Monitoring of Jobskills with Data Engineering & AI

On own account, we from DATANOMIQ have created a web application that monitors data about job postings related to Data & AI from multiple sources (Indeed.com, Google Jobs, Stepstone.de and more).

The data is obtained from the Internet via APIs and web scraping, and the job titles and the skills listed in them are identified and extracted from them using Natural Language Processing (NLP) or more specific from Named-Entity Recognition (NER).

The skill clusters are formed via the discipline of Topic Modelling, a method from unsupervised machine learning, which show the differences in the distribution of requirements between them.

The whole web app is hosted and deployed on the Microsoft Azure Cloud via CI/CD and Infrastructure as Code (IaC).

The presentation is currently limited to the current situation on the labor market. However, we collect these over time and will make trends secure, for example how the demand for Python, SQL or specific tools such as dbt or Power BI changes.

Why we did it? It is a nice show-case many people are interested in. Over the time, it will provides you the answer on your questions related to which tool to learn! For DATANOMIQ this is a show-case of the coming Data as a Service (DaaS) Business.

Jobprofil des Data Engineers

Warum Data Engineering der Data Science in Bedeutung und Berufschancen längst die Show stiehlt, dabei selbst ebenso einem stetigen Wandel unterliegt.

Was ein Data Engineer wirklich können muss

Der Data Scientist als sexiest Job des 21. Jahrhunderts? Mag sein, denn der Job hat seinen ganz speziellen Reiz, auch auf Grund seiner Schnittstellenfunktion zwischen Technik und Fachexpertise. Doch das Spotlight der kommenden Jahre gehört längst einem anderen Berufsbild aus der Datenwertschöpfungskette – das zeigt sich auch bei den Gehältern.

Viele Unternehmen sind gerade auf dem Weg zum Data-Driven Business, einer Unternehmensführung, die für ihre Entscheidungen auf transparente Datengrundlagen setzt und unter Einsatz von Business Intelligence, Data Science sowie der Automatisierung mit Deep Learning und RPA operative Prozesse so weit wie möglich automatisiert. Die Lösung für diese Aufgabenstellungen werden oft vor allem bei den Experten für Prozessautomatisierung und Data Science gesucht, dabei hängt der Erfolg jedoch gerade viel eher von der Beschaffung valider Datengrundlagen ab, und damit von einer ganz anderen entscheidenden Position im Workflow datengetriebener Entscheidungsprozesse, dem Data Engineer.

Data Engineer, der gefragteste Job des 21sten Jahrhunderts?

Der Job des Data Scientists hingegen ist nach wie vor unter Studenten und Absolventen der MINT-Fächer gerade so gefragt wie nie, das beweist der tägliche Ansturm der vielen Absolventen aus Studiengängen rund um die Data Science auf derartige Stellenausschreibungen. Auch mangelt es gerade gar nicht mehr so sehr an internationalen Bewerben mit Schwerpunkt auf Statistik und Machine Learning. Der solide ausgebildete und bestenfalls noch deutschsprachige Data Scientist findet sich zwar nach wie vor kaum im Angebot, doch insgesamt gute Kandidaten sind nicht mehr allzu schwer zu finden. Seit Jahren sind viele Qualifizierungsangebote für Studenten sowie Arbeitskräfte am Markt auch günstig und ganz flexibel online verfügbar, ohne dabei Abstriche bei beim Ansehen dieser Aus- und Fortbildungsmaßnahmen in Kauf nehmen zu müssen.

Was ein Data Scientist fachlich in Sachen Expertise alles abdecken muss, hatten wir ganz ausführlich über Betrachtung des Data Science Knowledge Stack besprochen.

Doch was bringt ein Data Scientist, wenn dieser gar nicht über die Daten verfügt, die für seine Aufgaben benötigt werden? Sicherlich ist die Aufgabe eines jeden Data Scientists auch die Vorbereitung und Präsentation seiner Vorhaben. Die Heranschaffung und Verwaltung großer Datenmengen in einer Enterprise-fähigen Architektur ist jedoch grundsätzlich nicht sein Schwerpunkt und oft fehlen ihm dafür auch die Berechtigungen in einer Enterprise-IT. Noch konkreter wird der Bedarf an Datenbeschaffung und -aufbereitung in der Business Intelligence, denn diese benötigt für nachhaltiges Reporting feste Strukturen wie etwa ein Data Warehouse.

Das Profil des Data Engineers: Big Data High-Tech

Auch wenn Data Engineering von Hochschulen und Fortbildungsanbietern gerade noch etwas stiefmütterlich behandelt werden, werden der Einsatz und das daraus resultierende Anforderungsprofil eines Data Engineers am Markt recht eindeutig skizziert. Einsatzszenarien für diese Dateningenieure – auch auf Deutsch eine annehmbare Benennung – sind im Kern die Erstellung von Data Warehouse und Data Lake Systeme, mittlerweile vor allem auf Cloud-Plattformen. Sie entwickeln diese für das Anzapfen von unternehmensinternen sowie -externen Datenquellen und bereiten die gewonnenen Datenmengen strukturell und inhaltlich so auf, dass diese von anderen Mitarbeitern des Unternehmens zweckmäßig genutzt werden können.

Enabler für Business Intelligence, Process Mining und Data Science

Kein Data Engineer darf den eigentlichen Verbraucher der Daten aus den Augen verlieren, für den die Daten nach allen Regeln der Kunst zusammengeführt, bereinigt und in das Zielformat gebracht werden sollen. Klassischerweise arbeiten die Engineers am Data Warehousing für Business Intelligence oder Process Mining, wofür immer mehr Event Logs benötigt werden. Ein Data Warehouse ist der unter Wasser liegende, viel größere Teil des Eisbergs der Business Intelligence (BI), der die Reports mit qualifizierten Daten versorgt. Diese Eisberg-Analogie lässt sich auch insgesamt auf das Data Engineering übertragen, der für die Endanwender am oberen Ende der Daten-Nahrungskette meistens kaum sichtbar ist, denn diese sehen nur die fertigen Analysen und nicht die dafür vorbereiteten Datentöpfe.

Abbildung 1 - Data Engineering ist der Mittelpunkt einer jeden Datenplattform. Egal ob für Data Science, BI, Process Mining oder sogar RPA, die Datenanlieferung bedingt gute Dateningenieure, die bis hin zur Cloud Infrastructure abtauchen können.

Abbildung 1 – Data Engineering ist der Mittelpunkt einer jeden Datenplattform. Egal ob für Data Science, BI, Process Mining oder sogar RPA, die Datenanlieferung bedingt gute Dateningenieure, die bis hin zur Cloud Infrastructure abtauchen können.

Datenbanken sind Quelle und Ziel der Data Engineers

Daten liegen selten direkt in einer einzigen CSV-Datei strukturiert vor, sondern entstammen einer oder mehreren Datenbanken, die ihren eigenen Regeln unterliegen. Geschäftsdaten, beispielsweise aus ERP- oder CRM-Systemen, liegen in relationalen Datenbanken vor, oftmals von Microsoft, Oracle, SAP oder als eine Open-Source-Alternative. Besonders im Trend liegen derzeitig die Cloud-nativen Datenbanken BigQuery von Google, Redshift von Amazon und Synapse von Microsoft sowie die cloud-unabhängige Datenbank snowflake. Dazu gesellen sich Datenbanken wie der PostgreSQL, Maria DB oder Microsoft SQL Server sowie CosmosDB oder einfachere Cloud-Speicher wie der Microsoft Blobstorage, Amazon S3 oder Google Cloud Storage. Welche Datenbank auch immer die passende Wahl für das Unternehmen sein mag, ohne SQL und Verständnis für normalisierte Daten läuft im Data Engineering nichts.

Andere Arten von Datenbanken, sogenannte NoSQL-Datenbanken beruhen auf Dateiformaten, einer Spalten- oder einer Graphenorientiertheit. Beispiele für verbreitete NoSQL-Datenbanken sind MongoDB, CouchDB, Cassandra oder Neo4J. Diese Datenbanken exisiteren nicht nur als Unterhaltungswert gelangweilter Nerds, sondern haben ganz konkrete Einsatzgebiete, in denen sie jeweils die beste Performance im Lesen oder Schreiben der Daten bieten.

Ein Data Engineer muss demnach mit unterschiedlichen Datenbanksystemen zurechtkommen, die teilweise auf unterschiedlichen Cloud Plattformen heimisch sind.

Data Engineers brauchen Hacker-Qualitäten

Liegen Daten in einer Datenbank vor, können Analysten mit Zugriff einfache Analysen bereits direkt auf der Datenbank ausführen. Doch wie bekommen wir die Daten in unsere speziellen Analyse-Tools? Hier muss der Engineer seinen Dienst leisten und die Daten aus der Datenbank exportieren können. Bei direkten Datenanbindungen kommen APIs, also Schnittstellen wie REST, ODBC oder JDBC ins Spiel und ein guter Data Engineer benötigt Programmierkenntnisse, bevorzugt in Python, diese APIs ansprechen zu können. Etwas Kenntnis über Socket-Verbindungen und Client-Server-Architekturen zahlt sich dabei manchmal aus. Ferner sollte jeder Data Engineer mit synchronen und asynchronen Verschlüsselungsverfahren vertraut sein, denn in der Regel wird mit vertraulichen Daten gearbeitet. Ein Mindeststandard an Sicherheit gehört zum Data Engineering und darf keinesfalls nur Datensicherheitsexperten überlassen werden, eine Affinität zu Netzwerksicherheit oder gar Penetration-Testing ist positiv zu bewerten, mindestens aber ein sauberes Berechtigungsmanagement gehört zu den Grundfähigkeiten. Viele Daten liegen nicht strukturiert in einer Datenbank vor, sondern sind sogenannte unstrukturierte oder semi-strukturierte Daten aus Dokumenten oder aus Internetquellen. Mit Methoden wie Data Web Scrapping und Data Crawling sowie der Automatisierung von Datenabrufen beweisen herausragende Data Engineers sogar echte Hacker-Qualitäten.

Dirigent der Daten: Orchestrierung von Datenflüssen

Eine der Kernaufgaben des Data Engineers ist die Entwicklung von ETL-Strecken, um Daten aus Quellen zu Extrahieren, zu in das gewünschte Zielformat zu Transformieren und schließlich in die Zieldatenbank zu Laden. Dies mag erstmal einfach klingen, wird jedoch zur echten Herausforderung, wenn viele ETL-Prozesse sich zu ganzen ETL-Ketten und -Netzwerken zusammenfügen, diese dabei trotz hochfrequentierter Datenabfrage performant laufen müssen. Die Orchestrierung der Datenflüsse kann in der Regel in mehrere Etappen unterschieden werden, von der Quelle ins Data Warehouse, zwischen den Ebenen im Data Warehouse sowie vom Data Warehouse in weiterführende Systeme, bis hin zum Zurückfließen verarbeiteter Daten in das Data Warehouse (Reverse ETL).

Hart an der Grenze zu DevOp: Automatisierung in Cloud-Architekturen

In den letzten Jahren sind Anforderungen an Data Engineers deutlich gestiegen, denn neben dem eigentlichen Verwalten von Datenbeständen und -strömen für Analysezwecke wird zunehmend erwartet, dass ein Data Engineer auch Ressourcen in der Cloud managen, mindestens jedoch die Datenbanken und ETL-Ressourcen. Darüber hinaus wird zunehmend jedoch verlangt, IT-Netzwerke zu verstehen und das ganze Zusammenspiel der Ressourcen auch als Infrastructure as Code zu automatisieren. Auch das automatisierte Deployment von Datenarchitekturen über CI/CD-Pipelines macht einen Data Engineer immer mehr zum DevOp.

Zukunfts- und Gehaltsaussichten

Im Vergleich zum Data Scientist, der besonders viel Methodenverständnis für Datenanalyse, Statistik und auch für das zu untersuchende Fachgebiet benötigt, sind Data Engineers mehr an Tools und Plattformen orientiert. Ein Data Scientist, der Deep Learning verstanden hat, kann sein Wissen zügig sowohl mit TensorFlow als auch mit PyTorch anwenden. Ein Data Engineer hingegen arbeitet intensiver mit den Tools, die sich über die Jahre viel zügiger weiterentwickeln. Ein Data Engineer für die Google Cloud wird mehr Einarbeitung benötigen, sollte er plötzlich auf AWS oder Azure arbeiten müssen.

Ein Data Engineer kann in Deutschland als Einsteiger mit guten Vorkenntnissen und erster Erfahrung mit einem Bruttojahresgehalt zwischen 45.000 und 55.000 EUR rechnen. Mehr als zwei Jahre konkrete Erfahrung im Data Engineering wird von Unternehmen gerne mit Gehältern zwischen 50.000 und 80.000 EUR revanchiert. Darüber liegen in der Regel nur die Data Architects / Datenarchitekten, die eher in großen Unternehmen zu finden sind und besonders viel Erfahrung voraussetzen. Weitere Aufstiegschancen für Data Engineers sind Berater-Karrieren oder Führungspositionen.

Wer einen Data Engineer in Festanstellung gebracht hat, darf sich jedoch nicht all zu sicher fühlen, denn Personalvermittler lauern diesen qualifizierten Fachkräften an jeder Ecke des Social Media auf. Gerade in den Metropolen wie Berlin schaffen es längst nicht alle Unternehmen, jeden Data Engineer über Jahre hinweg zu beschäftigen. Bei der großen Auswahl an Jobs und Herausforderungen fällt diesen Datenexperten nicht schwer, seine Gehaltssteigerungen durch Jobwechsel proaktiv voranzutreiben.

How To Perform High-Quality Data Science Job Assessments in 4 Steps

In 2009, Google Chief Economist Hal Varian said to the McKinsey Quarterly that “the sexy job in the next 10 years will be statisticians.”

At the time, it was hard to believe. But more than a decade later, we can’t get around the importance of data. Where once oil ruled the world, data is now catching up—quickly. That calls for more and better data scientists. In this article, we’ll explain to you how to find them.

Source: https://www.pexels.com/

Why is it so hard to find good data scientists?

The demand for data scientist roles has increased by 650 percent since 2012, and that number will continue to grow as the amount of data—and power it holds—grows steadily, too.

But unsurprisingly, there hasn’t been an increase of 650 percent in available data scientists on the job market. Even though the job is a lot sexier—and better paid—than ten years ago, many employers are still struggling to fill their empty seats with talented data scientists.

McKinsey predicted that there would be a shortage of between 140,000 and 190,000 people with analytical skills in the U.S. alone in 2018, and even in 2022 good data scientists, data analysts, forecasting analysts, modelling analysts, machine learning scientists, are hard to find.

Add to that another 1.5 million managers who will also need to at least understand how data analysis drives decision-making, and you can see how employers can be in a bit of a pickle.

Why thoroughly screening data scientists is still crucial

Even though demand is growing much faster than the number of data scientists, companies can’t simply settle for the first data lover who’s available from Monday to Friday.

It’s no longer the company with the most data that wins the game. The ones who are taking the lead are the ones that are able to get the most out of data. They can pull valuable information that helps with decision-making and innovation out of even the smallest pieces of data—and they’re right, over and over again.

This is why it’s vital to check if applicants have the skills you need to derive valuable input out of data. You’ll be basing a lot of business decisions on what these data scientists tell you, so best make sure they’re right.

But what makes someone a great data scientist? Some people turn their life around and go from being a maths teacher to following a 12-week data science boot camp or online data science course and quickly get the hang of it—others are top of their class, but aren’t confident enough data scientists to inform your business on its next big move.

The truth is that the skills a valuable data scientist has, will have to develop over the years. It’s not just the data literacy, hard skills and the brain for maths—they’ll also need to be able to present and communicate their findings the right way.

Finding the right data scientists using a data science job assessment

So, you’ll want to choose your data scientists carefully, but how do you do that? Resumes and portfolios might seem impressive, but how do you actually find out if someone has the skills you’re looking for—especially if you don’t have anyone on board yet that knows what to ask?

The easiest and most effective thing to do, is to screen candidates early in the process, using a data science test that’s been created by a real-life expert.

This will ensure that relevant questions are being asked, and you get a clear idea of who’s worth going through the hiring process with—and who isn’t.

In this article, we’ll walk you through four steps that will help you set up a data science job assessment that is of real value to your hiring managers. Let’s get started.


Source: https://www.pexels.com/

Step 1: Choose the right platform

You could, of course, draw up an online survey and create a test in there to send out to all applicants, but these might be hard to ‘grade’—although you’ll develop a tremendous respect for teachers along the way.

In many cases, it’s better to choose a dedicated platform that has tests available, and will help you swift through the results effortlessly.

Before you start looking for platforms, make a list of absolute needs that you won’t compromise on. Ask yourself at least the following questions:

  • What types of tests are you looking for? Only hard skills, or also soft skills? If you need both, look for a platform that offers both—mixing and matching can be time-consuming.
  • Will there be tests readily available, or are you looking for a platform that allows you to create your own tests?
  • Does the platform have experience with companies like yours?
  • How are the tests presented to candidates, and how do you want the test results presented to your hiring managers?
  • And last but not least: what are you willing to spend on a job assessment platform? Do they charge per candidate, a flat fee, or would you prefer an annual subscription?

Once you’ve chosen a platform that is right for you, the fun can begin.

Step 2: Start with a hard skills assessment

For roles like data scientists, you’ll be initially focusing on whether they possess the right hard skills. Depending on the specific role, you can test core data science topics such as:

Statistics

You’re expecting your future data scientist to be fluent in statistics. Depending on the level you’re hiring at, you might want to throw in a few questions that quickly test how fast someone can see through the woods in a mess of statistics, and if they can interpret them the right way.

Machine learning

For some more senior roles, machine learning is becoming increasingly important in the world of data science. If this is the case for the role you’re hiring for, test to see if someone knows how to use data to feed it to machine learning and build awesome products.

Neural networks

A big part of data science is knowing how to work with neural networks. Neural networks are a way to solve problems through trial and error, based on human and animal brains. It’s incredibly helpful if your data scientist’s brain can use them.

Deep learning

Deep learning is a subfield of machine learning that can be necessary in specific data science roles. It works more closely to the way the human brain makes decisions, so this will require a specific set of test questions.

Collecting data

All that data has to come from somewhere, right? Your data scientists should not only be able to read and process data, but also know where and how to get the most valuable input. For this, include some questions about data extraction, data transformation, and data loading. This can also include tests on Excel and querying languages like SQL.

Storing data

Databases should look nothing like the average teenage bedroom. Meaning that they should be nice and tidy, making it easier to extract valuable information from them. Since data isn’t just numbers, but can be anything from video to reviews, it’s crucial that you hire a data scientist who knows how to store this correctly.

Analyzing and modeling data

Data wrangling, data exploration, analysis, and modeling need in-depth understanding of math and programming, but luckily, even data scientists get some help.

Data scientists use analytical tools like Apache Spark, D3.js Python, and many, many more to analyze all that data. If you’re using a specific one in your company and want your data scientists to be able to hit the ground running, quickly test if they’re actually able to use the tools they list on their resume.

Visualizing and presenting data

At the end of the day, data scientists will have to be able to communicate their findings to other departments with people who are less data-savvy. For this, they often use tools that help them visualize data to explain it in a more easy-to-grasp way.

Test if your next data scientist is able to do that with a quick check on their skills in tools like Tableau, PowerBI, Plotly, Bokeh, or whichever one you use.

Step 3: Continue with a soft skill assessment

Your friendly neighborhood data scientist should not only be a math genius, they should possess the right soft skills too. If they’re impossible to work with, you won’t reap the benefits of their skill set. Productivity will suffer, and team morale might also take a hit. Here are some soft skills to test your candidates on:

  • Business-oriented: ultimately, your data scientist will be fueling your decision-making process. This means they’ll have to have a good head for business, on top of simply understanding the numbers.
  • Communication skills: sure, everyone in your company preferably has some of these, but since data scientists play such an important role in decision-making, you’ll want them to be able to express themselves well—and listen to what you’re asking from them.
  • Teamwork: your data scientists shouldn’t be on a little island somewhere in the company. The more they integrate with other departments, the easier it is for them to determine what your business needs from them.
  • Critical thinking skills: this one’s pretty self-explanatory, but the more critical your data scientist, the more reassurance you’ll have that data is correctly interpreted.
  • Creativity: data is less dry than it seems. From data storage to finding connections and problem-solving: it all requires some form of creative thinking.


Source: https://www.pexels.com/

Step 4: Follow up on the test results

If you want to make the most of your data science job assessment, it shouldn’t just be a test to see who goes through to the next round. For the candidates that ‘pass’, you can customize the questions in their follow-up interview based on the strengths and weaknesses they showed in their test.

Because the test they took says a lot, but at the same time—it’s just a snapshot. Did they score remarkably high on certain skills? Ask them how they got to be so experienced in that, and what projects contributed most to that.

Did you notice that they struggled with questions about X? Ask how they are planning to improve on that and how they make sure this doesn’t impact the quality of their work for the time being—are they calling in help from a peer, or do they simply take more time to figure things out?

These types of follow-up questions steer a job interview in a much more real-life direction: it’s not a generic set of questions that any company could ask any employee, but a real conversation between you and the candidate, in which you can evaluate if they fit in the future of the company—and if your company fits in theirs.

Ready to start the hiring process?

With these tips, we’re sure you’ll get some extra reassurance that your next hire will be a great fit—not just based on their previous experience and a couple of interviews. If you want, you can keep reading about data science jobs—or simply start hiring. Good luck!

How To Perform High-Quality Data Science Job Assessments in 4 Steps

In 2009, Google Chief Economist Hal Varian said to the McKinsey Quarterly that “the sexy job in the next 10 years will be statisticians.” At the time, it was hard to believe. But more than a decade later, we can’t get around the importance of data. Where once oil ruled the world, data is now catching up—quickly. That calls for more and better data scientists. In this article, we’ll explain to you how to find them.

Why is it so hard to find good data scientists?

The demand for data scientist roles has increased by 650 percent since 2012, and that number will continue to grow as the amount of data—and power it holds—grows steadily, too.

But unsurprisingly, there hasn’t been an increase of 650 percent in available data scientists on the job market. Even though the job is a lot sexier—and better paid—than ten years ago, many employers are still struggling to fill their empty seats with talented data scientists.  McKinsey predicted that there would be a shortage of between 140,000 and 190,000 people with analytical skills in the U.S. alone in 2018, and even in 2022 good data scientists, data analysts, forecasting analysts, modelling analysts, machine learning scientists, are hard to find.  Add to that another 1.5 million managers who will also need to at least understand how data analysis drives decision-making, and you can see how employers can be in a bit of a pickle.

Why thoroughly screening data scientists is still crucial

Even though demand is growing much faster than the number of data scientists, companies can’t simply settle for the first data lover who’s available from Monday to Friday. It’s no longer the company with the most data that wins the game. The ones who are taking the lead are the ones that are able to get the most out of data. They can pull valuable information that helps with decision-making and innovation out of even the smallest pieces of data—and they’re right, over and over again. This is why it’s vital to check if applicants have the skills you need to derive valuable input out of data. You’ll be basing a lot of business decisions on what these data scientists tell you, so best make sure they’re right.

But what makes someone a great data scientist? Some people turn their life around and go from being a maths teacher to following a 12-week data science boot camp or online data science course and quickly get the hang of it—others are top of their class, but aren’t confident enough data scientists to inform your business on its next big move. The truth is that the skills a valuable data scientist has, will have to develop over the years. It’s not just the data literacy, hard skills and the brain for maths—they’ll also need to be able to present and communicate their findings the right way.

Finding the right data scientists using a data science job assessment

So, you’ll want to choose your data scientists carefully, but how do you do that? Resumes and portfolios might seem impressive, but how do you actually find out if someone has the skills you’re looking for—especially if you don’t have anyone on board yet that knows what to ask. The easiest and most effective thing to do, is to screen candidates early in the process, using a data science test that’s been created by a real-life expert. This will ensure that relevant questions are being asked, and you get a clear idea of who’s worth going through the hiring process with — and who isn’t. In this article, we’ll walk you through four steps that will help you set up a data science job assessment that is of real value to your hiring managers. Let’s get started.

Step 1: Choose the right platform

You could, of course, draw up an online survey and create a test in there to send out to all applicants, but these might be hard to ‘grade’—although you’ll develop a tremendous respect for teachers along the way. In many cases, it’s better to choose a dedicated platform that has tests available, and will help you swift through the results effortlessly.

Before you start looking for platforms, make a list of absolute needs that you won’t compromise on. Ask yourself at least the following questions:

  • What types of tests are you looking for? Only hard skills, or also soft skills? If you need both, look for a platform that offers both—mixing and matching can be time-consuming.
  • Will there be tests readily available, or are you looking for a platform that allows you to create your own tests?
  • Does the platform have experience with companies like yours?
  • How are the tests presented to candidates, and how do you want the test results presented to your hiring managers?
  • And last but not least: what are you willing to spend on a job assessment platform? Do they charge per candidate, a flat fee, or would you prefer an annual subscription?

Once you’ve chosen a platform that is right for you, the fun can begin.

Step 2: Start with a hard skills assessment

For roles like data scientists, you’ll be initially focusing on whether they possess the right hard skills. Depending on the specific role, you can test core data science topics such as:

Statistics

You’re expecting your future data scientist to be fluent in statistics. Depending on the level you’re hiring at, you might want to throw in a few questions that quickly test how fast someone can see through the woods in a mess of statistics, and if they can interpret them the right way.

Machine learning

For some more senior roles, machine learning is becoming increasingly important in the world of data science. If this is the case for the role you’re hiring for, test to see if someone knows how to use data to feed it to machine learning and build awesome products.

Neural networks

A big part of data science is knowing how to work with neural networks. Neural networks are a way to solve problems through trial and error, based on human and animal brains. It’s incredibly helpful if your data scientist’s brain can use them.

Deep learning

Deep learning is a subfield of machine learning that can be necessary in specific data science roles. It works more closely to the way the human brain makes decisions, so this will require a specific set of test questions.

Collecting data

All that data has to come from somewhere, right? Your data scientists should not only be able to read and process data, but also know where and how to get the most valuable input. For this, include some questions about data extraction, data transformation, and data loading. This can also include tests on Excel and querying languages like SQL.

Storing data

Databases should look nothing like the average teenage bedroom. Meaning that they should be nice and tidy, making it easier to extract valuable information from them. Since data isn’t just numbers, but can be anything from video to reviews, it’s crucial that you hire a data scientist who knows how to store this correctly.

Analyzing and modeling data

Data wrangling, data exploration, analysis, and modeling need in-depth understanding of math and programming, but luckily, even data scientists get some help.

Data scientists use analytical tools like Apache Spark, D3.js Python, and many, many more to analyze all that data. If you’re using a specific one in your company and want your data scientists to be able to hit the ground running, quickly test if they’re actually able to use the tools they list on their resume.

Visualizing and presenting data

At the end of the day, data scientists will have to be able to communicate their findings to other departments with people who are less data-savvy. For this, they often use tools that help them visualize data to explain it in a more easy-to-grasp way.

Test if your next data scientist is able to do that with a quick check on their skills in tools like Tableau, PowerBI, Plotly, Bokeh, or whichever one you use.

Step 3: Continue with a soft skill assessment

Your friendly neighborhood data scientist should not only be a math genius, they should possess the right soft skills too. If they’re impossible to work with, you won’t reap the benefits of their skill set. Productivity will suffer, and team morale might also take a hit. Here are some soft skills to test your candidates on:

  • Business-oriented: ultimately, your data scientist will be fueling your decision-making process. This means they’ll have to have a good head for business, on top of simply understanding the numbers.
  • Communication skills: sure, everyone in your company preferably has some of these, but since data scientists play such an important role in decision-making, you’ll want them to be able to express themselves well—and listen to what you’re asking from them.
  • Teamwork: your data scientists shouldn’t be on a little island somewhere in the company. The more they integrate with other departments, the easier it is for them to determine what your business needs from them.
  • Critical thinking skills: this one’s pretty self-explanatory, but the more critical your data scientist, the more reassurance you’ll have that data is correctly interpreted.
  • Creativity: data is less dry than it seems. From data storage to finding connections and problem-solving: it all requires some form of creative thinking.

Step 4: Follow up on the test results

If you want to make the most of your data science job assessment, it shouldn’t just be a test to see who goes through to the next round. For the candidates that ‘pass’, you can customize the questions in their follow-up interview based on the strengths and weaknesses they showed in their test. Because the test they took says a lot, but at the same time—it’s just a snapshot. Did they score remarkably high on certain skills? Ask them how they got to be so experienced in that, and what projects contributed most to that.

Did you notice that they struggled with questions about X? Ask how they are planning to improve on that and how they make sure this doesn’t impact the quality of their work for the time being—are they calling in help from a peer, or do they simply take more time to figure things out?

These types of follow-up questions steer a job interview in a much more real-life direction: it’s not a generic set of questions that any company could ask any employee, but a real conversation between you and the candidate, in which you can evaluate if they fit in the future of the company—and if your company fits in theirs.

Ready to start the hiring process?

With these tips, we’re sure you’ll get some extra reassurance that your next hire will be a great fit—not just based on their previous experience and a couple of interviews. If you want, you can keep reading about data science jobs—or simply start hiring. Good luck!

10 Best Resources To Learn Data Science Online in 2022

Today, data science is more than a buzzword. To simply put it, data science is an interdisciplinary field of gathering data from various sources and channels such as databases, analysing and transforming them into visualization and graphs. This basically facilitates the readability and understanding of the data to aid in soft-skills like insightful decision-making for any organization or business. In short, data science is a combination of incorporating scientific methods, different technologies, algorithms, and more when it comes to data.

Apart from the certified courses, as a data scientist, it is expected to have experience in various domains of computer science, including knowledge of a few programming languages such as Python and R as well as statistics and mathematics. An individual should be able to comprehend the data provided and be able to transform it into graphs which help in extracting insight for a particular business.

Best Resources To Learn Data Science

For those pursuing a career in data science, it is not just technical skills that matter, in business settings an individual is tasked with communicating complex ideas and making data-driven insightful decisions. As a result, people in the field of data science are expected to be effective communicators, leaders, and team members as well as high-level analytical thinkers too.

If we talk about applications of data science, it is used in myriad fields, including image and speech recognition, the gaming world, logistics and supply chain, healthcare, and risk detection, among others. It remains a limitless world indeed. Data scientists will continue to remain in high demand, while at the same time there is a substantial skill gap that needs to be currently addressed in the industry.

Here’s the lowdown on a few of the online resources—in no particular order—which can be checked out to learn data science. While a few of these educational platforms have been launched a couple of years ago, they would continue to hold equal relevance when it comes to resources for seeking in-depth knowledge related to everything in the field of data science.

1. Udemy

Udemy is a site that offers hands-on exercises while extending comprehensive data courses. At last count, there were about 10,000 data courses and almost 500 of which are free of cost. An individual can discover specialisations, including Python, Tableau, R, and many more. While offering real-world examples, Udemy courses are quite well-defined when it comes to specific topics.
The courses are suitable for beginners as well as experts in the field of data science.

2. Coursera

Coursera is another online learning platform that offers massive open online courses (MOOC), specialisations, and degrees in a range of subjects, and this includes data science as well. Some of the courses hosted on the platform include top-notch names such as Harvard University, University of Toronto, Johns Hopkins University, University of Michigan, and MITx, among others. Coursera courses can be audited for free and certificates can be obtained by paying the mentioned amount. The courses from Coursera are part of a particular specialisation, which is a micro-credential offered by Coursera. These specialisations also include a capstone project.

3. Pluralsight

Pluralsight remains an educational platform for learners through insights from instructor-led courses or online courses, which lay stress on basics and some straightforward scenarios. Courses taken online will require you to exert more effort to gain detailed insights, thus helping you in the longer run. Pluralsight introduces one to several video training courses for Software developers and IT administrators.

By using the service of Pluralsight, an individual can look forward to learning a lot of solutions. An individual can even get the key business objectives and even close the skill gaps in critical areas like cloud, design, security, and mobile data.

4. FlowingData

The website, which is produced by Dr. Nathan Yau, Ph.D., offers insights from experts about how to present, analyse, and understand data. This comes with practical guides to illustrate the points with real-time examples. In addition, the site also offers book recommendations, as well as provides insights related to the field of data science.
There are also articles which an individual can browse related to gaining more in-depth insight into the correlation between data science and the world around.

5. edX

edX is an online platform, which has been created as a tie-up between Harvard University and the Massachusetts Institute of Technology. This website has been designed with the idea to highlight courses in a wide range of disciplines and deliver them to a larger audience across the world. edX extends courses that are offered by 140 top-notch universities at free or nominal charges to make learning easy. The website includes at least 3,000 courses and has programs available for learners to excel in the field of data science.

6. Kaggle

Kaggle is an online learning platform that would be quite beneficial for individuals who already have some knowledge related to data science. In addition, most of the micro-courses require the users to have some prior knowledge in data science languages such as Python or R and machine learning. It remains an ideal site for upgrading skills and enhancing the capabilities in the field of data science. It offers extensive insights related to the field from experts.

7. GitHub

GitHub remains a renowned platform that uses Git, which is a DevOps tool used for source code management, to apply version control to a code. With over 40 million developers on its users list, it also opens up a lot of opportunities for data scientists to collaborate and manage projects together, besides gaining insights about the industry that continues to remain high in demand at the moment.

 

 

8. Reddit

This is a platform that comprises sub-forums, or subreddits, each focused on a subject matter of interest. Under this, the R/datascience subreddit has been titled the data science community, which remains one of the larger subreddit pages related to data science. Various data science professionals discuss relevant topics in data science. The data science subreddit remains insightful for individuals seeking a community that can provide related technical advice in the field of data science.

9. Udacity

Udacity Data Science Nanodegree remains an ideal certification program for those who remain well-versed with languages such as Python, SQL, machine learning, and statistics. In terms of content, Udacity Data Science Nanodegree remains quite advanced and introduces hands-on practice in the form of real-world projects. While Udacity doesn’t offer an all-inclusive course, it introduces separate courses for becoming an expert in the field of data science. Professionals who aspire to become data scientists are advised to take Udacity’s three courses namely Intro to Data Analysis, Introduction to Inferential Statistics, and Data Scientist Nanodegree. These three courses extend real-world projects, which are provided by industry experts. In addition, technical mentor support, flexible learning program, and personal career coach and career services are also offered to aspirants in the domain.

10. KDnuggets

KDnuggets remains a resourceful site on business analytics, big data, data mining, data science, and machine learning. The site is edited by Gregory Piatetsky-Shapiro, a co-founder of Knowledge Discovery and Data Mining Conferences. KDnuggets boasts of more than 4,00,000 unique visitors and has about 1,90,000 subscribers. The site also provides information related to tutorials, certificates, webinars, courses, education, and curated news, among others.

 

Ending Note

Increasing technology and big data mean that organizations must leverage their data in order to deliver more powerful products and services to the world by analyzing that data and gaining insight, which is what the term “Data Science” means. You can jumpstart your career in Data Science by utilizing any of the resources listed above. Make sure you have the right resources and certifications. Now is the time to work in the data industry.

 

Select the Right career path between Software Developer and Data Scientist

In today’s digital day and age, a software development career is one of the most lucrative ones. Custom software developers abound, offering all sorts of services for business organizations anywhere in the world. Software developers of all kinds, vendors, full-time staff, contract workers, or part-time workers, all are important members of the Information Technology community. 

There are different career paths to choose from in the world of software development. Among the most promising ones include a software developer career and a data scientist career. What exactly are these?

Software developers are the brainstorming, creative masterminds behind all kinds of computer programs. Although there may be some that focus on a specific app or program, others build giant networks or underlying systems, which power and trigger other programs. That’s why there are two classifications of a software developer, the app software developer, and the developers of systems software.

On the other hand, data scientists are a new breed of experts in analytical data with the technical skills to resolve complex issues, as well as the curiosity to explore what problems require solving. Data scientists, in any custom software development service, are part trend-spotter, part mathematicians, and part computer scientists. And, since they bestraddle both IT and business worlds, they’re highly in-demand and of course well-paid. 

When it comes to the field of custom software development and software development in general, which career is the most promising? Let’s find out. 

Data Science and Software Development, the Differences

Although both are extremely technical, and while both have the same sets of skills, there are huge differences in how these skills are applied. Thus, to determine which career path to choose from, let’s compare and find the most critical differences. 

The Methodologies

Data Science Methodology

There are different places in which a person could come into the data science pipeline. If they are gathering data, then they probably are called a data engineer, and they would be pulling data from different resources, cleaning and processing it, and storing it in a database. Usually, this is referred to as the ETL process or the extract, transform, and load. 

If they use data to create models and perform analysis, probably they’re called a ‘data analyst’ or a ‘machine learning engineer’. The critical aspects of this part of the pipeline are making certain that any models made don’t violate the underlying assumptions, and that they are driving worthwhile insights. 

Methodology in Software Development 

In contrast, the development of software makes use of the SDLC methodology or the software development life cycle. The workflow or cycle is used in developing and maintaining software. The steps are planning, implementing, testing, documenting, deploying, and maintaining. 

Following one of the different SDLC models, in theory, could lead to software that runs at peak efficiency and would boost any future development. 

The Approaches

Data science is a very process-oriented field The practitioners consume and analyze sets of data to understand a problem better and come up with a solution. Software development is more of approaching tasks with existing methodologies and frameworks. For example, the Waterfall model is a popular method that maintains every software development life cycle phase that should be completed and reviewed before going to the next. 

Some frameworks used in development include the V-shaped model, Agile, and Spiral. Simply, there is no equal data science process, although a lot of data scientists are within one of the approaches as part of the bigger team. Pure developers of the software have a lot of roles to fill outside data science, from front-end development to DevOps and infrastructure roles. 

Moreover, although data analytics pays well, the roles of software developers of all kinds are still higher in demand. Thus, if machine learning isn’t your thing, then you could spend your spare time in developing expertise in your area of interest instead. 

The Tools

The wheelhouse of a data scientist has data analytics tools, machine learning, data visualization, working with databases, and predictive modeling. If you use plenty of data ingestion and storage they probably would use MongoDB, Amazon S3, PostgreSQL, or something the same. For building a model, there’s a great chance that they would be working with Scikit-learn or Statsmodels. 

Big data distributed processing needs Apache Spark. Software engineers use software to design and analyze tools, programming languages, software testing, web apps tools, and so on. With data science, many depend on what you’re attempting to accomplish. For actually creating TextWrangler, code Atom, Emacs, Visual Code Studio, and Vim are popular. 

Django by Python, Ruby on Rails, and Flask see plenty of use in the backend web development world. Vue.js emerged recently as one of the best ways of creating lightweight web apps, and similarly for AJAX when creating asynchronous-updating, creating dynamic web content. Everyone must know how to utilize a version control system like GitHub for instance. 

The Skills

To become a data scientist, some of the most important things to know include machine learning, programming, data visualization, statistics, and the willingness to learn. Various positions may need more than these skills, but it’s a safe bet to say that these are the bare minimum when you pursue a data science career. 

Often, the necessary skills to be a developer of the software will be a little more intangible. The ability of course to program and code in various programming languages is required, but you should also be able to work well in development teams, resolve an issue, adapt to various scenarios, and should be willing to learn. This again isn’t an exhaustive list of skills, but these certainly would serve you well if you are interested in this career. 

Conclusion

You should, at the end of the day must choose a career path that’s based on your strengths and interests. The salaries of data scientists and software developers  are the same to an average at least. However, before choosing which is better for you, consider experimenting with various projects and interact with different aspects of the business to determine where your skills and personality best fits in since that is where you’ll grow the most in the future.

Connections Between Data Science & Finance

Image Source: pixabay.com

The world of finance is changing at an unprecedented rate. Data science has completely altered the face of traditional finance management. Though data has long been a critical component to finances, the introduction of big data and artificial intelligence have created new tools that are strengthening the predictive ability of many financial institutions.

These changes have led to a rapid increase in the need for financial professionals with data science skills. Nearly every sector in finances is converting to greater use of data science and management from the stock market and retirement accounts to credit score calculation. A greater understanding of the interplay between data and finance is a key skill gap.

Likewise, they have opened many doors for those that are interested in analyzing their personal finances. More and more people are taking their finances into their own hands and using the data tools available to make the best decisions for them. In today’s world, the sky’s the limit for financial analysis and management!

The Rise of the Financial Analyst

Financial analysts are the professionals who are responsible for the general management of money and investments both in an industrial and personal finance realm. Typically a financial analyst will spend time reviewing and understanding the overall stock portfolio and financial standing of a client including:

  • Stocks
  • Bonds
  • Retirement accounts
  • Financial history
  • Current financial statements and reports
  • Overarching business and industry trends

From there, the analyst will provide a recommendation with data-backed findings to the client on how they should manage their finances going into the future.

As you can imagine, with all of this data to analyze, the need for financial analysts to have a background or understanding of data science has never been higher! Finance jobs requiring skills such as artificial intelligence and big data increased by over 60% in the last year. Though these new jobs are typically rooted in computer science and data analytics, most professionals still need a background in financial management as well.

The unique skills required for a position like this means there is a huge (and growing) skills gap in the financial sector. Those professionals that are qualified and able to rise to fill the need are seeing substantial pay increases and hundreds of job opportunities across the nation and the globe.

A Credit Score Example

But where does all of this data science and professional financial account management come back to impact the everyday person making financial decisions? Surprisingly, pretty much in every facet of their lives. From things like retirement accounts to faster response times in financial analysis to credit scores — data science in the financial industry is like a cloaked hand pulling the strings in the background.

Take, for example, your credit score. It is one of the single most important numbers in your life, for better or worse. A high credit score can open all sorts of financial doors and get you better interest rates on the things you need loans for. A bad score can limit the amount lenders willing to qualify you for a loan and increase the interest rate substantially, meaning you will end up paying far more money in the end.

Your credit score is calculated by several things — though we understand the basic outline of what goes into the formula, the finer points are somewhat of a mystery. We know the big factors are:

  • Personal financial history
  • Debit-credit ratio
  • Length of credit history
  • Number of new credit hits or applications

All of this data and number crunching can have a real impact on your life, just one example of how data in the financial world is relevant.

Using Data Science in Personal Finance

Given all this information, you might be thinking to yourself that what you really need is a certificate in data science. Certainly, that will open a number of career doors for you in a multitude of realms, not just the finance industry. Data science is quickly becoming a cornerstone of how most major industries do business.

However, that isn’t necessarily required to get ahead on managing your personal finances. Just a little information about programs such as Excel can get you a long way. Some may even argue that Excel is the original online data management tool as it can be used to do things like:

  • Create schedules
  • Manage budgets
  • Visualize data in charts and graphs
  • Track revenues and expenses
  • Conditionally format information
  • Manage inventory
  • Identify trends in large data sets

There are even several tools and guides out there that will help you to get started!

***

Data analysis and management is here to stay, especially when it comes to the financial industry. The tools are likely to continue to become more important and skills in their use will increase in value. Though there are a lot of professional skills using big data to manage finances, there are still a lot of tools out there that are making it easier than ever to glean insights into your personal finances and make informed financial decisions.

Must-have Skills to Master Data Science

The need to process a massive amount of data sets is making Data Science the most-demanded job across diverse industry verticals. In today’s times, organizations are actively looking for Data Scientists.

But What does a Data Scientist do?

Data Scientist design data models, create various algorithms to extract the data the organization needs, and then they analyze the gathered data and communicate the data insights with the business stakeholders.

If you are looking forward to pursuing a career in Data Science, then this blog is for you 🙂

Data Scientists often come from many different educational and work experience backgrounds but few skills are common and essential.

Let’s have a look at all the essential skills required to become a Data Scientist:

  1. Multivariable Calculus & Linear Algebra
  2. Probability & Statistics
  3. Programming Skills (Python & R)
  4. Machine Learning Algorithms
  5. Data Visualization
  6. Data Wrangling
  7. Data Intuition

Let’s dive deeper into all these skills one by one.

 

Multivariable Calculus & Linear Algebra:

Having a solid understanding of math concepts is very helpful for a Data Scientist.

Key Concepts:

  • Matrices
  • Linear Algebra Functions
  • Derivatives and Gradient
  • Relational Algebra

Probability & Statistics:

Probability and Statistics play a major role in Data Science for estimation and prediction purposes.

Key concepts required:

  • Probability Distributions
  • Conditional Probability
  • Bayesian Thinking
  • Descriptive Statistics
  • Random Variables
  • Hypothesis Testing and Regression
  • Maximum Likelihood Estimation

Programming Skills (Python & R):

Python :

Start with Python Fundamentals using a jupyter notebook, which comes pre-packaged with Python libraries.

Important Python Libraries used:

  • NumPy (For Data Exploration)
  • Pandas (For Data Exploration)
  • Matplotlib (For Data Visualization)

R:

It is a programming language and software environment used for statistical computing and graphics. 

Key Concepts required:

  • R Languages fundamentals and basic syntax
  • Vectors, Matrices, Factors
  • Data frames
  • Basic Graphics

Machine Learning Algorithms

Machine Learning is an innovative and essential field in the industry. There are quite a few algorithms out there, major ones are as follows –

  • Linear Regression
  • Logistic Regression
  • Decision Trees
  • Random Forest
  • Naïve Bayes
  • Support Vector Machines
  • Dimensionality Reduction
  • K-means
  • Artificial Neural Networks

Data Visualization:

Data visualization is very essential when it comes to analyzing a massive amount of information and data. 

To make data-driven decisions, data visualization tools, and technologies are essential in the world of Data Science.

Data Visualization tools:

  • Tableau
  • Microsoft Power Bi
  • E Charts
  • Datawrapper
  • HighCharts

Data Wrangling:

Data wrangling, this term refers to the process of cleaning and refining the messy and complex data available into a more usable format. 

It is considered one of the most crucial parts of working with data.

Important Steps to Data Wrangling:

  1. Discovering
  2. Structuring
  3. Cleaning
  4. Enriching
  5. Validating
  6. Documenting

Tools used:

  • Tabula
  • Google DataPrep
  • Data Wrangler
  • CSVkit

Data Wrangling can be done using Python and R.

Data Intuition:

Data Intuition in Data Science is an intuitive understanding of concepts. It’s one of the most significant skills required to become a Data Scientist.

It’s about recognizing patterns where none are observable on the surface.

This is something that you need to develop. It is a skill that will only come with experience.

A Data Scientist should know which Data Science methods to apply to the problem at hand.

Conclusion:

 As you can see, all these skills – from programming to algorithmic methods, work with one another to build on top of each other for gathering deeper data insights.

There are a wide number of courses available online for developing these skills and to help you become a true talent in this data industry.

Sure, this journey isn’t an easy one to follow but it’s not impossible. With sheer determination and consistency, you will be able to cross all the hurdles in your Data Science career path.

Image Source: Pixabay (https://pixabay.com/photos/classroom-school-education-learning-2093744/)

The Data Surrounding Higher Education and COVID-19

Just a few short weeks ago, it would have seemed impossible for some microscopic pathogen to upend our lives as we knew it, but the novel Coronavirus has proven us breathtakingly wrong.

It has suddenly and unexpectedly changed everything we had thought was most stable and predictable in our lives, from the ways that we work to the ways we interact with one another. It’s even changed the way we learn, as colleges and universities across the nation shutter their doors.

But what is the real impact of COVID-19 on higher education? How are college students really faring in the face of the pandemic, and what can we do to support them now and in the post-pandemic life to come?

The Scramble is On

Probably the most significant challenge that schools, educators, and students alike are facing is that no one really saw this coming, so now we’re trying to figure out how to protect students’ education while also protecting their physical health. We’re having to make decisions that impact millions of students and faculty and do that with no preparation whatsoever.

To make matters worse, faculties are having to convert their classes to a forum the majority have never even used before. Before the lockdown, more than 70% of faculty in higher education had zero experience with online teaching. Now they’re being asked to convert their entire semester’s course schedule from an in-class to an online format, and they’re having to do it in a matter of weeks if not days.

For students who’ve never taken a distance learning course before, these impromptu, online, cobbled-together courses are hardly the recipe for academic success. The challenge is even greater for lab-based courses, where content mastery depends on hands-on work and laboratory applications. To solve this problem, some of the newly-minted distance ed instructors are turning to online lab simulations to help students make do until the real thing is open to them again.

Making Do

It’s not just the schools and the faculty that have been caught off guard by the sudden need to learn while under lockdown. Students are also having to hustle to make sure they have the technology they need to move their college experience online. Unfortunately, for many students, that’s not always easy, and for some, it’s downright impossible.

Studies show that large swaths of the student population: first-generation college students, community college students, immigrants, and lower-income students, typically rely on on-campus facilities to access the technology they need to do their work. When physical campuses close and the community libraries and hotspots with them, so too does the chance for many students to take their learning online.

Students in urban environments face particular risks. Even if they are able to access the technology they need to engage in distance learning, they may find it impossible to socially isolate. The need to access a hotspot or wi-fi connection might put them in unsafe proximity to other students, not to mention the millions of workers now forced to telecommute.

The Good News

America’s millions of new online learners and teachers may have a tough row to hoe, but the news isn’t all bad. Online education is by no means a new thing. By 2017, nearly 7 million students were enrolled in at least one distance education course according to a recent survey by the National Center for Education Statistics.

It isn’t as though the technology to provide a secure, user-friendly learning experience doesn’t exist. The financial industry, for example, has played a leading role in developing private, responsive, and highly-customizable technology solutions to meet practically any need a client or stakeholder may have.

The solutions used for the financial sector can be built on and modified for the online learning experience to ensure the privacy of students, educators, and institutions while providing real-time access to learning tools and content to classmates and teachers.

A New Path?

As challenging as it may be, transitioning to online learning not only offers opportunities for the present, but it may well open up new paths for the future. While our world may finally be approaching the downward slope of the curve and while we may be seeing the light at the end of the tunnel, until there’s a vaccine, we haven’t likely seen the last of COVID-19.

And even when we lay the COVID beast to rest, infectious disease, unfortunately, is a fact of human life. For students just starting to think about their career paths, this lockdown may well be the push they need to find a career that’s well-suited to this “new normal.”

For instance, careers in data science transition perfectly from onsite to at-home work, and as epidemiological superheroes like Dr. Fauci and Dr. Birx have shown, they are often involved in important, life-saving work. These are also careers that can be pursued largely, if not exclusively, online. Whether you’re a complete newbie or a veteran to the field, there is a large range of degree and certification programs available online to launch or advance your data science career.

It might be that your college-with-corona experience is pointing your life in a different direction, toward education rather than data science. With a doctorate in education, your future career path is virtually unlimited. You might find yourself teaching, researching, leading universities or developing education policy.

What matters most is that with an EdD, you can make a difference in the lives of students and teachers, just as your teachers and administrators are making a difference in your life. You can be the guiding and comforting force for students in a time of crisis and you can use your experiences today to pay it forward tomorrow.

Top 7 MBA Programs to Target for Business Analytics 

Business Analytics refers to the science of collecting, analysing, sorting, processing and compiling various available data pertaining to different areas and facets of business. It also includes studying and scrutinising the information for useful and deep insights into the functioning of a business which can be used smartly for making important business-related decisions and changes to the existing system of operations. This is especially helpful in identifying all loopholes and correcting them.

The job of a business analyst is spread across every domain and industry. It is one of the highest paying jobs in the present world due to the sheer shortage of people with great analytical minds and abilities. According to a report published by Ernst & Young in 2019, there is a 50% rise in how firms and enterprises use analytics to drive decision making at a broad level. Another reason behind the high demand is the fact that nowadays a huge amount of data is generated by all companies, large or small and it usually requires a big team of analysts to reach any successful conclusion. Also, the nature and high importance of the role compels every organisation and firm to look for highly qualified and educated professionals whose prestigious degrees usually speak for them.

An MBA in Business Analytics, which happens to be a branch of Business Intelligence, also prepares one for a successful career as a management, data or market research analyst among many others. Below, we list the top 7 graduate school programs in Business Analytics in the world that would make any candidate ideal for this high paying job.

1 New York University – Stern School of Business

Location: New York City, United States

Tuition Fees: $74,184 per year

Duration:  2 years (full time)

With a graduate acceptance rate of 23%, the NYU Stern School makes it to this list due to the diversity of the course structure that it offers in its MBA program in Business Analytics. One can specialise and learn the science behind econometrics, data mining, forecasting, risk management and trading strategies by being a part of this program. The School prepares its students and offers employability in fields of investment banking, marketing, consulting, public finance and strategic planning. Along with opportunities to study abroad for small durations, the school also offers its students ample chances to network with industry leaders by means of summer internships and career workshops. It is a STEM designated two-year, full time degree program.

2 University of Pennsylvania – Wharton School Business 

Location: Philadelphia, United States

Tuition fees: $81,378 per year

Duration: 20 months (full time, including internship)

The only Ivy-League school in the list with one of the best Business Analytics MBA programs in the world, Wharton has an acceptance rate of 19% only. The tough competition here is also characterised by the high range of GMAT scores that most successful applicants have – it lies between 540 and 790, averaging at a very high threshold of 732. Most of Wharton’s graduating class finds employment in a wide range of sectors including consulting, financial services, technology, real estate and health care among many others. The long list of Wharton’s alumni includes some of the biggest business entities in the world, them being – Warren Buffet, Elon Musk, Sundar Pichai, Ronald Perelman and John Scully.

The best part about Wharton’s program structure is its focus on building leadership and a strong sense of teamwork in every student.

3 Carnegie Mellon University – Tepper School of Business

Location: Pittsburgh, United States

Tuition Fees: $67,575

Duration: 18 months (online)

The Tepper School of Business in Carnegie Mellon University is the only graduate school in the list that offers an online Master of Science program in Business Analytics. The primary objectives of the program is to equip students with creative problem solving expertise and deep analytic skills. The highlights of the program include machine learning, programming in Python and R, corporate communication and the knowledge of various business domains like marketing, finance, accounting and operations.

The various sub courses offered within the program include statistics, data management, data analytics in finance, data exploration and optimization for prescriptive analytics. There are several special topics offered too, like Ethics in Artificial Intelligence and People Analytics among many others.

4 Massachusetts Institute of Technology – Sloan School of Management

Location: Cambridge, United States

Tuition Fees: $136,480

Duration: 12 months

The Master of Business Analytics program at MIT Sloan is a relatively new program but has made it to this list due to MIT’s promise and commitment of academic and all-rounder excellence. The program is offered in association with MIT’s Operations Research Centre and is customised for students who wish to pursue a career in the industry of data sciences. The program is easily comprehensible for students from any educational background. It is a STEM designated program and the curriculum includes several modules like machine learning, usage of analytics software tools like Python, R, SQL and Julia. It also includes courses on ethics, data privacy and a capstone project.

5 University of Chicago – Graham School

Location: Chicago, United States

Tuition Fees: $4,640 per course

Duration: 12 months (full time) or 4 years (part time)

The Graham School in the University of Chicago is mainly interested in candidates who show love and passion for analytics. An incoming class at Graham usually consists of graduates in science or social science, professionals in an early career who wish to climb higher in the job ladder and mid-career professionals who wish to better their analytical skills and enhance their decision-making prowess.

The curriculum at Graham includes introduction to statistics, basic levels of programming in analytics, linear and matrix algebra, machine learning, time series analysis and a compulsory core course in leadership skills. The acceptance rate of the program is relatively higher than the previous listed universities at 34%.

6 University of Warwick – Warwick Business School

Location: Coventry, United Kingdom

Tuition Fees: $34,500

Duration: 12 months (full time)

The only school to make it to this list from the United Kingdom and the only one outside of the United States, the Warwick Business School is ranked 7th in the world by the QS World Rankings for their Master of Science degree in Business Analytics. The course aims to build strong and impeccable quantitative consultancy skills in its candidates. One can also look forward to improving their business acumen, communication skills and commercial research experience after graduating out of this program.

The school has links with big corporates like British Airways, IBM, Proctor and Gamble, Tesco, Virgin Media and Capgemini among others where it offers employment for its students.

7 Columbia University – School of Professional Studies

Location: New York City, United States 

Tuition Fees: $2,182 per point

Duration: 1.5 years full time (three terms)

The Master of Sciences program in Applied Analytics at Columbia University is aimed for all decision makers and also favours candidates with strong critical thinking and logical reasoning abilities. The curriculum is not very heavy on pure stats and data sciences but it allows students to learn from extremely practical and real-life experiences and examples. The program is a blend of several online and on-campus classes with several week-long courses also. A large number of industry experts and guest lectures take regular classes, conduct workshops and seminars for exposing the students to the real-world scenario of Business Analytics. This also gives the students a solid platform to network and broaden their perspective.

Several interesting courses within the paradigm of the program includes storytelling with data, research design, data management and a capstone project.

The admission to every school listed above is extremely competitive and with very limited intake. However, as it is rightly said, hard work is the key to success, one can rest guaranteed that their career will never be the same if they make it into any of these programs.