Tag Archive for: Data Security

Phishing: An Overlooked Threat to Business and Data

Data is the lifeblood of an organization and businesses that fail to embrace this fundamental concept risk losing future business opportunities or the company itself. The value of business and consumer data hasn’t been lost on cybercriminals, which is why phishing attacks and other data security threats have been more rampant through the years. As data technology becomes more advanced, reliance on data becomes a more significant opportunity for exploitation as even the most advanced data systems have their vulnerabilities. Businesses collect and process large amounts of data from several sources, making the protection of this data one of their main challenges.

The Threat to Business and Data

Today’s businesses demand a lot from the data they collect, and as such, also look for solutions that will help transform data into more tangible bits and pieces that will help promote business success. The role of AI in cybersecurity has been gaining mainstream attention because it helps automate the detection of security threats and other malicious activities within a company’s systems. 

Looking to more advanced solutions for cybersecurity is a prudent approach, and is highly recommended, especially for businesses that handle large amounts of data daily. Cybersecurity threats are no laughing matter, and they’re becoming more advanced and difficult to identify and address. The end goal remains the same, however—to gain unauthorized access to data and use it to harm a business or for personal gain. The threats come in many forms, including DDoS attacks, malware, and phishing attacks.

Cybersecurity threats are serious not only due to the potential loss of data but also because a data breach can cause irreparable harm to a business. Give cybercriminals access to sensitive data and there’s no telling what damage they’ll cause. Even a simple phishing scam can lead to a full-blown data breach, and these breaches rely on users making mistakes

Recognizing Phishing Scams

Before businesses can combat scams, they must train their employees on the detection and proper ways of addressing or preventing them altogether. Below are the most common types of phishing attacks done against businesses.

Phishing Emails

Phishing emails are common in a business email inbox—typically categorized together with spam emails. The difference is that they are not simply unsolicited marketing messages; they are designed to trick you into opening a malicious attachment or clicking on a link to a fraudulent website. Scammers often use an email address that resembles a legitimate business email address to confuse users into thinking that the email came from someone within the organization or a trusted partner or a third party.

Company Impersonation

This method is a type of phishing scam in which scammers try to impersonate your brand. This is often done via “domain spoofing” or using a fake but similar website or email domain designed to confuse the recipients of the email. It can be difficult to detect as a source of a data breach because it’s often unreported. Victims of these scams often aren’t aware that they’ve been duped until it’s too late.

Phone Phishing/Voice Phishing

This is similar to company impersonation but uses a different medium—Voice over Internet Protocol (VoIP). Most scammers who use this method go so far as to imitate the tone of voice and spiels of the brands they’re trying to impersonate. This is usually done in conjunction with other phishing scams to increase the chances of success.

Spear phishing

This is similar to phishing emails but with a more targeted approach. It involves more effort on the scammers’ part because it entails getting key information about a target. Using this method, the scammers send an email containing the name of a company officer and other personalizations to make the recipient believe that the email is legitimate. Unsuspecting users will be duped into sending money, pertinent information, or making payments to a fake vendor or partner. It’s a sophisticated scam that can often trick even tech-savvy individuals, depending on how skillfully the fake email message is crafted.

Email Account Takeover

It’s one thing to have scammers send fake emails and try to make them look legitimate, but it’s another when they get access to a legitimate email account and use it to get money from unsuspecting users, gain access to sensitive information, or cause harm to a business. It’s typically done as part of a cross-account takeover, in which a scammer gains access to a user’s email account, changes the password, and proceeds to make fund transfers from the compromised user’s bank and other financial accounts.

Why Cyberattackers Resort to Phishing Scams

Phishing scams are one of the most common cyberattacks that threaten the security of the company and personal data, with spear phishing being one of the main infection vectors. It’s a common scam because phishing is as easy; anyone can execute a phishing attack and be relatively successful with little to no investment. The flexibility of a phishing scam also makes it an infection vector of choice. With it, a scammer can steal sensitive data and gain access to user accounts.

The simplicity-to-value ratio is also a tempting draw of phishing. Despite how simple its execution is, it can help cybercriminals get their hands on large sums of money. $17,700 is lost every minute because of a phishing scam.

Lastly, users aren’t good at putting a stop to scams—even large companies face the threat of phishing today. Because of how sophisticated these phishing emails have become and the large number of emails people have to go through each day, it can distinguish a fake email from a real one. 

Fighting the Good Fight

Despite the evolving threats to data security, there are still ways you can fight them. Just like cybercriminals always find vulnerabilities to exploit, you can always find ways to mitigate or even counteract these measures. The key is in keeping an open eye and mind and keeping abreast of the available solutions that can help you keep your data and business secure. Protecting your digital assets often requires “digital measures.” It won’t hurt to let digital tools help you, but you and your organization should be at the heart of your data security. Educate yourself and your employees so your security isn’t only as good as the tool you choose to use.

AI Role Analysis in Cybersecurity Sector

Cybersecurity as the name suggests is the process of safeguarding networks and programs from digital attacks. In today’s times, the world sustains on internet-connected systems that carry humungous data that is highly sensitive. Cyberthreats are on the rise with unscrupulous hackers taking over the entire industry by storm, with their unethical practices. This not only calls for more intense cyber security laws, but also the vigilance policies of the corporates, big and small, government as well as non-government; needs to be revisited.

With such huge responsibility being leveraged over the cyber-industry, more and more cyber-security enthusiasts are showing keen interest in the industry and its practices. In order to further the process of secured internet systems for all, unlike data sciences and other industries; the Cybersecurity industry has seen a workforce rattling its grey muscle with every surge they experience in cyber threats. Talking of AI impressions in Cybersecurity is still in its nascent stages of deployment as humans are capable of more; when assisted with the right set of tools.

Automatically detecting unknown workstations, servers, code repositories, and other hardware and software on the network are some of the tasks that could be easily managed by AI professionals, which were conducted manually by Cybersecurity folks. This leaves room for cybersecurity officials to focus on more urgent and critical tasks that need their urgent attention. Artificial intelligence can definitely do the leg work of processing and analyzing data in order to help inform human decision-making.

AI in cyber security is a powerful security tool for businesses. It is rapidly gaining its due share of trust among businesses for scaling cybersecurity. Statista, in a recent post, listed that in 2019, approximately 83% of organizations based in the US consider that without AI, their organization fails to deal with cyberattacks. AI-cyber security solutions can react faster to cyber security threats with more accuracy than any human. It can also free up cyber security professionals to focus on more critical tasks in the organization.

CHALLENGES FACED BY AI IN CYBER SECURITY

As it is said, “It takes a thief to catch a thief”. Being in its experimental stages, its cost could be an uninviting factor for many businesses. To counter the threats posed by cybercriminals, organizations ought to level up their internet security battle. Attacks backed by the organized crime syndicate with intentions to dismantle the online operations and damage the economy are the major threats this industry face today. AI is still mostly experimental and, in its infancy, hackers will find it much easy to carry out speedier, more advanced attacks. New-age automation-driven practices are sure to safeguard the crumbling internet security scenarios.

AI IN CYBER SECURITY AS A BOON

There are several advantageous reasons to embrace AI in cybersecurity. Some notable pros are listed below:

  •  Ability to process large volumes of data
    AI automates the creation of ML algorithms that can detect a wide range of cybersecurity threats emerging from spam emails, malicious websites, or shared files.
  • Greater adaptability
    Artificial intelligence is easily adaptable to contemporary IT trends with the ever-changing dynamics of the data available to businesses across sectors.
  • Early detection of novel cybersecurity risks
    AI-powered cybersecurity solutions can eliminate or mitigate the advanced hacking techniques to more extraordinary lengths.
  • Offers complete, real-time cybersecurity solutions
    Due to AI’s adaptive quality, artificial intelligence-driven cyber solutions can help businesses eliminate the added expenses of IT security professionals.
  • Wards off spam, phishing, and redundant computing procedures
    AI easily identifies suspicious and malicious emails to alert and protect your enterprise.

AI IN CYBERSECURITY AS A BANE

Alongside the advantages listed above, AI-powered cybersecurity solutions present a few drawbacks and challenges, such as:

  • AI benefits hackers
    Hackers can easily sneak into the data networks that are rendered vulnerable to exploitation.
  • Breach of privacy
    Stealing log-in details of the users and using them to commit cybercrimes, are deemed sensitive issues to the privacy of an entire organization.
  • Higher cost for talents
    The cost of creating an efficient talent pool is very high as AI-based technologies are in the nascent stage.
  • More data, more problems
    Entrusting our sensitive data to a third-party enterprise may lead to privacy violations.

AI-HUMAN MERGER IS THE SOLUTION

AI professionals backed with the best AI certifications in the world assist corporations of all sizes to leverage the maximum benefits of the AI skills that they bring along, for the larger benefit of the organization. Cybersecurity teams and AI systems cannot work in isolation. This communion is a huge step forward to leveraging maximum benefits for secured cybersecurity applications for organizations. Hence, this makes AI in cybersecurity a much-coveted aspect to render its offerings in the long run.

CCNA vs. CCNP vs. CCIE Security Certification

As more companies turn to cloud-based software and other advanced solutions, demand for expert IT professionals in the field increases. One popular vendor, Cisco Systems, Inc., makes underlying software and hardware businesses will use for their networks.

If you’re interested in pursuing a career in the data security industry, you may want to consider earning a Cisco security certification. However, there are many types of certificates available, and each one will deliver unique benefits to you and your job marketability.

Learn more about Cisco certifications and learn the difference between CCNA, CCNP and CCIE certifications to help you choose which path is right for you.

Why Earn Cisco Certifications?

The main reason why Cisco provides these security certifications is so IT professionals can fine-tune their skills and build upon their knowledge. When IT professionals earn a Cisco certification, they can use Cisco products and services more easily, help guide customers and troubleshoot customer problems.

A future employer may perceive candidates with certifications as more qualified, productive and someone with a “go-getter” attitude. According to Cisco’s website, 81% of employers associate certifications holders with higher quality and value of work contribution.

However, it’s important to research the various Cisco certifications to learn which ones are most suitable for you and what job you’re interested in. For example, Cisco offers different levels of certifications, ranging from entry-level to expert.

Below are three certifications from Cisco that may be a good fit for you.

CCNA — Cisco Certified Network Associate

A CCNA certification is highly sought after. This certification demonstrates a professional’s ability to install, configure, operate and troubleshoot networks, both routed and switched. No prerequisites are necessary for the CCNA certification. It’s considered an associate-level certification and is available in a few prominent areas, including:

  • Cloud
  • Collaboration
  • Industrial/IoT
  • Security
  • Routing and Switching
  • Service Provider
  • Wireless

One challenge in the data industry is the increased reliance on cloud environments. Using only one cloud provider is a business risk some companies are concerned about. Uptime Institute cites the concentration risk of cloud computing as a major challenge for data centers in 2022.

Earning a CCNA cloud certification may help you get hired for an entry-level position at a company and allow you to support a senior cloud engineer.

Common jobs that you can earn with a CCNA are an IT network engineer, associate networking engineer, network system administrator and cloud architecture and security professional.

CCNP — Cisco Certified Network Professional

The Cisco CCNP certification is a more advanced professional-level certification than the CCNA certification. With the CCNP, you should be able to implement higher-level networking solutions for a company. It will cover the fundamentals of LAN and WAN infrastructures. Here are some of the different areas you can earn a CCNP in:

  • Enterprise
  • Security
  • Service Provider
  • Collaboration
  • Data Center

You must pass some core exams before earning the CCNP certification. Someone looking for the CCNP certification must also qualify for Cisco’s IP switched network and IP routing technologies. This will help determine the candidate’s readiness for the CCNP certification.

Some jobs you may get with a CCNP certification are senior security/network engineer, network architecture, network manager and troubleshooting assistant.

CCIE — Cisco Certified Internetwork Expert

IT professionals who’ve secured the knowledge and technical skills to design, implement and configure security for Cisco solutions and IT resources would be ready to earn the CCIE certification. According to Cisco, an expert-level certification is accepted worldwide as the most prestigious certification in the tech industry. Here are some of the CCIE certifications:

  • Enterprise Infrastructure
  • Collaboration
  • Enterprise Wireless
  • Data Center
  • Security
  • Service Provider

CCIE certifications can open up a range of job opportunities, but it’s a challenging certification to earn. Earning a CCIE means that your end-to-end IT lifecycle skills are valid. You know exactly what you’re talking about regarding networking, LAN/WAN, IPv4 and IPv6 protocols, switches and routers, general information and installation and configuration of various network types.

Jobs you can earn with a CCIE certificate include network security architect, network security specialist, infrastructure consulting practitioner and cloud engineer/architect.

Where to Earn Cisco Certifications

Because Cisco certifications are in such high demand and can open up job opportunities, you may want to know how you can earn them. You earn certificates directly from Cisco’s website. Under Cisco’s Learn tab, there’s plenty of information about certifications, training, events, webinars, support and other services.

There are many online training programs that you can complete to help you prepare for the Cisco certification exams. Here are some websites that offer programs you may want to explore based on the certification you’d like to earn:

For CCNA

  • Udemy
  • ICOHS College
  • Pluralsight
  • Cybrary

For CCNP

  • Udemy
  • INE
  • Global Knowledge
  • Varsity Tutors

For CCIE

  • Udemy
  • Skillshare
  • PluralSight
  • Network Lessons
  • Koenig solutions

These examples are only a few, as other online training programs and resources can set you up for success.

Additionally, Cisco offers several resources on its website to help individuals prepare for certification exams. These include guided study groups and a free Cisco Networking Academy program.

Earning Cisco Certifications

Because many companies, especially large ones, will use Cisco products for their technology infrastructure. Potential IT candidates who list certifications on their resume or job application will have a competitive advantage in the hiring process.

Depending on your current skill level and knowledge, you should be able to determine which Cisco certification is right for you. Cisco’s website has extensive information on each certificate and what topics you’ll learn about. Consider earning a Cisco certification, whether it’s CCNA vs. CCNP vs. CCIE, to bolster your skills and improve your marketability.

5 Best Practices for Performing Data Backup and Recovery

Data backup and recovery are critical for any organization in the digital age. The field of data science has developed advanced, secure, user-friendly backup and recovery technology over recent years. For anyone new to data backup and recovery, it can be challenging knowing where to start, especially when dealing with large quantities of data. There are some best practices in data backup and recovery that are beneficial for any user or organization. These tips will provide a jumping-off point for creating a customized data protection strategy.

1. Create a Frequent Backup Plan

One of the first steps to protecting data from loss is creating a plan or schedule for backups. Frequency is key for a quality backup schedule. Creating data backups only once or twice a year increases the risk of losing data in the intervening months between backups. The exact frequency will depend on individual circumstances to a certain extent, specifically the frequency with which new data is being created.

For individuals, weekly backups are recommended for devices like personal computers. Businesses and organizations have significantly more data to manage than individuals do. This means that more data has to be included in each backup, new data is created faster, and data storage is more expensive.

After deciding on the timing of the backups, consider what the best way to execute them is. For more frequent backups, automation may be a good idea. Automated backups dodge the risk of anyone forgetting to initiate the backup and make it easier to manage large backups.

2. Vary Backup Locations and Media

One of the most common data backup and recovery tips is the 3-2-1 rule. This data backup strategy suggests keeping three backups of important files with two copies backed up in two distinct storage types and one copy backed up off-site.

The idea behind the 3-2-1 approach is to build resilience through redundancy and variation. Even if a hacker is able to access an on-site hard drive of sensitive data, they won’t be able to damage the isolated off-site copy of that data.

The 3-2-1 rule is simply a starting point for data storage methods. Individuals and organizations should carefully consider what backup and recovery media best suits their specific needs. The cloud might be ideal for one business’s data storage, while independent drives might be better for another. The key is to have some measure of variation in the types of backup media and where they are stored. You could use an offsite server, the cloud, or any other combination of backup storage options. Keeping at least one copy in a unique location is wise, though. In the event of a natural disaster, for example, this could be critical to recovering data lost on-site.

3. Plan for Extensive Data Storage

This next tip is especially important for organizations or individuals backing up large amounts of data. From the start, it is a good idea to plan for extensive storage needs. The cost of data storage may seem intimidating, but it is often better to face it up front and consider how much data storage will be needed in the long term.

You might start out using only a partition of cloud storage and a smaller backup server. Have a plan in mind for how you will expand your storage space as time goes on. Different niches and industries have different data storage needs. For example, organizations in the ad tech industry will need bulk data storage for app tracking data and media. This data can pile up rapidly, so a bulk storage plan is critical for a data backup and recovery strategy.

4. Regularly Test Backup and Recovery Measures

A crucial component of any data backup and recovery strategy is a schedule for testing the strategy. In the event that a recovery is needed, it will be extremely helpful for key team members to know how to proceed. Knowing that the recovery tactics in place have been tested recently offers some peace of mind, as well.

There are countless ways to test data backup and recovery strategies. Simulations are a popular method. For example, a data scientist could use an AI or white-hat hacker to conduct a simulated cyberattack on the data then run a recovery of that data afterward. Before running a test simulation, it is a good idea to backup data and ensure that no data is genuinely at risk of being lost, just in case the recovery strategy has unforeseen weaknesses.

5. Budget for Security

One of the main goals of creating a data backup and recovery plan is protecting data from cyberattacks. So, it is important to make sure that the backup and recovery methods being used are secure. There are layers to this security, as well. For example, an organization might choose to back up some of its data in the cloud. Their first line of defense is the security of their cloud storage provider. The next line of defense then might be encryption on the organization’s files or documents stored with that cloud provider.

Security measures vary from case to case. A general rule of thumb, however, is to invest in the best security possible. Take the time to research the defenses of data storage providers before choosing one to partner with. Make sure on-site cybersecurity is resilient and up-to-date. Encrypt anything particularly sensitive, just in case. Cybersecurity is an investment, but budgeting for it may be the difference between recovering data and losing it.

Resilient Data Backup and Recovery

These best practices for performing a successful data backup and recovery will help get you started. The next step is to conduct thorough research on your personal or organizational data protection needs. The goal is to find a balance between budget and performance, where you are getting the most secure data storage possible at the best value.

Data Security for Data Scientists & Co. – Infographic

Data becomes information and information becomes knowledge. For this reason, companies are nowadays also evaluated with regard to their data and their data quality. Furthermore, data is also the material that is needed for management decisions and artificial intelligence. For this reason, IT Security is very important and special consulting and auditing companies offer their own services specifically for the security of IT systems.

However, every Data Scientist, Data Analyst and Data Engineer rarely only works with open data, but rather intensively with customer data. Therefore, every expert for the storage and analysis of data should at least have a basic knowledge of Data Security and work according to certain principles in order to guarantee the security of the data and the legality of the data processing.

There are a number of rules and principles for data security that must be observed. Some of them – in our opinion the most important ones – we from DATANOMIQ have summarized in an infographic for Data Scientists, Data Analysts and Data Engineers. You can download the infographic here: DataSecurity_Infographic

Data Security for Data Scientists, Data Analysts and Data Engineers

Data Security for Data Scientists, Data Analysts and Data Engineers

Download Infographic as PDF

Infographic - Data Security for Data Scientists, Data Analysts and Data Engineers

Infographic – Data Security for Data Scientists, Data Analysts and Data Engineers

5 Data Privacy Predictions for 2021

2020 has been a significant year for data management. As businesses face new technological challenges amid the COVID-19 pandemic, issues of privacy have spent some time in the spotlight. In response, data privacy could see some substantial changes in 2021.

Few people will emerge from 2020 with an unchanged perception of data security. As these ideas and feelings shift, some trends will accelerate while others get replaced. Businesses will have to adapt to these changes to survive.

Here are five such changes you can expect in 2021.

International Data Privacy Standards Will Increase

Privacy concerns over Chinese-owned app TikTok caused quite a stir in 2020. With the TikTok situation bringing new attention to privacy in international services, you’ll likely see a rise in international regulations. China has already announced new security standards and asked other countries to follow.

2020 has cast doubt over a lot of international relations. More countries will likely issue new standards to ease tension and move past these doubts. This trend started before 2020, as you can see in Europe’s GDPR, but 2021 will further it.

Customers Will Demand Transparency

Governments aren’t the only ones that will expect more of tech companies’ privacy standards. Since things like TikTok have made people more aware of what apps could access, more people will demand privacy. In 2021, companies that are transparent about how they use data will likely be more successful.

According to a PwC poll, 84% of consumers said they would switch services if they don’t trust how a company uses their data. Data privacy isn’t just important to authorities or businesses anymore. The public is growing more concerned about their data, and their choices will reflect it.

Security Will Become More Automated

In response to these growing expectations, businesses will have to do more to secure people’s data. Cybersecurity companies are facing a considerable talent shortage thanks to pandemic-related complications, though. The data security world will turn to automation to fix both of these problems.

With so many businesses changing the way they operate, cybersecurity will have to become more flexible too. Automating some processes through AI will allow companies to achieve that flexibility. Security AI is still relatively new, but as it develops, it could take off in 2021.

Security Data Analytics Will Become the Norm

Big data analytics have already become standard practice in many business applications. In 2021, more companies will start using them to improve their data privacy measures, too. With major companies like Nintendo and Marriott experiencing significant data breaches this year, more will turn to analytics to find any potential shortcomings.

No one wants to be the next data breach news story, especially with more people paying attention to these issues now. Data analytics can highlight operational improvements, showing companies how to better their data security measures. With data privacy in the spotlight in 2021, taking these steps is crucial.

Third-Party Risk Assessments Will Be More Crucial

As people demand better privacy protection, businesses will have to consider their third-party partners. Consumers will be more critical of companies giving third parties access to their data. As a result, companies will have to perform more risk assessments on any third party.

Third-party data breaches affected companies like General Electric and T-Mobile in 2020, exposing thousands of records. Customers will expect businesses to hold their partners to higher standards to avoid these risks.

2021 Could Be a Landmark Year for Data Privacy

Data privacy is more prominent than ever before, mostly due to a few notable scandals. Now that the general public is more aware of these issues, businesses will have to meet higher standards for data privacy. Implementing data security processes may cause some disruption and confusion at first, but it will ultimately lead to a safer digital landscape.

All of these changes could make 2021 a turning point for data security. With higher expectations from consumers and authorities, data management will become more secure.

Data Science Security Hacks

It would blow your mind if you had exposure to all the information available on the internet. The science behind it is very demanding. It could explain why there is such an explosion of intelligent systems. People come in with different skill sets, including math, data analysis, statistics, and programming, to name a few.

They all use very orthodox methods in their approach to data science. But, we have people with hacker mindsets who think out of the box. You will find them using security hacks to circumvent the scientific approach to data science. Our article will explore some of the methods they use, and why you may need an SSL certificate.

Understanding Data Science

Data science is the use of different tools, machine learning principles and algorithms to shift through raw data to discover any hidden patterns. The scientist will use the information to make predictions and decisions through the use of prescriptive analytics, machine learning, and predictive analytics. They collect data from multiple sources and organize it before translating it into results.

The scientists come to their conclusions by looking at a problem from all viewpoints and asking the right questions. Many companies are using these services to make sound business decisions. You will find the use of data science in areas such as risk and fraud detection, healthcare, advertising, and even gaming.

Data Science Security Hacks

  • Data Protection 

Data is everything to a data scientist. However, they are always at threat of losing it due to a rise in cybersecurity threats. Online hackers are getting more daring and sophisticated and are continually coming up with new ways to access people’s information. It is, therefore, critical to protecting one’s privacy and security while on the internet.

Phishing attacks and malware are genuine threats to the digital space. SSL certificates provide data security because it protects the user from unwanted third party tampering. You can find many types of SSL certificates like single domain, Code Signing certificate, multi-domain SSL, etc.

  • Having the Mindset of a Hacker

A typical scientific mindset is to build models, train, plot graphs, and analyze the different attributes to come up with a solution. The mindset of a hacker is very different from that of a scientist. They focus more on finding Solutions using simple methods.

While the data scientists use so many various components to a problem, the hacker works at eliminating complexity to come up with a solution. The hacker mindset is, therefore, freer, because the confines of the scientific mind do not bound them.

  • Data Cleaning Techniques

There are tons of raw data that data scientists have to work with. Once they collect it, it has to go through the process of cleaning. It is a very complex process because scientists will be working with unstructured data. It is, however, a critical component of data science because scientists will have to extract what they need.

They are then able to process the data and structure it into usable data that will yield the required outcome. One of the ways of achieving the best results might be to use the most straightforward models available. The sophisticated tools do not always give the desired results. Even if they do, they may make the process more tedious and time-consuming than necessary.

  • The Learning Never Ends

In the field of data science, look at it more like a journey, and not a process to get to a destination. They must, therefore, always learn because the domain is vast, and there is new information coming in every day. It is in the process of learning that they can come up with more intelligent models for use within the field. They keep abreast of the latest innovations and technologies, which they can use in their daily problem-solving processes.

The online platform has so much information for anyone interested in developing their skill sets. You do not need to go to a classroom to stay up-to-date with what is happening. You can get information online. The data scientists also share their knowledge in different forums or platforms, thereby providing invaluable resources to fellow practitioners.

  • Knowledge of Domains

One of the critical steps data scientists take is to understand precisely what it is they are working with. If, for example, they are working in the agricultural field, they have to follow the industry to understand any data they collect. It would be unreasonable to expect the scientist to give useful insights and analysis without understanding the industry.

Domain knowledge is, therefore, a critical element of data science. With proper understanding, we can expect a better output from the scientists. Those in the industry can then apply the findings within their relevant areas for better productivity.

  • Cheat Sheets Hacks

Data Science is not a simple field, and you get to learn so much every day. Unless you have one of those super memories, it will be hard to remember everything. That is why data scientists have cheat sheets. There are many such cheat sheets online for anyone who needs one.

Final Thoughts

Data science continues to gain relevance in different fields, and it will continue to grow due to the demand from various industries. It is already very critical in areas such as health care, fraud detection, and agriculture, to name a few. The most vital data security hack for a data scientist is the Installation of an SSL certificate. It will protect from hackers while on the internet. It would be a pity to lose all the data to cybercriminals because of a hack that is simple to install and inexpensive.

Show your Data Science Workplace!

The job of a data scientist is often a mystery to outsiders. Of course, you do not really need much more than a medium-sized notebook to use data science methods for finding value in data. Nevertheless, data science workplaces can look so different and, let’s say, interesting. And that’s why I want to launch a blog parade – which I want to start with this article – where you as a Data Scientist or Data Engineer can show your workplace and explain what tools a data scientist in your opinion really needs.

I am very curious how many monitors you prefer, whether you use Apple, Dell, HP or Lenovo, MacOS, Linux or Windows, etc., etc. And of course, do you like a clean or messy desk?

What is a Blog Parade?

A blog parade is a call to blog owners to report on a specific topic. Everyone who participates in the blog parade, write on their blog a contribution to the topic. The organizer of the blog parade collects all the articles and will recap those articles in a short form together, of course with links to the articles.

How can I participate?

Write an article on your blog! Mention this blog parade here, show and explain your workplace (your desk with your technical equipment) in an article. If you’re missing your own blog, articles can also be posted directly to LinkedIn (LinkedIn has its own blogging feature that every LinkedIn member can use). Alternative – as a last resort – it would also be possible to send me your article with a photo about your workplace directly to: redaktion@data-science-blog.com.
Please make me aware of an article, via e-mail or with a comment (below) on this article.

Who can participate?

Any data scientist or anyone close to Data Science: Everyone concerned with topics such as data analytics, data engineering or data security. Please do not over-define data science here, but keep it in a nutshell, so that all professionals who manage and analyze data can join in with a clear conscience.

And yes, I will participate too. I will propably be the first who write an article about my workplace (I just need a new photo of my desk).

When does the article have to be finished?

By 31/12/2017, the article must have been published on your blog (or LinkedIn or wherever) and the release has to be reported to me.
But beware: Anyone who has previously written an article will also be linked earlier. After all, reporting on your article will take place immediately after I hear about it.
If you publish an artcile tomorrow, it will be shown the day after tomorrow here on the Data Science Blog.

What is in it for me to join?

Nothing! Except perhaps the fun factor of sharing your idea of ​​a nice desk for a data expert with others, so as to share creativity or a certain belief in what a data scientist needs.
Well and for bloggers: There is a great backlink from this data science blog for you 🙂

What should I write? What are the minimum requirements of content?

The article does not have to (but may be) particularly long. Anyway, here on this data science blog only a shortened version of your article will appear (with a link, of course).

Minimum requirments:

  • Show a photo (at least one!) of your workplace desk!
  • And tell us something about:
    • How many monitors do you use (or wish to have)?
    • What hardware do you use? Apple? Dell? Lenovo? Others?
    • Which OS do you use (or prefer)? MacOS, Linux, Windows? Virtual Machines?
    • What are your favorite databases, programming languages and tools? (e.g. Python, R, SAS, Postgre, Neo4J,…)
    • Which data dou you analyze on your local hardware? Which in server clusters or clouds?
    • If you use clouds, do you prefer Azure, AWS, Google oder others?
    • Where do you make your notes/memos/sketches. On paper or digital?

Not allowed:
Of course, please do not provide any information, which could endanger your company`s IT security.

Absolutly allowed:
Bringing some joke into the matter 🙂 We are happy to vote in the comments on the best or funniest desk for election, there may be also a winner later!


The resulting Blog Posts: https://data-science-blog.com/data-science-insights/show-your-desk/


 

Establish a Collaborative Culture – Process Mining Rule 4 of 4

This is article no. 4 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4

Perhaps the most important ingredient in creating a responsible process mining environment is to establish a collaborative culture within your organization. Process mining can make the flaws in your processes very transparent, much more transparent than some people may be comfortable with. Therefore, you should include change management professionals, for example, Lean practitioners who know how to encourage people to tell each other “the truth”, in your team.

Furthermore, be careful how you communicate the goals of your process mining project and involve relevant stakeholders in a way that ensures their perspective is heard. The goal is to create an atmosphere, where people are not blamed for their mistakes (which only leads to them hiding what they do and working against you) but where everyone is on board with the goals of the project and where the analysis and process improvement is a joint effort.

Do:

  • Make sure that you verify the data quality before going into the data analysis, ideally by involving a domain expert already in the data validation step. This way, you can build trust among the process managers that the data reflects what is actually happening and ensure that you have the right understanding of what the data represents.
  • Work in an iterative way and present your findings as a starting point for discussion in each iteration. Give people the chance to explain why certain things are happening and let them ask additional questions (to be picked up in the next iteration). This will help to improve the quality and relevance of your analysis as well as increase the buy-in of the process stakeholders in the final results of the project.

Don’t:

  • Jump to conclusions. You can never assume that you know everything about the process. For example, slower teams may be handling the difficult cases, people may deviate from the process for good reasons, and you may not see everything in the data (for example, there might be steps that are performed outside of the system). By consistently using your observations as a starting point for discussion, and by allowing people to join in the interpretation, you can start building trust and the collaborative culture that process mining needs to thrive.
  • Force any conclusions that you expect, or would like to have, by misrepresenting the data (or by stating things that are not actually supported by the data). Instead, keep track of the steps that you have taken in the data preparation and in your process mining analysis. If there are any doubts about the validity or questions about the basis of your analysis, you can always go back and show, for example, which filters have been applied to the data to come to the particular process view that you are presenting.

Consider Anonymization – Process Mining Rule 3 of 4

This is article no. 3 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 3 von 4

If you have sensitive information in your data set, instead of removing it you can also consider the use of anonymization. When you anonymize a set of values, then the actual values (for example, the employee names “Mary Jones”, “Fred Smith”, etc.) will be replaced by another value (for example, “Resource 1”, “Resource 2”, etc.).

If the same original value appears multiple times in the data set, then it will be replaced with the same replacement value (“Mary Jones” will always be replaced by “Resource 1”). This way, anonymization allows you to obfuscate the original data but it preserves the patterns in the data set for your analysis. For example, you will still be able to analyze the workload distribution across all employees without seeing the actual names.

Some process mining tools (Disco and ProM) include anonymization functionality. This means that you can import your data into the process mining tool and select which data fields should be anonymized. For example, you can choose to anonymize just the Case IDs, the resource name, attribute values, or the timestamps. Then you export the anonymized data set and you can distribute it among your team for further analysis.

Do:

  • Determine which data fields are sensitive and need to be anonymized (see also the list of common process mining attributes and how they are impacted if anonymized).
  • Keep in mind that despite the anonymization certain information may still be identifiable. For example, there may be just one patient having a very rare disease, or the birthday information of your customer combined with their place of birth may narrow down the set of possible people so much that the data is not anonymous anymore.

Don’t:

  • Anonymize the data before you have cleaned your data, because after the anonymization the data cleaning may not be possible anymore. For example, imagine that slightly different customer category names are used in different regions but they actually mean the same. You would like to merge these different names in a data cleaning step. However, after you have anonymized the names as “Category 1”, “Category 2”, etc. the data cleaning cannot be done anymore.
  • Anonymize fields that do not need to be anonymized. While anonymization can help to preserve patterns in your data, you can easily lose relevant information. For example, if you anonymize the Case ID in your incident management process, then you cannot look up the ticket number of the incident in the service desk system anymore. By establishing a collaborative culture around your process mining initiative (see guideline No. 4) and by working in a responsible, goal-oriented way, you can often work openly with the original data that you have within your team.