Cloud Data Platform for Shopfloor Management

How Cloud Data Platforms improve Shopfloor Management

In the era of Industry 4.0, linking data from MES (Manufacturing Execution System) with that from ERP, CRM and PLM systems plays an important role in creating integrated monitoring and control of business processes.

ERP (Enterprise Resource Planning) systems contain information about finance, supplier management, human resources and other operational processes, while CRM (Customer Relationship Management) systems provide data about customer relationships, marketing and sales activities. PLM (Product Lifecycle Management) systems contain information about products, development, design and engineering.

By linking this data with the data from MES, companies can obtain a more complete picture of their business operations and thus achieve better monitoring and control of their business processes. Of central importance here are the OEE (Overall Equipment Effectiveness) KPIs that are so important in production, as well as the key figures from financial controlling, such as contribution margins. The fusion of data in a central platform enables smooth analysis to optimize processes and increase business efficiency in the world of Industry 4.0 using methods from business intelligence, process mining and data science. Companies also significantly increase their enterprise value with the linking of this data, thanks to the data and information transparency gained.

Cloud Data Platform for shopfloor management and data sources such like MES, ERP, PLM and machine data.

Cloud Data Platform for shopfloor management and data sources such like MES, ERP, PLM and machine data. Copyright by DATANOMIQ.

If the data sources are additionally expanded to include the machines of production and logistics, much more in-depth analyses for error detection and prevention as well as for optimizing the factory in its dynamic environment become possible. The machine sensor data can be monitored directly in real time via respective data pipelines (real-time stream analytics) or brought into an overall picture of aggregated key figures (reporting). The readers of this data are not only people, but also individual machines or entire production plants that can react to this data.

As a central data architecture there are dozens of analytical applications which can be fed with data:

OEE key figures for Shopfloor reporting
Process Mining (e.g. material flow analysis) for manufacturing and supply chain.
Detection of anomalies on the shopfloor or on individual machines.
Predictive maintenance for individual machines or entire production lines.

This solution scales completely automatically in terms of both performance and cost. It looks beyond individual problems since it offers universal and flexible scope for action. In other words, it will result in a “god mode” for the management being able to drill-down from a specific client project to insights into single machines involved into each project.

Are you interested in scalable data architectures for your shopfloor management? Or would you like to discuss a specific problem with us? Or maybe you are interested in an individual data strategy? Then get in touch with me! 🙂

CAP Theorem

Understanding databases for storing, updating and analyzing data requires the understanding of the CAP Theorem. This is the second article of the article series Data Warehousing Basics.

Understanding NoSQL Databases by the CAP Theorem

CAP theorem – or Brewer’s theorem – was introduced by the computer scientist Eric Brewer at Symposium on Principles of Distributed computing in 2000. The CAP stands for Consistency, Availability and Partition tolerance.

  • Consistency: Every read receives the most recent writes or an error. Once a client writes a value to any server and gets a response, it is expected to get afresh and valid value back from any server or node of the database cluster it reads from.
    Be aware that the definition of consistency for CAP means something different than to ACID (relational consistency).
  • Availability: The database is not allowed to be unavailable because it is busy with requests. Every request received by a non-failing node in the system must result in a response. Whether you want to read or write you will get some response back. If the server has not crashed, it is not allowed to ignore the client’s requests.
  • Partition tolerance: Databases which store big data will use a cluster of nodes that distribute the connections evenly over the whole cluster. If this system has partition tolerance, it will continue to operate despite a number of messages being delayed or even lost by the network between the cluster nodes.

CAP theorem applies the logic that  for a distributed system it is only possible to simultaneously provide  two out of the above three guarantees. Eric Brewer, the father of the CAP theorem, proved that we are limited to two of three characteristics, “by explicitly handling partitions, designers can optimize consistency and availability, thereby achieving some trade-off of all three.” (Brewer, E., 2012).

CAP Theorem Triangle

To recap, with the CAP theorem in relation to Big Data distributed solutions (such as NoSQL databases), it is important to reiterate the fact, that in such distributed systems it is not possible to guarantee all three characteristics (Availability, Consistency, and Partition Tolerance) at the same time.

Database systems designed to fulfill traditional ACID guarantees like relational database (management) systems (RDBMS) choose consistency over availability, whereas NoSQL databases are mostly systems designed referring to the BASE philosophy which prefer availability over consistency.

The CAP Theorem in the real world

Lets look at some examples to understand the CAP Theorem further and provewe cannot create database systems which are being consistent, partition tolerant as well as always available simultaniously.

AP – Availability + Partition Tolerance

If we have achieved Availability (our databases will always respond to our requests) as well as Partition Tolerance (all nodes of the database will work even if they cannot communicate), it will immediately mean that we cannot provide Consistency as all nodes will go out of sync as soon as we write new information to one of the nodes. The nodes will continue to accept the database transactions each separately, but they cannot transfer the transaction between each other keeping them in synchronization. We therefore cannot fully guarantee the system consistency. When the partition is resolved, the AP databases typically resync the nodes to repair all inconsistencies in the system.

A well-known real world example of an AP system is the Domain Name System (DNS). This central network component is responsible for resolving domain names into IP addresses and focuses on the two properties of availability and failure tolerance. Thanks to the large number of servers, the system is available almost without exception. If a single DNS server fails,another one takes over. According to the CAP theorem, DNS is not consistent: If a DNS entry is changed, e.g. when a new domain has been registered or deleted, it can take a few days before this change is passed on to the entire system hierarchy and can be seen by all clients.

CA – Consistency + Availability

Guarantee of full Consistency and Availability is practically impossible to achieve in a system which distributes data over several nodes. We can have databases over more than one node online and available, and we keep the data consistent between these nodes, but the nature of computer networks (LAN, WAN) is that the connection can get interrupted, meaning we cannot guarantee the Partition Tolerance and therefor not the reliability of having the whole database service online at all times.

Database management systems based on the relational database models (RDBMS) are a good example of CA systems. These database systems are primarily characterized by a high level of consistency and strive for the highest possible availability. In case of doubt, however, availability can decrease in favor of consistency. Reliability by distributing data over partitions in order to make data reachable in any case – even if computer or network failure – meanwhile plays a subordinate role.

CP – Consistency + Partition Tolerance

If the Consistency of data is given – which means that the data between two or more nodes always contain the up-to-date information – and Partition Tolerance is given as well – which means that we are avoiding any desynchronization of our data between all nodes, then we will lose Availability as soon as only one a partition occurs between any two nodes In most distributed systems, high availability is one of the most important properties, which is why CP systems tend to be a rarity in practice. These systems prove their worth particularly in the financial sector: banking applications that must reliably debit and transfer amounts of money on the account side are dependent on consistency and reliability by consistent redundancies to always be able to rule out incorrect postings – even in the event of disruptions in the data traffic. If consistency and reliability is not guaranteed, the system might be unavailable for the users.

CAP Theorem Venn Diagram

Conclusion

The CAP Theorem is still an important topic to understand for data engineers and data scientists, but many modern databases enable us to switch between the possibilities within the CAP Theorem. For example, the Cosmos DB von Microsoft Azure offers many granular options to switch between the consistency, availability and partition tolerance . A common misunderstanding of the CAP theorem that it´s none-absoluteness: “All three properties are more continuous than binary. Availability is continuous from 0 to 100 percent, there are many levels of consistency, and even partitions have nuances. Exploring these nuances requires pushing the traditional way of dealing with partitions, which is the fundamental challenge. Because partitions are rare, CAP should allow perfect C and A most of the time, but when partitions are present or perceived, a strategy is in order.” (Brewer, E., 2012).

ACID vs BASE Concepts

Understanding databases for storing, updating and analyzing data requires the understanding of two concepts: ACID and BASE. This is the first article of the article series Data Warehousing Basics.

The properties of ACID are being applied for databases in order to fulfill enterprise requirements of reliability and consistency.

ACID is an acronym, and stands for:

  • Atomicity – Each transaction is either properly executed completely or does not happen at all. If the transaction was not finished the process reverts the database back to the state before the transaction started. This ensures that all data in the database is valid even if we execute big transactions which include multiple statements (e. g. SQL) composed into one transaction updating many data rows in the database. If one statement fails, the entire transaction will be aborted, and hence, no changes will be made.
  • Consistency – Databases are governed by specific rules defined by table formats (data types) and table relations as well as further functions like triggers. The consistency of data will stay reliable if transactions never endanger the structural integrity of the database. Therefor, it is not allowed to save data of different types into the same single column, to use written primary key values again or to delete data from a table which is strictly related to data in another table.
  • Isolation – Databases are multi-user systems where multiple transactions happen at the same time. With Isolation, transactions cannot compromise the integrity of other transactions by interacting with them while they are still in progress. It guarantees data tables will be in the same states with several transactions happening concurrently as they happen sequentially.
  • Durability – The data related to the completed transaction will persist even in cases of network or power outages. Databases that guarante Durability save data inserted or updated permanently, save all executed and planed transactions in a recording and ensure availability of the data committed via transaction even after a power failure or other system failures If a transaction fails to complete successfully because of a technical failure, it will not transform the targeted data.

ACID Databases

The ACID transaction model ensures that all performed transactions will result in reliable and consistent databases. This suits best for businesses which use OLTP (Online Transaction Processing) for IT-Systems such like ERP- or CRM-Systems. Furthermore, it can also be a good choice for OLAP (Online Analytical Processing) which is used in Data Warehouses. These applications need backend database systems which can handle many small- or medium-sized transactions occurring simultaneous by many users. An interrupted transaction with write-access must be removed from the database immediately as it could cause negative side effects impacting the consistency(e.g., vendors could be deleted although they still have open purchase orders or financial payments could be debited from one account and due to technical failure, never credited to another).

The speed of the querying should be as fast as possible, but even more important for those applications is zero tolerance for invalid states which is prevented by using ACID-conform databases.

BASE Concept

ACID databases have their advantages but also one big tradeoff: If all transactions need to be committed and checked for consistency correctly, the databases are slow in reading and writing data. Furthermore, they demand more effort if it comes to storing new data in new formats.

In chemistry, a base is the opposite to acid. The database concepts of BASE and ACID have a similar relationship. The BASE concept provides several benefits over ACID compliant databases asthey focus more intensely on data availability of database systems without guarantee of safety from network failures or inconsistency.

The acronym BASE is even more confusing than ACID as BASE relates to ACID indirectly. The words behind BASE suggest alternatives to ACID.

BASE stands for:

  • Basically Available – Rather than enforcing consistency in any case, BASE databases will guarantee availability of data by spreading and replicating it across the nodes of the database cluster. Basic read and write functionality is provided without liabilityfor consistency. In rare cases it could happen that an insert- or update-statement does not result in persistently stored data. Read queries might not provide the latest data.
  • Soft State – Databases following this concept do not check rules to stay write-consistent or mutually consistent. The user can toss all data into the database, delegating the responsibility of avoiding inconsistency or redundancy to developers or users.
  • Eventually Consistent –No guarantee of enforced immediate consistency does not mean that the database never achieves it. The database can become consistent over time. After a waiting period, updates will ripple through all cluster nodes of the database. However, reading data out of it will stay always be possible, it is just not certain if we always get the last refreshed data.

All the three above mentioned properties of BASE-conforming databases sound like disadvantages. So why would you choose BASE? There is a tradeoff compared to ACID. If databases do not have to follow ACID properties then the database can work much faster in terms of writing and reading from the database. Further, the developers have more freedom to implement data storage solutions or simplify data entry into the database without thinking about formats and structure beforehand.

BASE Databases

While ACID databases are mostly RDBMS, most other database types, known as NoSQL databases, tend more to conform to BASE principles. Redis, CouchDB, MongoDB, Cosmos DB, Cassandra, ElasticSearch, Neo4J, OrientDB or ArangoDB are just some popular examples. But other than ACID, BASE is not a strict approach. Some NoSQL databases apply at least partly to ACID rules or provide optional functions to get almost or even full ACID compatibility. These databases provide different level of freedom which can be useful for the Staging Layer in Data Warehouses or as a Data Lake, but they are not the recommended choice for applications which need data environments guaranteeing strict consistency.

Data Warehousing Basiscs

Data Warehousing is applied Big Data Management and a key success factor in almost every company. Without a data warehouse, no company today can control its processes and make the right decisions on a strategic level as there would be a lack of data transparency for all decision makers. Bigger comanies even have multiple data warehouses for different purposes.

In this series of articles I would like to explain what a data warehouse actually is and how it is set up. However, I would also like to explain basic topics regarding Data Engineering and concepts about databases and data flows.

To do this, we tick off the following points step by step:

 

Why Do Companies Use Data Lakes?

Modern enterprise-level computing operations have to capture a truly monumental amount of information every single hour. As the scale of data has grown almost exponentially over the years, so has the scale and complexity of data stores. Traditional databases couldn’t possibly keep up with the massive numbers of records that have to be created today, which is why so many firms ended up looking for alternatives to them.

For a while, it certainly seemed as though the new breed of data warehouses would fit the bill. Enterprises that had to harvest information from all of their inputs regarding every possible function of their businesses ran to adopt this new paradigm even as the streams of data they were collecting turned into raging rivers that some might call fire hoses. Into this scattered market entered an even new concept that attempts to refactor the data processing question into a tranquil lake as opposed to that torrential downpour.

When businesses turn to this kind of digital infrastructure, they’re often looking to make sense out of this otherwise immeasurable flood.

When Data Lakes Beat Out Warehouses

Since lakes are taking over in a space currently occupied by already existing operational structures, the data lake vs data warehouse debate is currently pretty heated. Proponents of lakes say that one of the biggest reasons that companies are turning to them is the question of vendor lock-in. When an enterprise-level user stores all of their information into a conventional warehouse, they’re locked into a single vendor who processes data on their behalf. In general, their storage and analytic algorithms are bundled together into a package that’s not easy to separate into disparate parts.

Others might be dealing with a specific processing engine that requires all of their information to be formatted a certain way as its own inputs can only understand data presented in said format. Those who’re dealing with this issue might not notice it until they finally get a flow of information that’s in some format that the warehouse engine doesn’t understand. Writing custom software to convert it isn’t an easy task, especially when there’s no API to work with.

Admittedly, these issues don’t normally come up when dealing with simple and concrete data analytics pipelines. Data warehouses do a great job of making information available and they certainly help managers draw insights from data that they might not otherwise get a chance to visualize and understand. As soon as you get into things like log analytics or processing data through machine learning technology, data warehouses will struggle. They’re normally based around relational database formats, which aren’t designed to manage semi-structured information.

Instead of going through the incredibly complex process of normalizing and cleaning all of the incoming data, it makes more sense for organization-wide IS departments to transition to a data lake.

Shifting to Data Lakes the Easy Way

Change is never easy, and that’s especially true when you’re working with IT in an enterprise market. However, the promises made by data lake proponents are attractive enough that some are making the leap. They offer an affordable single repository for all of your information regardless of what you want to store, which is why so many are now taking a dip in these virtual bodies of digital water. Structured and unstructured data can fit in together, which is certainly helping to ease the transition in many cases.

IS department staffers and technologists have found that streaming data straight from a transactional database into a data lake abstraction is a simple process. Doing so gives them the freedom to run analytics on it at a later date. Best of all, semi-structured seemingly random data points like those that come from a clickstream analysis can be moved in real-time without having to write some kind of intermediary back-end script that forces it into some kind of relational format.

However, some have taken this entirely too far and that’s where most of the criticism of data lake technology seems to be coming from. Data lakes unfortunately have to be managed carefully and the information stored in them still has to be organized in some way that makes sense and is, ideally, human readable. Locating completely unstructured data later on will simply be too difficult.

True believers in the technology have developed new solutions that get around this problem without requiring engineers to write any customized code, which has helped even skeptical businesses adopt this technology.

The Rise of Open Data Lakes

Building an open data lake is key to ensuring that any kind of processing engine can read information that comes out of the lake. That’s why an increasing number of developers are turning to platforms that don’t store this information in any proprietary format. While this might seem like it could get confusing since there are a number of different competing standards vying for market dominance, it’s actually aiding adoption.

Competition, even in the open-source community, has helped to ensure that data processing software ships with a relatively low incidence of bugs. The fact that there are multiple vendors in the space has also proven helpful to IS department heads looking to implement data lake solutions in their own organizations. Rather than just picking a single vendor who then provides everything, they could use several to handle different chores and get the best of all the available options. For instance, Amazon Athena-based technology may query information in a lake directly while IoT and log processing could be handled by something based on the Lucene library like Elasticsearch.

Some specialists might even wish to introduce Splunk or other related solutions into their custom data lake layouts. The wide variety of off-the-shelf projects has helped to dramatically reduce the number of individuals who have to write custom solutions, which makes it easy to get up and go with a new lake. Since there’s no need to convert information into a specific format, the implementation phase is usually much smoother.

Regardless of which specific solutions they elect to go with, however, it’s likely that an increasingly large percentage of the data processing market will look to data lakes. They’re quickly proving themselves to be both flexible and at least relatively easy to roll out.

How to Successfully Perform a Data Quality Assessment (DQA)

People generate 2.5 quintillion bytes of data every single day. That’s 1.7 megabytes generated every second for each of the 7.8 billion residents of Earth. A lot of that information is junk that somebody can easily discard, but just as much can prove to be vital. How do you tell the difference?

According to industry experts, poor quality information costs the U.S. economy upwards of $3.1 trillion annually. That is why data quality assessments (DQAs) are so important.

A Brief Explanation of Data Quality Assessments

With companies around the globe generating massive amounts of data every second of the day, it’s essential to have tools that help you sort through it all. Data quality assessments are usually carried out by software programmed with a predefined set of rules. They can compare the incoming information to those guidelines and provide reports.

This is a simplified explanation, but the goal of these DQA programs is to separate the wheat from the chaff. They eliminate any unnecessary or redundant data, leaving only the highest quality information.

The biggest challenge here is figuring who will determine what is considered quality. Data quality depends on three things: the individual or team that creates the requirements, how they complete that task, and how flexible the program meets those obligations.

How to Perform a DQA

Once you have your DQA program in place, performing an assessment is relatively simple. The challenge lies in establishing the program. The first step is to determine the scope of the data you’re trying to assess. The details of this step will depend on your system and the amount of information you have to sort through. You can set up a program to assess a single data point at a time, but if your system generates a lot of info, this isn’t effective from an efficiency standpoint.

Define your scope carefully to ensure the program does the job correctly without wasting time sorting through bytes one at a time.

Now that you have a framework to work from, you can move on to monitoring and cleansing data. Analyze your information against the scope and details you’ve established. Validate each point against your existing statistical measures, and determine its quality.

Next, ensure all the data requirements are available and correctly formatted. You may wish to provide training for any new team members entering information to ensure it’s in a format that the DQA system can understand.

Finally, make it a point to verify that your data is consistent with the rules you’ve established, as well as your business goals. DQAs aren’t a one-and-done kind of program. Monitoring needs to be an ongoing process to prevent things from falling through the cracks and keeping bad information from potentially costing you millions of dollars.

Benefits of DQA

A data quality assessment has various benefits, both on the commercial and consumer side of your business. Accuracy is essential. It’s valuable for marketers who purchase demographic data, with 84% stating it plays a large role in their purchase decisions. Targeted marketing is one of the most popular forms of advertisement, and while it’s not always practical, its efficacy drops even further if the demographic data is incorrect.

High-quality data should be accurate, complete, relevant, valid, timely and consistent. Maintaining frequent and comprehensive quality assessments can help you do that and more. The goal of collecting this information is to produce results. The higher quality your data is, the easier and faster your system will work, with better results than you might manage without DQAs.

Data Quality Assessment vs. Data Profiling

When talking about data quality, you’ll often see the terms assessment and profiling used interchangeably. While the concepts are similar, they are not the same. Data profiling is a valuable tool for setting up your quality assessment program, giving you the information you’ll need to build your program in the future. It isn’t a step you can perform independently and expect to get the same results.

If you don’t already have a DQA in place, start with profiling to create the foundation for a comprehensive data quality assessment program.

The Growing Importance of Data Quality

Data quality has always been important. However, as the population generates more information every year, learning how to separate value from junk is more critical than ever.

What Is Data Lake Architecture?

The volume of information produced by everyone in the world is growing exponentially. To put it in perspective, it’s estimated that by 2023 the big data analytics market will reach $103 billion.

Finding probable solutions for storing big data is a challenge. It’s no easy task to hold enormous amounts of information, clean it and transform it into understandable subsets — it’s best to take one step at a time.

Some reasons why companies access their big data is to:

  • Improve their consumer experience
  • Draw conclusions and make data-driven decisions
  • Identify potential problems
  • Create innovative products

There are ways to help define big data. Combining its characteristics with storage management methods help experts make their clients’ information digestible and understandable. Cue data lakes, which are repositories for big data in its native form.

Think of an actual lake with multiple water sources around the perimeter flowing into it. Picture these as three types of data: structured, semi-structured and unstructured. All this information can remain in a data lake and be accessed in its raw form at any time, making it an attractive storage method.

Here’s how data lakes are created, some of their components and how to avoid common pitfalls.

Creating a Data Lake

One benefit of creating and implementing a data lake is that structuring becomes much more manageable.  Pulling necessary information from a lake allows analysts to compare and contrast data and communicate any connections between datasets to their client.

There are four steps to follow when setting up a data lake:

  1. Choosing a software solution: Microsoft, Amazon and Google are cloud vendors that allow developers to create data lakes without using servers.
  2. Identifying where data is sourced: Where is your information coming from? Once sources are identified, determine how your data will be cleaned or transformed.
  3. Defining process and automation: It’s vital to outline how information should be processed once the data lake ingests it. This creates consistency for businesses.
  4. Establishing retrieval governance: Choosing who has access to what types of information is crucial for companies with multiple locations and departments. It helps with overall organization. Data scientists, for this reason, primarily access data lakes.

The next step would be to determine the extract, transform and load (ETL) process. ETL creates visual interpretations of data to provide context to businesses. When information from a data lake is sent to a warehouse, it can be analyzed.

Components of a Data Lake

Here is what happens to information once a data lake is created:

  • Collection: Data comes in from various sources.
  • Ingestion: Data is processed using management software.
  • Blending: Data is combined from multiple sources.
  • Transformation: Data is analyzed and made sense of.
  • Publication: Data can be used to drive business decisions.

There are other aspects of a data lake to keep in mind. These are the critical components that help provide business solutions:

  • Security: Data lakes require security to protect information — they do not have built-in safety measures.
  • Governance: Determine who can check on the quality of data and perform measurements.
  • Metadata: This provides information about other data to improve understanding.
  • Stewardship: Choose one or more employees to take on the responsibility of managing data.
  • Monitoring: Employ other software to perform the ETL process.

Big data lends itself to incorporating multiple processes to make it usable for companies. The volume of information one company produces is massive — to manage it, experts need to consider these components and steps when building a data lake.

What to Avoid When Using Data Lakes

The last thing people want for their data lake is to see it turn into a swamp. When big data is processed incorrectly, its value decreases, making it useless to the business sourcing it.

The first step in avoiding a common pitfall is to consider the sustainability of the data lake. Planning processes are necessary to ensure it’s secure, and governing and regulating incoming information will allow for long-term use.

A lack of security causes another problem that can arise in data lakes. Safety measures must be implemented. Because enterprises will build data lakes for different purposes, it’s easy for information to become unorganized and vulnerable to hacking. With security, the likelihood of data breaches decreases, and the quality of data remains high.

The most important thing to remember about data lakes is the planning stage. Without proper preparation, they tend to be overwhelming due to their size and complexity. Taking the time and care to establish the processes ahead of time is vital.

Using Data Lake Architecture for Business

Data lakes store massive amounts of information to be used later on to create subsets, analyze metadata and more. Their advantages allow businesses to be flexible, save money and have access to raw information at all times.

What is Data Warehousing and Data Mining – Know the difference between Data Warehousing and Data Mining

Getting started

Before we start off with Data Warehousing and Data Mining, let us first set the ground for the same. This will help in understanding why we need them in the first place. By the end of the post, you would feel much more acquainted with the two topics at hand. So here goes!

With the exponential increase in the generation and consumption of the data, the organizations have to deal with a humungous amount of data at their end. We all have heard the talks about data being the new oil, which is rather turning out to be a reality. Data is considered to be an extremely valuable asset for every organization and they attempt to put it to good use. The data assists the organizations in making business decisions that will generate significant revenues. It helps in understanding the current requirements of the market which is vital for some organizations to stay in business. Thus, it is essential for organizations to store the data somewhere which can be later utilized for analytical purposes.

 

Introduction to Data Warehousing

Data Warehousing is a process to collect and manage data from a variety of sources. The data can also come from different departments of an organization like Finance, Marketing, etc. The idea of constructing a Data Warehouse is to be able to use the data for analytical purposes and make decisions based upon the analysis. Data warehouses are a pivotal component of any analytical and business intelligence operations at an organization. As the organizations can generate data at various sources, we might need to use different tools in order to store the data at a single source. The process of data warehousing generally involves ETL (Extract – Transform – Load) tools that help to extract the data from different sources, transform the data into a suitable format, and load the data into a single source. There are some tools like Google BigQuery, Amazon Redshift, etc that allow you to connect with a vast number of sources to store the data in one place. The data warehouses can be implemented on-premise as well as on the cloud. On-premise data warehouses are implemented on the local networks of the organization while cloud data warehouses are implemented over the internet. There is always a trade-off in making decisions as to which one to choose because there are multiple factors to be considered like scalability, initial investment, recurring costs, security, speed, etc.

General steps to implement a data warehouse

  1. Determining the business objectives.

Every organization can have different business objectives that define success in its terms. Some organizations are involved in a constantly changing market which will require a large number of sources while others might just need to use the data for better administration purposes. Hence the key step to initiate the creation of a data warehouse is to include the stakeholders and determine their business objectives.

  1. Analyzing and obtaining the information regarding the objectives.

Once the business objectives are decided, the information regarding those objectives needs to be obtained. The information can be obtained using any periodic report, or any CRM application, etc depending upon the organization. An extensive amount of interaction with all the supervisors attending to that information can be crucial for this process. Interacting with the people that are daily involved in this routine can serve a lot of information. These people tend to know the bits and pieces of the entire task and any information obtained from these people can lead to better implementation of the data warehouse. This step also helps in identifying the key performance indicators for the desired objectives.

  1. Identifying the concerned departments in the organization.

The key performance indicators can be different for different organizations. For example, in an organization that deals with the manufacturing of different products, if their objective were to increase the revenue then the number of units sold would be one of the key performance indicators. Based on these indicators, the involvement of the concerned departments proves to be significant.

  1. Create a layout of the data warehouse.

With all the key performance indicators discovered, create a layout of the data warehouse. It will help in providing an overview of the entire data warehouse and the data that will be stored in it. It will determine what key indicators are being stored in the data warehouse and whether all the indicators required for our objectives exist or not. As the data will be pulled in periodically, think about all of the investment costs including the hardware costs and recurring costs.

  1. Locating the sources of data and its transformation.

After finalizing the layout, we need to locate the sources of the data and figure out how the data can be extracted from it. The data can be in a CRM application or any database, we need to export the data or make use of an ETL tool that can connect with the data source. As the data comes from different sources, there is a need to consolidate all of the data. Also, there are high chances that the data is not clean and needs some transformation. In case some data may not be extracted then we need the reconsider the layout of the data warehouse. Many times, these two steps are performed in a parallel fashion.

  1. Implementation of the data warehouse layout

After the objectives are set in place, the concerned stakeholders are looped into the plan, the information is collected and analyzed, a layout for creating a data warehouse is planned, the data sources are located and transformed, now it is time to put all the things to work. After the data from the warehouse can be accessed, the data needs to be pulled from the sources periodically. We need to monitor the data warehouse continuously and check for any irregularities.

 

Introduction to Data Mining

Data Mining is a process to extract insightful information from a large amount of raw data. The intent of this process is to find some trends and patterns which would help organizations in making data-driven decisions. This process is one of the steps of KDD or Knowledge Discovery in Database. KDD also includes different sub-processes like data cleaning, data transformation, data pre-processing, etc. There are a number of tools that we can use for performing Data Mining – Tableau and Power BI being two of them. We can also make use of certain packages in Python and R languages to extract information. Data Mining helps in analyzing a huge amount of data in a quick amount of time. It is an essential step in any data science project because it provides some exploratory insights which might tell us which features are very important in prediction or which features provide very little information. Data Mining helps the organization in various ways like analyzing their market expenditure, resource management, fraud detection, etc. There are a lot of Data mining techniques which include Association rules, Classification, Clustering, Regression, Outlier Detection, etc.  It is a very cost-effective solution for the organization and it can regularly provide new information and analysis depending upon the skillsets. The process of data mining also begins with the understanding of the business and the data. Developing a thorough knowledge about the business and its related data is extremely pivotal for the analysts to be able to perform some operations on it.

Examples of Data Mining

  1. Ever got any recommendations on an e-commerce store when you are buying a product? Like when you buy a smartphone, the website will show you some phone cases or accessories. This is what is known as Basket Analysis. In this analysis, the buying patterns of the customers and what they tend to buy along with the other products are analyzed. It not only helps in an e-commerce website but also is implemented at any supermarket or grocery store. It can be done using Association based learning and creating some rules.
  2. Fraud detection is one of the most vital use-cases of Data Mining. Banks have a lot at stake due to the fraudulent transactions because they have to bear the losses for these transactions. Data Mining can help in analyzing the data and catching these fraudulent activities. Although it is a tedious task, the organizations can try to extract some patterns that will help in getting a hold of these fraudsters.

 

The link between Data Warehousing and Data Mining

Although we will mention the differences that lie between these two terms, let us see how data warehousing data mining is linked to each other. In fact, data warehousing and data mining work in conjunction with each other. As mentioned earlier in the article, we all know that data mining includes the extraction of useful information from tons of data. In order to perform data mining, from where will the analyst obtain the data? Their search ends at the data warehouse itself as it is a single source of contact for all their data needs. The data mining process is provided with all the information that is required for the analysis from the data warehouse. In many instances, the analytical team is able to extract some useful information from the data merged from two completely different departments of the organizations or even from different offices of the same department.

Distinguishing between Data Warehousing and Data Mining

Parameter Data Warehousing Data Mining
Process It is a process of storing data from multiple sources. It is a process of using different methods to analyze the raw data.

 

Ideology The idea behind it was to centralize all the sources of data into one location for ease of use in analytical processes. The idea behind it was to use the data to find some trends and patterns and help the organization in making good decisions.
Requirements To implement a data warehouse, we need to locate the different means of sources and how the data can be extracted from those sources. In order to perform data mining, a data warehouse needs to be implemented to be able to look at all the sources and then analyze the raw data.
Maintenance The data pipelines need to be maintained and monitored to prevent any loss of data. The methods used for extracting information need to be maintained and monitored in order to check if they provide any useful information or not.
Periodicity The data is extracted and stored in the data warehouse periodically. The data needs to be analyzed periodically for continuously extracting useful information.
Tools Tools used for this process include Google BigQuery, Amazon Redshift, etc Tools used for this process include Tableau, Power BI, etc.
Benefits Easy access to the historic data of the organization Helps in detecting any fraudulent operations, financial and market analysis, etc.

 

End Notes

Any organization that plans to use the data at hand for analytical purposes needs to implement a data warehouse and different data mining techniques. It requires a good amount of skillset and resources for getting good use of it. Another element that is also vital in the entire data analysis process is the interpretation of the analysis. One should be able to correctly interpret what the data is trying to tell you because all the decisions are based on these interpretations. Bad decisions could really cost organizations a fortune of money. But the decisions that are spot-on can make the organizations earn a fortune of money as well. This explains the increasing demand for different positions such as Data Engineers, Data Scientists, and Data Analysts.

This article was centered on giving its readers an overview of data warehousing and data mining. It mentioned different steps that are generally involved during the implementation of a data warehouse. It illustrated a couple of examples of Data Mining and explained how data warehousing and data mining are linked to each other. And lastly, provided some distinguishing parameters between data warehousing and data mining.

Operational Data Store vs. Data Warehouse

One of the main problems with large amounts of data, especially in this age of data-driven tools and near-instant results, is how to store the data. With proper storage also comes the challenge of keeping the data updated, and this is the reason why organizations focus on solutions that will help make data processing faster and more efficient. For many, a digital transformation is in their roadmap, thanks in large part to the changes brought about by the global COVID-19 pandemic. The problem is that organizations often assume that it’s similar to traditional change initiatives, which can’t be any further from the truth. There are a number of challenges to prepare for in digital transformations, however, and without proper planning, non-unified data storage systems and systems of record implemented through the years can slow down or even hinder the process.

Businesses have relied on two main solutions for data storage for many years: traditional data warehouses and operational data stores (ODS). These key data structures provide assistance when it comes to boosting business intelligence so that the business can make sound corporate decisions based on data. Before considering which one will work for your business, it’s important to understand the main differences between the two.

What is a Data Warehouse?

Data warehousing is a common practice because a data warehouse is designed to support business intelligence tools and activities. It’s subject-oriented so data is centered on customers, products, sales, or other subjects that contribute to the business bottom line. Because data comes from a multitude of sources, a data warehouse is also designed to consolidate large amounts of data in a variety of formats, including flat files, legacy database management systems, and relational database management systems. It’s considered an organization’s single source of truth because it houses historical records built through time, which could become invaluable as a source of actionable insights.

One of the main disadvantages of a data warehouse is its non-volatile nature. Non-volatile data is read-only and, therefore, not frequently updated or deleted over time. This leads to some time variance, which means that a data warehouse only stores a time series of periodic data snapshots that show the state of data during specific periods. As such, data loading and data retrieval are the most vital operations for a data warehouse.

What is an Operational Data Store?

Forward-thinking companies turn to an operational data store to resolve the issues with data warehousing, primarily, the issue of always keeping data up-to-date. Similar to a data warehouse, an ODS can aggregate data from multiple sources and report across multiple systems of record to provide a more comprehensive view of the data. It’s essentially a staging area that can receive operational data from transactional sources and can be queried directly. This allows data analytics tools to query ODS data as it’s received from the respective source systems. This offloads the burden from the transactional systems by only providing access to current data that’s queried in an integrated manner. This makes an ODS the ideal solution for those looking for near-real time data that’s processed quickly and efficiently.

Traditional ODS solutions, however, typically suffer from high latency because they are based on either relational databases or disk-based NoSQL databases. These systems simply can’t handle large amounts of data and provide high performance at the same time, which is a common requirement of most modern applications. The limited scalability of traditional systems also leads to performance issues when multiple users access the data store all at the same time. As such, traditional ODS solutions are incapable of providing real-time API services for accessing systems of record.

A Paradigm Shift

As modern real-time digital applications replace previously offline services, companies are going through a paradigm shift and venturing beyond what traditional data storage systems can offer. This has led to the rise of a new breed of ODS solutions that Gartner refers to as digital integration hubs. It’s a cost-effective solution because it doesn’t require a rip-and-replace if you already have a traditional ODS in place. Adopting a digital integration hub can be as simple as augmenting your current system with the missing layers, including the microservices API, smart cache, and event-driven architecture.

While sticking with a data warehouse or traditional ODS may not necessarily hurt your business, the benefits of modernization via a digital integration hub are too great to ignore. Significant improvements in throughput, availability, and scalability will help organizations become more agile so they can drive innovation quicker, helping their industry and pushing the limits of technology further to open up possibilities never before discovered.

How the Pandemic is Changing the Data Analytics Outsourcing Industry

While media pundits have largely focused on the impact of COVID-19 as far as human health is concerned, it hasn’t been particularly good for the health of automated systems either. As cybersecurity budgets plummet in the face of dwindling finances, computer criminals have taken the opportunity to increase attacks against high value targets.

In June, an online antique store suffered a data breach that contained over 3 million records, and it’s likely that a number of similar attacks have simply gone unpublished. Fortunately, data scientists are hard at work developing new methods of fighting back against these kinds of breaches. Budget constraints and a lack of personnel as a result of the pandemic continues to be a problem, but automation has helped to assuage the issue to some degree.

AI-Driven Data Storage Systems

Big data experts have long promoted the cloud as an ideal metaphor for the way that data is stored remotely, but as a result few people today consider the physical locations that this information is stored at. All data has to be located on some sort of physical storage device. Even so-called serverless apps have to be distributed from a server unless they’re fully deployed using P2P services.

Since software can never truly replace hardware, researchers are looking at refining the various abstraction layers that exist between servers and the clients who access them. Data warehousing software has enabled computer scientists to construct centralized data storage solutions that look like traditional disk locations. This gives users the ability to securely interact with resources that are encrypted automatically.

Background services based on artificial intelligence monitor virtual data warehouse locations, which gives specialists the freedom to conduct whatever analytics they deem necessary. In some cases, a data warehouse can even anonymize information as it’s stored, which can streamline workflows involved with the analysis process.

While this level of automation has proven useful, it’s still subject to some of the problems that have occurred as a result of the pandemic. Traditional supply chains are in shambles and a large percentage of technical workers are now telecommuting. If there’s a problem with any existing big data plans, then there’s often nobody around to do any work in person.

Living with Shifting Digital Priorities

Many businesses were in the process of outsourcing their data operations even before the pandemic, and the current situation is speeding this up considerably. Initial industry estimates had projected steady growth numbers for the data analytics sector through 2025. While the current figures might not be quite as bullish, it’s likely that sales of outsourcing contracts will remain high.

That being said, firms are also shifting a large percentage of their IT spending dollars into cybersecurity projects. A recent survey found that 37 percent of business leaders said they were already going to cut their IT department budgets. The same study found that 28 percent of businesses are going to move at least some part of their data analytics programs abroad.

Those companies that can’t find an attractive outsourcing contract might start to patch their remote systems over a virtual private network. Unfortunately, this kind of technology has been strained to some degree in recent months. The virtual servers that power VPNs are flooded with requests, which in turn has brought them down in some instances. Neural networks, which utilize deep learning technology to improve themselves as time goes on, have proven more than capable of predicting when these problems are most likely to arise.

That being said, firms that deploy this kind of technology might find that it still costs more to work with automated technology on-premise compared to simply investing in an outsourcing program that works with these kinds of algorithms at an outside location.

Saving Money in the Time of Corona

Experts from Think Big Analytics pointed out how specialist organizations can deal with a much wider array of technologies than a small business ever could. Since these companies specialize in providing support for other organizations, they have a tendency to offer support for a large number of platforms.

These representatives recently opined that they could provide support for NoSQL, Presto, Apache Spark and several other emerging platforms at the same time. Perhaps most importantly, these organizations can work with Hadoop and other traditional data analysis languages.

Staffers working on data mining operations have long relied on languages like Hadoop and R to write scripts that they later use to automate the process of collecting and analyzing data. By working with an organization that already supports a language that companies rely on, they can avoid the need of changing up their existing operations.

This can help to drastically reduce the cost of migration, which is extremely important since many of the firms that need to migrate to a remote system are already suffering from budget problems. Assuming that some issues related to the pandemic continue to plague businesses for some time, it’s likely that these budget constraints will force IT departments to consider a migration even if they would have otherwise relied solely on a traditional colocation arrangement.

IT department staffers were already moving away from many rare platforms even before the COVID-19 pandemic hit, however, so this shouldn’t be as much of a herculean task as it sounds. For instance, the KNIME Analytics Platform has increased in popularity exponentially since it’s release in 2006. The fact that it supports over 1,000 plug-in modules has made it easy for smaller businesses to move toward the platform.

The road ahead isn’t going to be all that pleasant, however. COBOL and other antiquated languages still rule the roost at many governmental big data processing centers. At the same time, some small businesses have never even been able to put a big data plan into play in the first place. As the pandemic continues to wreak havoc on the world’s economy, however, it’s likely that there will be no shortage of organizations continuing to migrate to more secure third-party platforms backed by outsourcing contracts.