Posts

Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 1 von 4:

Dieser Artikel ist Teil 1 von 4 aus der Reihe Datenschutz, Sicherheit und Ethik beim Process Mining.

english-flagRead this article in English:
Clarify Goal of the Analysis – Process Mining Rule 1 of 4

Klarstellung des Analyseziels

Die gute Nachricht ist, dass Process Mining in den häufigsten Fällen keine personenbezogenen Daten auswerten muss, da es sich meistens auf interne, organisatorische Prozesse konzentriert und nicht auf die Kundenprofile. Des Weiteren untersuchen Sie die generellen Prozessmuster. Process Mining sucht beispielsweise in der Regel nach Möglichkeiten, den Prozess auf intelligentere Art und Weise aufzubauen, um somit unnötige Leerlaufzeiten zu vermeiden, anstatt die Menschen zu schnellerem Arbeiten zu drängen.

Wenn Sie die Leistung eines bestimmten Prozesses besser verstehen möchten, müssen Sie sich allerdings häufig mit den Attributen auseinandersetzen, die das Variieren des Prozessverhaltens oder deren Durchlaufzeiten erklären können. Und Ihre Kollegen können sich schnell Sorgen machen, wohin dies führt.

Aus diesem Grund sollten Sie sich bereits am Anfang des Process Mining-Projektes über das Analyseziel Gedanken machen. Seien Sie sich im Klaren darüber, wie die Ergebnisse verwendet werden. Denken Sie darüber nach, welche Probleme Sie versuchen zu lösen und welche Daten Sie benötigen, um dieses Problem lösen zu können.

Was man tun sollte:

  • Überprüfen Sie, ob es gesetzliche Einschränkungen hinsichtlich der Daten gibt. So können beispielsweise in Deutschland mitarbeiterbezogene Daten typischerweise nicht verwendet werden und werden normalerweise gar nicht erst extrahiert. Falls sich Ihr Projekt auf die Analyse von Kundendaten konzentriert, sollten Sie sicherstellen, dass Sie die Einschränkungen verstanden und Anonymisierungsoptionen in Betracht gezogen haben (siehe Richtlinie Nr. 3).
  • Ziehen Sie die Aufstellung einer Ethik-Charta in Erwägung, die das Projektziel umfasst, einschließlich allem, was auf der Analyse basierend durchgeführt wird und was nicht. Sie können beispielsweise klar festhalten, dass das Ziel nicht darin besteht, die Leistung der Mitarbeiter zu bewerten. Tauschen Sie sich mit den Personen, die für die Extraktion der Daten verantwortlich sind, darüber aus, was diese Ziele sind, und bitten Sie sie um deren Unterstützung bei der entsprechenden Vorbereitung der Daten.

Was man nicht tun sollte:

  • Mit einer wagen Idee durchzustarten und einfach anzufangen, alle Daten zu extrahieren, die Sie bekommen können. Überlegen Sie sich stattdessen lieber: Welches Problem versuche ich zu lösen? Und welche Daten brauche ich, um dieses Problem zu lösen? Ihr Projekt sollte sich auf Unternehmensziele konzentrieren, die vom Manager des Prozesses, den Sie analysieren, unterstützt werden können (siehe Leitlfaden Nr. 4).
  • Das erste Projekt zu groß machen. Konzentrieren Sie sich stattdessen lieber auf einen Prozess mit klarem Ziel. Wenn der Umfang Ihres Projektes zu groß ist, können andere es blockieren oder gegen Sie arbeiten, ohne zu verstehen, was Process Mining tatsächlich bewegen kann.

Datenschutz, Sicherheit und Ethik beim Process Mining – Artikelserie

Als ich vor zwölf Jahren in die Niederlande zog und anfing, bei lokalen Supermarktketten wie Albert Heijn einzukaufen, habe ich mich zunächst gegen die Bonuskarte (Treuekarte für Rabatte) gewehrt, da ich nicht wollte, dass das Unternehmen meine Einkäufe nachverfolgen konnte. Ich verstand, dass die Verwendung dieser Informationen ihnen helfen könnte, mich zu manipulieren, indem sie Produkte anwerben oder so arrangieren würden, dass ich mehr kaufen würde, als mir lieb war. Es fühlte sich einfach falsch an.

english-flagRead this article in English:
Privacy, Security and Ethics in Process Mining – Article Series

Fakt ist aber, dass keine Datenanalyse-Technik intrinsisch gut oder schlecht ist. Es liegt allein in den Händen der Menschen, ob sie die Technologie so einsetzen, dass dabei etwas Produktives und Konstruktives entsteht. Während Supermärkte die Informationen ihrer Kunden aufgrund der Treue-Karten benutzen könnten, um sicherzustellen, dass sie den längsten Weg im Geschäft haben, wenn sie ihre gewöhnlichen Produkte einkaufen (und dadurch an soviel anderen Produkten wie möglich vorbeikommen), können sie auf der anderen Seite die Informationen verwenden, um den Einkauf angenehmer zu gestalten und mehr Produkte anzubieten, die wir mögen.

Die meisten Unternehmen haben mit der Anwendung von Datenanalysetechniken begonnen, mit welchen sie ihre Daten auf die eine oder andere Weise analysieren. Diese Datenanalysen können Unternehmen und ihren Kunden gewaltige Chancen einräumen, doch mit der zunehmenden Nutzung der Data-Science-Techniken drängt sich auch die Frage der Ethik und die einer verantwortungsvollen Anwendung in den Vordergrund. Initiativen, wie die Seminarreihe ‘Responsible Data Science [1]’, beschäftigen sich mit dem Thema insofern, als ein Bewusstsein geschaffen wird und die Forscher ermutigt werden, Algorithmen zu entwickeln, die sich auf Konzepte wie Fairness, Genauigkeit, Vertraulichkeit und Transparenz stützen [2].

Process Mining kann Ihnen erstaunlichen Einblicke in Ihre Prozesse verschaffen und Ihre Verbesserungsinitiativen mit Inspiration und Enthusiasmus bereichern, wenn Sie es richtig anwenden. Aber wie können Sie sicherstellen, dass Sie Process Mining verantwortungsvoll anwenden? Was sollten Sie beachten, wenn Sie Process Mining in Ihre eigene Organisation integrieren?

In dieser Artikelserie stellen wir Ihnen vier Richtlinien vor, die Sie befolgen können, um Ihre Process Minining-Analyse verantwortungsvoll vorzubereiten:

Teil 1 von 4: Klarstellung des Analyseziels

Teil 2 von 4: Verantwortungsvoller Umgang mit Daten

Teil 3 von 4: Anonymisierung in Betracht ziehen

Teil 4 von 4: Schaffung einer Kooperationskultur

Danksagung

Wir danken Frank van Geffen und Léonard Studer, der die ersten Diskussionen in der Arbeitsgruppe rund um das verantwortungsvolle Process Mining im Jahr 2015 initiiert haben. Wir danken ausserdem Moe Wynn, Felix Mannhardt und Wil van der Aalst für ihr Feedback zu früheren Versionen dieses Artikels.