughts about the challenges and opportunities of process mining. 


Read this interview in German:

Im Interview mit Henny Selig zu Process Mining: “Für den Kunden sind solche Aha-Momente toll“

 


Henny, could you give a simple explanation of the concept of process mining?

Basically, process mining is a combination of data analysis and business process management. IT systems support almost every business process, meaning they leave behind digital traces. We extrapolate all the data from the IT systems connected to a particular process, then visualize and evaluate it with the help of data science technology.

In short, process mining builds a bridge between employees, process experts and management, allowing for a data-driven and fact-based approach to business process optimization. This helps avoid thinking in siloes, as well as enabling transparent design of handovers and process steps that cross departmental boundaries within an organization.

When a business starts to analyze their process data, what are the sorts of questions they ask? Do they have at least have some expectation about what process mining can offer?

That’s a really good question! There isn’t really a single good answer to it, as it is different for different companies. For example, there was one procurement manager, and we were presenting the complete data set to him, and it turned out there was an approval at one point, but it should have been at another. He was really surprised, but we weren’t, because we sat outside the process itself and were able to take a broader view. 

We also had different questions that the company hadn’t considered, things like what was the process flow if an order amount is below 1000 euros, and how often that occurs—just questions that seem clear to an outsider but often do not occur to process owners.

So do people typically just have an idea that something is wrong, or do they generally understand there is a specific problem in one area, and they want to dive deeper? 

There are those people who know that a process is running well, but they know a particular problem pops up repeatedly. Usually, even if people say they don’t have a particular focus or question, most of them actually do because they know their area. They already have some assumptions and ideas, but it is sometimes so deep in their mind they can’t actually articulate it.

Often, if you ask people directly how they do things, it can put pressure on them, even if that’s not the intention. If this happens, people may hide things without meaning to, because they already have a feeling that the process or workflow they are describing is not perfect, and they want to avoid blame. 

The approvals example I mentioned above is my favorite because it is so simple. We had a team who all said, over and over, “We don’t approve this type of request.” However, the data said they did–the team didn’t even know. 

We then talked to the manager, who was interested in totally different ideas, like all these risks, approvals, are they happening, how many times this, how many times that — the process flow in general. Just by having this conversation, we were able to remove the mismatch between management and the team, and that is before we even optimized the actual process itself. 

So are there other common issues or mismatches that people should be aware of when beginning their process mining initiative?

The one I often return to is that not every variation that is out of line with the target model is necessarily negative. Very few processes, apart from those that run entirely automatically, actually conform 100% to the intended process model—even when the environment is ideal. For this reason, there will always be exceptions requiring a different approach. This is the challenge in projects: finding out which variations are desirable, and where to make necessary exceptions.

So would you say that data-based process analysis is a team effort?

Absolutely! In every phase of a process mining project, all sorts of project members are included. IT makes the data available and helps with the interpretation of the data. Analysts then carry out the analysis and discuss the anomalies they find with IT, the process owners, and experts from the respective departments. Sometimes there are good reasons to explain why a process is behaving differently than expected. 

In this discussion, it is incredibly helpful to document the thought process of the team with technical means, such as Signavio Process Intelligence. In this way, it is possible to break down the analysis into individual processes and to bring the right person into the discussion at the right point without losing the thread of the discussion. Then, the next colleague who picks up the topic can then see the thread of the analysis and properly classify the results.

At the very least, we can provide some starting points. Helping people reach an “aha moment” is one of the best parts of my job!

To find out more about how process mining can help you understand and optimize your business processes, visit the Signavio Process Intelligence product page. If you would like to get a group effort started in your organization right now, why not sign up for a free 30-day trial with Signavio, today.

Scaling Up Your Process Management

Any new business faces questions: have we found the right product/market fit? Does the business model work? Have we got enough money to keep the doors open? Typically, new businesses are focused on staying afloat, meaning anything that isn’t immediately relevant to that goal is left until later—whenever that might be!   


Read this article in German:

Machen Sie mehr aus Ihrem Prozessmanagement


However, most businesses soon realize that staying afloat means finding the most efficient way to deliver their products or services to customers. As a result, the way a business functions starts to move into focus, with managers and staff looking to achieve the same outcome, in the same way, over and over. The quickest route to this? Establishing efficient processes. 

Once a business has clarified the responsibilities of all staff, and identified their business process framework, they are better able to minimize waste and errors, avoid misunderstandings, reduce the number of questions asked during the day-to-day business, and generally operate more smoothly and at a greater pace.

Expanding your business with process management

Of course, no new business wants to remain new for long—becoming firmly established is the immediate goal, with a focus on expansion to follow, leading to new markets, new customers, and increased profitability. Effectively outlining processes takes on even more importance when companies seek to expand. Take recruitment and onboarding, for example. 

Ad hoc employment processes may work for a start-up, but a small business looking to take the next step needs to introduce new staff members frequently and ensure they have the right information to get started immediately. The solution is a documented, scalable, and repeatable process that can be carried out as many times as needed, no matter the location or the role being filled. 

When new staff are employed, they’ll need to know how their new workplace actually functions. Once again, a clear process framework means all the daily processes needed are accessible to all staff, no matter where the employee is based. As the business grows, more and more people will come on board, each with their own skills, and very likely their own ideas and suggestions about how the business could be improved… 

Collaborative process management

Capturing the wisdom of the crowd is also a crucial factor in a successful business—ensuring all employees have a chance to contribute to improving the way the company operates. In a business with an effective process modeling framework, this means providing all staff with the capability to design and model processes themselves. 

Traditionally, business process modeling is a task for the management or particular experts, but this is an increasingly outdated view. Nobody wants to pass up the valuable knowledge of individuals; after all, the more knowledge there is available about a process, the more efficiently the processes can be modeled and optimized. Using a single source of process truth for the entire organization means companies can promote collaborative and transparent working environments, leading to happier staff, more efficient work, and better overall outcomes for the business. 

Collaborative process management helps to grow organizations avoid cumbersome, time-consuming email chains, or sifting through folders for the latest version of documents, as well as any number of other hand brakes on growth. 

Instead, process content can be created and shared by anyone, any time, helping drive a company’s digital and cloud strategies, enhance investigations and process optimization efforts, and support next-gen business transformation initiatives. In short, this radical transparency can serve as the jumping-off point for the next stage of a company’s growth. 

Want to find out more about professional process management? Read our White Paper 7-Step Guide to Effective Business Transformation!

Seeing the Big Picture: Combining Enterprise Architecture with Process Management

Ever tried watching a 3D movie without those cool glasses people like to take home? Two hours of blurred flashing images is no-one’s idea of fun. But with the right equipment, you get an immersive experience, with realistic, clear, and focused images popping out of the screen. In the same way, the right enterprise architecture brings the complex structure of an organization into focus.

We know that IT environments in today’s modern businesses consist of a growing number of highly complex, interconnected, and often difficult-to-manage IT systems. Balancing customer service and efficiency imperatives associated with social, mobile, cloud, and big data technologies, along with effective day-to-day IT functions and support, can often feel like an insurmountable challenge.

Enterprise architecture can help organizations achieve this balance, all while managing risk, optimizing costs, and implementing innovations. Its main aim is to support reform and transformation programs. To do this, enterprise architecture relies on the accuracy of an enterprise’s complex data systems, and takes into account changing standards, regulations, and strategic business demands.

Components of effective enterprise architecture

In general, most widely accepted enterprise architecture frameworks consist of four interdependent domains:

  • Business Architecture

A blueprint of the enterprise that provides a common understanding of the organization, and used to align strategic objectives and tactical demands. An example would be representing business processes using business process management notation.

  • Data Architecture

The domain that shows the dependencies and connections between an organization’s data, rules, models, and standards.

  • Applications Architecture

The layer that shows a company’s complete set of software solutions and their relationships with each other.

  • Infrastructure Architecture

Positioned at the lowest level, this component shows the relationships and connections of an organization’s existing hardware solutions.

Effective EA implementation means employees within a business can build a clear understanding of the way their company’s IT systems execute their specific work processes, as well as how they interact and relate to each other. It allows users to identify and analyze application and business performance, with the goal of enabling underperforming IT systems to be promptly and efficiently managed.

In short, EA helps businesses answer questions like:

  • Which IT systems are in use, and where, and by whom?
  • Which business processes relate to which IT systems?
  • Who is responsible for which IT systems?
  • How well are privacy protection requirements upheld?
  • Which server is each application run on?

The same questions, shifted slightly to refer to business processes rather than IT systems, are what drive enterprise-level business process management as well. Is it any wonder the two disciplines go together like popcorn and a good movie?

Combining enterprise architecture with process management

Successful business/IT alignment involves effectively leveraging an organization’s IT to achieve company goals and requirements. Standardized language and images (like flow charts and graphs) are often helpful in fostering mutual understanding between highly technical IT services and the business side of an organization.

In the same way, combining EA with collaborative business process management establishes a common language throughout a company. Once this common ground is established, misunderstandings can be avoided, and the business then has the freedom to pursue organizational or technical transformation goals effectively.

At this point, strengthened links between management, IT specialists, and a process-aware workforce mean more informed decisions become the norm. A successful pairing of process management, enterprise architecture, and IT gives insight into how changes in any one area impact the others, ultimately resulting in a clearer understanding of how the organization actually functions. This translates into an easier path to optimized business processes, and therefore a corresponding improvement in customer satisfaction.

Effective enterprise architecture provides greater transparency inside IT teams, and allows for efficient management of IT systems and their respective interfaces. Along with planning continual IT landscape development, EA supports strategic development of an organization’s structure, just as process management does.

Combining the two leads to a quantum leap in the efficiency and effectiveness of IT systems and business processes, and locks them into a mutually-reinforcing cycle of optimization, meaning improvements will continue over time. Both user communities can contribute to creating a better understanding using a common tool, and the synergy created from joining EA and business process management adds immediate value by driving positive changes company-wide.

Want to find out more? Put on your 3D glasses, and test your EA initiatives with Signavio! Sign up for your free 30-day trial of the Signavio Business Transformation Suite today.

Process Paradise by the Dashboard Light

The right questions drive business success. Questions like, “How can I make sure my product is the best of its kind?” “How can I get the edge over my competitors?” and “How can I keep growing my organization?” Modern businesses take their questions further, focusing on the details of how they actually function. At this level, the questions become, “How can I make my business as efficient as possible?” “How can I improve the way my company does business?” and even, “Why aren’t my company’s processes working as they should?”


Read this article in German:

Mit Dashboards zur Prozessoptimierung


To discover the answers to these questions (and many others!), more and more businesses are turning to process mining. Process mining helps organizations unlock hidden value by automatically collecting information on process models from across the different IT systems operating within a business. This allows for continuous monitoring of an organization’s end-to-end process landscape, meaning managers and staff gain specific operational insights into potential risks—as well as ongoing improvement opportunities.

However, process mining is not a silver bullet that turns data into insights at the push of a button. Process mining software is simply a tool that produces information, which then must be analyzed and acted upon by real people. For this to happen, the information produced must be available to decision-makers in an understandable format.

For most process mining tools, the emphasis remains on the sophistication of analysis capabilities, with the resulting data needing to be interpreted by a select group of experts or specialists within an organization. This necessarily creates a delay between the data being produced, the analysis completed, and actions taken in response.

Process mining software that supports a more collaborative approach by reducing the need for specific expertise can help bridge this gap. Only if hypotheses, analysis, and discoveries are shared, discussed, and agreed upon with a wide range of people can really meaningful insights be generated.

Of course, process mining software is currently capable of generating standardized reports and readouts, but in a business environment where the pace of change is constantly increasing, this may not be sufficient for very much longer. For truly effective process mining, the secret to success will be anticipating challenges and opportunities, then dealing with them as they arise in real time.

Dashboards of the future

To think about how process mining could improve, let’s consider an analog example. Technology evolves to make things easier—think of the difference between keeping track of expenditure using a written ledger vs. an electronic spreadsheet. Now imagine the spreadsheet could tell you exactly when you needed to read it, and where to start, as well as alerting you to errors and omissions before you were even aware you’d made them.

Advances in process mining make this sort of enhanced assistance possible for businesses seeking to improve the way they work. With the right process mining software, companies can build tailored operational cockpits that unite real-time operational data with process management. This allows for the usual continuous monitoring of individual processes and outcomes, but it also offers even clearer insights into an organization’s overall process health.

Combining process mining with an organization’s existing process models in the right way turns these models from static representations of the way a particular process operates, into dynamic dashboards that inform, guide and warn managers and staff about problems in real time. And remember, dynamic doesn’t have to mean distracting—the right process mining software cuts into your processes to reveal an all-new analytical layer of process transparency, making things easier to understand, not harder.

As a result, business transformation initiatives and other improvement plans and can be adapted and restructured on the go, while decision-makers can create automated messages to immediately be advised of problems and guided to where the issues are occurring, allowing corrective action to be completed faster than ever. This rapid evaluation and response across any process inefficiencies will help organizations save time and money by improving wasted cycle times, locating bottlenecks, and uncovering non-compliance across their entire process landscape.

Dynamic dashboards with Signavio

To see for yourself how the most modern and advanced process mining software can help you reveal actionable insights into the way your business works, give Signavio Process Intelligence a try. With Signavio’s Live Insights, all your process information can be visualized in one place, represented through a traffic light system. Simply decide which processes and which activities within them you want to monitor or understand, place the indicators, choose the thresholds, and let Signavio Process Intelligence connect your process models to the data.

Banish multiple tabs and confusing layouts, amaze your colleagues and managers with fact-based insights to support your business transformation, and reduce the time it takes to deliver value from your process management initiatives. To find out more about Signavio Process Intelligence, or sign up for a free 30-day trial, visit www.signavio.com/try.

Process mining is a powerful analysis tool, giving you the visibility, quantifiable numbers, and information you need to improve your business processes. Would you like to read more? With this guide to managing successful process mining initiatives, you will learn that how to get started, how to get the right people on board, and the right project approach.

The Power of Analyzing Processes

Are you thinking BIG enough? Over the past few years, the quality of discussion regarding a ‘process’ and its interfaces between different departments has developed radically. Organizations increasingly reject guesswork, individual assessments, or blame-shifting and instead focus on objective facts: the display of throughput times, process variants, and their optimization.

But while data can hold valuable insights into business, users, customer bases, and markets, companies are sometimes unsure how best to analyze and harness their data. In fact, the problem isn’t usually a lack of data; it’s a breakdown in leveraging useful data. Being unsure how to interpret, explore, and analyze processes can paralyze any go-live, leading to a failure in the efficient interaction of processes and business operations. Without robust data analysis, your business could be losing money, talent, and even clients.

After all, analyzing processes is about letting data tell its true story for improved understanding.

The “as-is” processes

Analyzing the as-is current state helps organizations document, track, and optimize processes for better performance, greater efficiency, and improved outcomes. By contextualizing data, we gain the ability to navigate and organize processes to negate bottlenecks, set business preferences, and plan an optimized route through process mining initiatives. This focus can help across an entire organization, or on one or more specific processes or trends within a department or team.

There are several vital goals/motivations for implementing current state analysis, including:

  • Saving money and improving ROI;
  • Improving existing processes or creating new processes;
  • Increasing customer satisfaction and journeys;
  • Improving business coordination and organizational responsiveness;
  • Complying with new regulatory standards;
  • Adapting methods following a merger or acquisition.

The “to-be” processes

Simply put, if as-is maps where your processes are, to-be maps where you want them to… be. To-be process mapping documents what you want the process to look like, and by using the as-is diagram, you can work with stakeholders to identify developments and improvements of the current process, then outline those changes on your to-be roadmap.

This analysis can help you make optimal decisions for your business and innovative OpEx imperatives. For instance, at leading data companies like Google and Amazon, data is used in such a way that the analysis results make the decisions! Just think of the power Recommendation Engines, PageRank, and Demand Forecasting Systems have over the content we see. To achieve this, advanced techniques of machine learning and statistical modeling are applied, resulting in mechanically improved results from the data. Interestingly, because these techniques reference large-scale data sets and reflect analysis and results in real-time, they are applied to areas that extend beyond human decision-making.

Also, by analyzing and continuously monitoring qualitative and quantitative data, we gain insights across potential risks and ongoing improvement opportunities, too. The powerful combination of process discovery, process analysis, and conformance checking supports a collaborative approach to process improvement, giving you game-changing insights into your business. For example:

  • Which incidents would I like to detect and act upon proactively?
  • Where would task prioritization help improve overall performance?
  • Where do I know that increased transparency would help the company?
  • How can I utilize processes in place of gut feeling/experience?

Further, as the economic environment continues to change rapidly, and modern organizations keep adopting process-based approaches to ensure they are achieving their business goals, process analysis naturally becomes the perfect template for any company.

With this, process mining technology can help modern businesses manage process challenges beyond the boundaries of implementation. We can evaluate the proof of concept (PoC) for any proposed improvements, and extract relevant information from a homogenous data set. Of course, process modeling and business process management (BPM) are available to solve the potentially tricky integration phase.

Process mining and analysis initiatives

Process mining and discovery initiatives can also provide critical insights throughout the automation and any Robotic Process Automation (RPA) journey, from defining the strategy to continuous improvement and innovation. Data-based process mining can even extend process analysis across teams and individuals, decreasing incident resolution times, and subsequently improving working habits via the discovery and validation of automation opportunities.

A further example of where process mining and strategic process analysis/alignment is already paying dividends is IT incident management. Here, “incident” is an unplanned interruption to an IT service, which may be complete unavailability or merely a reduction in quality. The goal of the incident management process is to restore regular service operation as quickly as possible and to minimize the impact on business operations. Incident management is a critical process in Information Technology Library (ITIL).

Process mining can also further drive improvement in as-is incident management processes as well as exceptional and unwanted process steps, by increasing visibility and transparency across IT processes. Process mining will swiftly analyze the different working habits across teams and individuals, decreasing incident resolution times, and subsequently improving customer impact cases.

Positive and practical experiences with process mining across industries have also led to the further dynamic development of tools, use cases, and the end-user community. Even with very experienced process owners, the visualization of processes can skyrocket improvement via new ideas and discussion.

However, the potential performance gains are more extensive, with the benefits of using process mining for incident management, also including:

  • Finding out how escalation rules are working and how the escalation is done;
  • Calculating incident management KPIs, including SLA (%);
  • Discovering root causes for process problems;
  • Understanding the effect of the opening interface (email, web form, phone, etc.);
  • Calculating the cost of the incident process;
  • Aligning the incident management system with your incident management process.

Robotic Process Automation (RPA)

Robotic process automation (RPA) provides a virtual workforce to automatize manual, repetitive, and error-prone tasks. However, successful process automation requires specific knowledge about the intended (and potential) benefits, effective training of the robots, and continuous monitoring of their performance and processes.

With this, process mining supports organizations throughout the lifecycle of RPA initiatives by monitoring and benchmarking robots to ensure sustainable benefits. These insights are especially valuable for process miners and managers with a particular interest in process automation. By unlocking the experiences with process mining, a company better understands what is needed today, for tomorrow’s process initiatives.

To further upgrade the impact of robot-led automation, there is also a need for a solid understanding of legacy systems, and an overview of automation opportunities. Process mining tools provide key insights throughout the entire RPA journey, from defining the strategy to continuous improvement and innovation.

Benefits of process mining and analysis within the RPA lifecycle include:

  1. Overviews of processes within the company, based on specific criteria;
  2. Identification of processes suitable for RPA implementation during the preparation phase;
  3. Mining the optimal process flow/process path;
  4. Understanding the extent to which RPA can be implemented in legacy processes and systems;
  5. Monitoring and analysis of RPA performance during the transition/handover of customization;
  6. Monitoring and continuous improvement of RPA in the post-implementation phase.

The process of better business understanding

Every organization is different and brings with it a variety of process-related questions. Yet some patterns are usually repeated. For example, customers who introduce data supported process analysis as part of business transformation initiatives will typically face challenges in harmonizing processes from fragmented sectors and regional locations. Here it helps enormously to base actions on data and statistics from the respective processes, instead of relying on the instincts and estimations of individuals.

With this, process analysis which is supported by data, enables a fact-based discussion, and builds a bridge between employees, process experts and management. This helps avoid siloed thinking, as well as allowing the transparent design of handovers and process steps which cross departmental boundaries within an organization.

In other words, to unlock future success and transformation, we must be processing… today.

Find out more about process mining with Signavio Process Intelligence, and see how it can help your organization uncover the hidden value of process, generate fresh ideas, and save time and money.

From BI to PI: The Next Step in the Evolution of Data-Driven Decisions

“Change is a constant.” “The pace of change is accelerating.” “The world is increasingly complex, and businesses have to keep up.” Organizations of all shapes and sizes have heard these ideas over and over—perhaps too often! However, the truth remains that adaptation is crucial to a successful business.


Read this article in German: Von der Datenanalyse zur Prozessverbesserung: So gelingt eine erfolgreiche Process-Mining-Initiative

 


Of course, the only way to ensure that the decisions you make are evolving in the right way is to understand the underlying building blocks of your organization. You can think of it as DNA; the business processes that underpin the way you work and combine to create a single unified whole. Knowing how those processes operate, and where the opportunities for improvement lie, can be the difference between success and failure.

Businesses with an eye on their growth understand this already. In the past, Business Intelligence was seen as the solution to this challenge. In more recent times, forward-thinking organizations see the need for monitoring solutions that can keep up with today’s rate of change, at the same time as they recognize that increasing complexity within business processes means traditional methods are no longer sufficient.

Adapting to a changing environment? The challenges of BI

Business Intelligence itself is not necessarily defunct or obsolete. However, the tools and solutions that enable Business Intelligence face a range of challenges in a fast-paced and constantly changing world. Some of these issues may include:

  • High data latency – Data latency refers to how long it takes for a business user to retrieve data from, for example, a business intelligence dashboard. In many cases, this can take more than 24 hours, a critical time period when businesses are attempting to take advantage of opportunities that may have a limited timeframe.
  • Incomplete data sets – The broad approach of Business Intelligence means investigations may run wide but not deep. This increases the chances that data will be missed, especially in instances where the tools themselves make the parameters for investigations difficult to change.
  • Discovery, not analysis – Business intelligence tools are primarily optimized for exploration, with a focus on actually finding data that may be useful to their users. Often, this is where the tools stop, offering no simple way for users to actually analyze the data, and therefore reducing the possibility of finding actionable insights.
  • Limited scalability – In general, Business Intelligence remains an arena for specialists and experts, leaving a gap in understanding for operational staff. Without a wide appreciation for processes and their analysis within an organization, the opportunities to increase the application of a particular Business Intelligence tool will be limited.
  • Unconnected metrics – Business Intelligence can be significantly restricted in its capacity to support positive change within a business through the use of metrics that are not connected to the business context. This makes it difficult for users to interpret and understand the results of an investigation, and apply these results to a useful purpose within their organization.

Process Intelligence: the next evolutionary step

To ensure companies can work efficiently and make the best decisions, a more effective method of process discovery is needed. Process Intelligence (PI) provides the critical background to answer questions that cannot be answered with Business Intelligence tools.

Process Intelligence offers visualization of end-to-end process sequences using raw data, and the right Process Intelligence tool means analysis of that raw data can be conducted straight away, so that processes are displayed accurately. The end-user is free to view and work with this accurate information as they please, without the need to do a preselection for the analysis.

By comparison, because Business Intelligence requires predefined analysis criteria, only once the criteria are defined can BI be truly useful. Organizations can avoid delayed analysis by using Process Intelligence to identify the root causes of process problems, then selecting the right criteria to determine the analysis framework.

Then, you can analyze your system processes and see the gaps and variants between the intended business process and what you actually have. And of course, the faster you discover what you have, the faster you can apply the changes that will make a difference in your business.

In short, Business Intelligence is suitable for gaining a broad understanding of the way a business usually functions. For some businesses, this will be sufficient. For others, an overview is not enough.

They understand that true insights lie in the detail, and are looking for a way of drilling down into exactly how each process within their organization actually works. Software that combines process discovery, process analysis, and conformance checking is the answer.

The right Process Intelligence tools means you will be able to automatically mine process models from the different IT systems operating within your business, as well as continuously monitor your end-to-end processes for insights into potential risks and ongoing improvement opportunities. All of this is in service of a collaborative approach to process improvement, which will lead to a game-changing understanding of how your business works, and how it can work better.

Early humans evolved from more primitive ancestors, and in the process, learned to use more and more sophisticated tools. For the modern human, working in a complex organization, the right tool is Process Intelligence.

Endless Potential with Signavio Process Intelligence

Signavio Process Intelligence allows you to unearth the truth about your processes and make better decisions based on true evidence found in your organization’s IT systems. Get a complete end-to-end perspective and understanding of exactly what is happening in your organization in a matter of weeks.

As part of Signavio Business Transformation Suite, Signavio Process Intelligence integrates perfectly with Signavio Process Manager and is accessible from the Signavio Collaboration Hub. As an entirely cloud-based process mining solution, the tool makes it easy to collaborate with colleagues from all over the world and harness the wisdom of the crowd.

Find out more about Signavio Process Intelligence, and see how it can help your organization generate more ideas, save time and money, and optimize processes.

Process Analytics – Data Analysis for Process Audit & Improvement

Process Mining: Innovative data analysis for process optimization and audit

Step-by-Step: New ways to detect compliance violations with Process Analytics

In the course of the advancing digitization, an enormous upheaval of everyday work is currently taking place to ensure the complete recording of all steps in IT systems. In addition, companies are increasingly confronted with increasingly demanding regulatory requirements on their IT systems.


Read this article in German:
“Process Mining: Innovative Analyse von Datenspuren für Audit und Forensik “


The unstoppable trend towards a connected world will further increase the possibilities of process transparency, but many processes in the company area are already covered by one or more IT systems. Each employee, as well as any automated process, leaves many data traces in IT backend systems, from which processes can be replicated retroactively or in real time. These include both obvious processes, such as the entry of a recorded purchase order or invoice, as well as partially hidden processes, such as the modification of certain entries or deletion of these business objects.

1 Understanding Process Analytics

Process Analytics is a data-driven methodology of the actual process analysis, which originates in forensics. In the wake of the increasing importance of computer crime, it became necessary to identify and analyze the data traces that potential criminals left behind in IT systems in order to reconstruct the event as much as possible.

With the trend towards Big Data Analytics, Process Analytics has not only received new data bases, but has also been further developed as an analytical method. In addition, the visualization enables the analyst or the report recipient to have a deeper understanding of even more complex business processes.

While conventional process analysis primarily involves employee interviews and monitoring of the employees at the desk in order to determine actual processes, Process Analytics is a leading method, which is purely fact-based and thus objectively approaching the processes. It is not the employees who are asked, but the IT systems, which not only store all the business objects recorded in a table-oriented manner, but also all process activities. Every IT system for enterprise purposes log all relevant activities of the whole business process, in the background and invisible to the users, such as orders, invoices or customer orders, with a time stamp.

2 The right choice of the processes to analyze

Today almost every company works with at least one ERP system. As other systems are often used, it is clear which processes can not be analyzed: Those processes, which are still carried out exclusively on paper and in the minds of the employees, which are typical decision-making processes at the strategic level and not logged in IT systems.

Operational processes, however, are generally recorded almost seamlessly in IT systems. Furthermore, almost all operational decisions are recorded by status flags in datasets.

The operational processes, which can be reconstructed and analyzed with Process Mining very well and which are of equal interest from the point of view of compliance, include for example:

– Procurement

– Logistics / Transport

– Sales / Ordering

– Warranty / Claim Management

– Human Resource Management

Process Analytics enables the greatest possible transparency across all business processes, regardless of the sector and the department. Typical case IDs are, for example, sales order number, procurement order number, customer or material numbers.

3 Selection of relevant IT systems

In principle, every IT system used in the company should be examined with regard to the relevance for the process to be analyzed. As a rule, only the ERP system (SAP ERP or others) is relevant for the analysis of the purchasing processes. However, for other process areas there might be other IT systems interesting too, for example separate accounting systems, a CRM or a MES system, which must then also be included.

Occasionally, external data should also be integrated if they provide important process information from externally stored data sources – for example, data from logistics partners.

4 Data Preparation

Before the start of the data-driven process analysis, the data directly or indirectly indicating process activities must be identified, extracted and processed in the data sources. The data are stored in database tables and server logs and are collected via a data warehousing procedure and converted into a process protocol or – also called – event log.

The event log is usually a very large and wide table which, in addition to the actual process activities, also contains parameters which can be used to filter cases and activities. The benefit of this filter option is, for example, to show only process flows where special product groups, prices, quantities, volumes, departments or employee groups are involved.

5 Analysis Execution

The actual inspection is done visually and thus intuitively with an interactive process flow diagram, which represents the actual processes as they could be extracted from the IT systems. The event log generated by the data preparation is loaded into a data visualization software (e.g. Celonis PM Software), which displays this log by using the case IDs and time stamps and transforms this information in a graphical process network. The process flows are therefore not modeled by human “process thinkers”, as is the case with the target processes, but show the real process flows given by the IT systems. Process Mining means, that our enterprise databases “talk” about their view of the process.

The process flows are visualized and statistically evaluated so that concrete statements can be made about the process performance and risk estimations relevant to compliance.

6 Deviation from target processes

The possibility of intuitive filtering of the process presentation also enables an analysis of all deviation of our real process from the desired target process sequences.

The deviation of the actual processes from the target processes is usually underestimated even by IT-affine managers – with Process Analytics all deviations and the general process complexity can now be investigated.

6 Detection of process control violations

The implementation of process controls is an integral part of a professional internal control system (ICS), but the actual observance of these controls is often not proven. Process Analytics allows circumventing the dual control principle or the detection of functional separation conflicts. In addition, the deliberate removal of internal control mechanisms by executives or the incorrect configuration of the IT systems are clearly visible.

7 Detection of previously unknown behavioral patterns

After checking compliance with existing controls, Process Analytics continues to be used to recognize previously unknown patterns in process networks, which point to risks or even concrete fraud cases and are not detected by any control due to their previously unknown nature. In particular, the complexity of everyday process interlacing, which is often underestimated as already mentioned, only reveals fraud scenarios that would previously not have been conceivable.

8 Reporting – also possible in real time

As a highly effective audit analysis, Process Analytics is already an iterative test at intervals of three to twelve months. After the initial implementation, compliance violations, weak or even ineffective controls, and even cases of fraud, are detected reliably. The findings can be used in the aftermath to stop the weaknesses. A further implementation of the analysis after a waiting period makes it possible to assess the effectiveness of the measures taken.

In some application scenarios, the seamless integration of the process analysis with the visual dashboard to the IT system landscape is recommended so that processes can be monitored in near real-time. This connection can also be supplemented by notification systems, so that decision makers and auditors are automatically informed about the latest process bottlenecks or violations via SMS or e-mail.

Fazit

Process Analytics is, in the course of the digitalization, the highly effective methodology from the area of ​​Big Data Analysis for detecting compliance-relevant events throughout the company and also providing visual support for forensic data analysis. Since this is a method, and not a software, an expansion of the IT system landscape, especially for entry, is not absolutely necessary, but can be carried out by internal or external employees at regular intervals.

Establish a Collaborative Culture – Process Mining Rule 4 of 4

This is article no. 4 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4

Perhaps the most important ingredient in creating a responsible process mining environment is to establish a collaborative culture within your organization. Process mining can make the flaws in your processes very transparent, much more transparent than some people may be comfortable with. Therefore, you should include change management professionals, for example, Lean practitioners who know how to encourage people to tell each other “the truth”, in your team.

Furthermore, be careful how you communicate the goals of your process mining project and involve relevant stakeholders in a way that ensures their perspective is heard. The goal is to create an atmosphere, where people are not blamed for their mistakes (which only leads to them hiding what they do and working against you) but where everyone is on board with the goals of the project and where the analysis and process improvement is a joint effort.

Do:

  • Make sure that you verify the data quality before going into the data analysis, ideally by involving a domain expert already in the data validation step. This way, you can build trust among the process managers that the data reflects what is actually happening and ensure that you have the right understanding of what the data represents.
  • Work in an iterative way and present your findings as a starting point for discussion in each iteration. Give people the chance to explain why certain things are happening and let them ask additional questions (to be picked up in the next iteration). This will help to improve the quality and relevance of your analysis as well as increase the buy-in of the process stakeholders in the final results of the project.

Don’t:

  • Jump to conclusions. You can never assume that you know everything about the process. For example, slower teams may be handling the difficult cases, people may deviate from the process for good reasons, and you may not see everything in the data (for example, there might be steps that are performed outside of the system). By consistently using your observations as a starting point for discussion, and by allowing people to join in the interpretation, you can start building trust and the collaborative culture that process mining needs to thrive.
  • Force any conclusions that you expect, or would like to have, by misrepresenting the data (or by stating things that are not actually supported by the data). Instead, keep track of the steps that you have taken in the data preparation and in your process mining analysis. If there are any doubts about the validity or questions about the basis of your analysis, you can always go back and show, for example, which filters have been applied to the data to come to the particular process view that you are presenting.

Consider Anonymization – Process Mining Rule 3 of 4

This is article no. 3 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 3 von 4

If you have sensitive information in your data set, instead of removing it you can also consider the use of anonymization. When you anonymize a set of values, then the actual values (for example, the employee names “Mary Jones”, “Fred Smith”, etc.) will be replaced by another value (for example, “Resource 1”, “Resource 2”, etc.).

If the same original value appears multiple times in the data set, then it will be replaced with the same replacement value (“Mary Jones” will always be replaced by “Resource 1”). This way, anonymization allows you to obfuscate the original data but it preserves the patterns in the data set for your analysis. For example, you will still be able to analyze the workload distribution across all employees without seeing the actual names.

Some process mining tools (Disco and ProM) include anonymization functionality. This means that you can import your data into the process mining tool and select which data fields should be anonymized. For example, you can choose to anonymize just the Case IDs, the resource name, attribute values, or the timestamps. Then you export the anonymized data set and you can distribute it among your team for further analysis.

Do:

  • Determine which data fields are sensitive and need to be anonymized (see also the list of common process mining attributes and how they are impacted if anonymized).
  • Keep in mind that despite the anonymization certain information may still be identifiable. For example, there may be just one patient having a very rare disease, or the birthday information of your customer combined with their place of birth may narrow down the set of possible people so much that the data is not anonymous anymore.

Don’t:

  • Anonymize the data before you have cleaned your data, because after the anonymization the data cleaning may not be possible anymore. For example, imagine that slightly different customer category names are used in different regions but they actually mean the same. You would like to merge these different names in a data cleaning step. However, after you have anonymized the names as “Category 1”, “Category 2”, etc. the data cleaning cannot be done anymore.
  • Anonymize fields that do not need to be anonymized. While anonymization can help to preserve patterns in your data, you can easily lose relevant information. For example, if you anonymize the Case ID in your incident management process, then you cannot look up the ticket number of the incident in the service desk system anymore. By establishing a collaborative culture around your process mining initiative (see guideline No. 4) and by working in a responsible, goal-oriented way, you can often work openly with the original data that you have within your team.