Establish a Collaborative Culture – Process Mining Rule 4 of 4

This is article no. 4 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4

Perhaps the most important ingredient in creating a responsible process mining environment is to establish a collaborative culture within your organization. Process mining can make the flaws in your processes very transparent, much more transparent than some people may be comfortable with. Therefore, you should include change management professionals, for example, Lean practitioners who know how to encourage people to tell each other “the truth”, in your team.

Furthermore, be careful how you communicate the goals of your process mining project and involve relevant stakeholders in a way that ensures their perspective is heard. The goal is to create an atmosphere, where people are not blamed for their mistakes (which only leads to them hiding what they do and working against you) but where everyone is on board with the goals of the project and where the analysis and process improvement is a joint effort.


  • Make sure that you verify the data quality before going into the data analysis, ideally by involving a domain expert already in the data validation step. This way, you can build trust among the process managers that the data reflects what is actually happening and ensure that you have the right understanding of what the data represents.
  • Work in an iterative way and present your findings as a starting point for discussion in each iteration. Give people the chance to explain why certain things are happening and let them ask additional questions (to be picked up in the next iteration). This will help to improve the quality and relevance of your analysis as well as increase the buy-in of the process stakeholders in the final results of the project.


  • Jump to conclusions. You can never assume that you know everything about the process. For example, slower teams may be handling the difficult cases, people may deviate from the process for good reasons, and you may not see everything in the data (for example, there might be steps that are performed outside of the system). By consistently using your observations as a starting point for discussion, and by allowing people to join in the interpretation, you can start building trust and the collaborative culture that process mining needs to thrive.
  • Force any conclusions that you expect, or would like to have, by misrepresenting the data (or by stating things that are not actually supported by the data). Instead, keep track of the steps that you have taken in the data preparation and in your process mining analysis. If there are any doubts about the validity or questions about the basis of your analysis, you can always go back and show, for example, which filters have been applied to the data to come to the particular process view that you are presenting.

Consider Anonymization – Process Mining Rule 3 of 4

This is article no. 3 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 3 von 4

If you have sensitive information in your data set, instead of removing it you can also consider the use of anonymization. When you anonymize a set of values, then the actual values (for example, the employee names “Mary Jones”, “Fred Smith”, etc.) will be replaced by another value (for example, “Resource 1”, “Resource 2”, etc.).

If the same original value appears multiple times in the data set, then it will be replaced with the same replacement value (“Mary Jones” will always be replaced by “Resource 1”). This way, anonymization allows you to obfuscate the original data but it preserves the patterns in the data set for your analysis. For example, you will still be able to analyze the workload distribution across all employees without seeing the actual names.

Some process mining tools (Disco and ProM) include anonymization functionality. This means that you can import your data into the process mining tool and select which data fields should be anonymized. For example, you can choose to anonymize just the Case IDs, the resource name, attribute values, or the timestamps. Then you export the anonymized data set and you can distribute it among your team for further analysis.


  • Determine which data fields are sensitive and need to be anonymized (see also the list of common process mining attributes and how they are impacted if anonymized).
  • Keep in mind that despite the anonymization certain information may still be identifiable. For example, there may be just one patient having a very rare disease, or the birthday information of your customer combined with their place of birth may narrow down the set of possible people so much that the data is not anonymous anymore.


  • Anonymize the data before you have cleaned your data, because after the anonymization the data cleaning may not be possible anymore. For example, imagine that slightly different customer category names are used in different regions but they actually mean the same. You would like to merge these different names in a data cleaning step. However, after you have anonymized the names as “Category 1”, “Category 2”, etc. the data cleaning cannot be done anymore.
  • Anonymize fields that do not need to be anonymized. While anonymization can help to preserve patterns in your data, you can easily lose relevant information. For example, if you anonymize the Case ID in your incident management process, then you cannot look up the ticket number of the incident in the service desk system anymore. By establishing a collaborative culture around your process mining initiative (see guideline No. 4) and by working in a responsible, goal-oriented way, you can often work openly with the original data that you have within your team.

Responsible Handling of Data – Process Mining Rule 2 of 4

This is article no. 2 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 2 von 4

Like in any other data analysis technique, you must be careful with the data once you have obtained it. In many projects, nobody thinks about the data handling until it is brought up by the security department. Be that person who thinks about the appropriate level of protection and has a clear plan already prior to the collection of the data.


  • Have external parties sign a Non Disclosure Agreement (NDA) to ensure the confidentiality of the data. This holds, for example, for consultants you have hired to perform the process mining analysis for you, or for researchers who are participating in your project. Contact your legal department for this. They will have standard NDAs that you can use.
  • Make sure that the hard drive of your laptop, external hard drives, and USB sticks that you use to transfer the data and your analysis results are encrypted.


  • Give the data set to your co-workers before you have checked what is actually in the data. For example, it could be that the data set contains more information than you requested, or that it contains sensitive data that you did not think about. For example, the names of doctors and nurses might be mentioned in a free-text medical notes attribute. Make sure you remove or anonymize (see guideline No. 3) all sensitive data before you pass it on.
  • Upload your data to a cloud-based process mining tool without checking that your organization allows you to upload this kind of data. Instead, use a desktop-based process mining tool (like Disco [3] or ProM [4]) to analyze your data locally or get the cloud-based process mining vendor to set-up an on-premise version of their software within your organization. This is also true for cloud-based storage services like Dropbox: Don’t just store data or analysis results in the cloud even if it is convenient.

Clarify Goal of the Analysis – Process Mining Rule 1 of 4

This is article no. 1 of the four-part article series Privacy, Security and Ethics in Process Mining.

Read this article in German:
Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 1 von 4

Clarify Goal of the Analysis

The good news is that in most situations Process Mining does not need to evaluate personal information, because it usually focuses on the internal organizational processes rather than, for example, on customer profiles. Furthermore, you are investigating the overall process patterns. For example, a process miner is typically looking for ways to organize the process in a smarter way to avoid unnecessary idle times rather than trying to make people work faster.

However, as soon as you would like to better understand the performance of a particular process, you often need to know more about other case attributes that could explain variations in process behaviours or performance. And people might become worried about where this will lead them.

Therefore, already at the very beginning of the process mining project, you should think about the goal of the analysis. Be clear about how the results will be used. Think about what problem are you trying to solve and what data you need to solve this problem.


  • Check whether there are legal restrictions regarding the data. For example, in Germany employee-related data cannot be used and typically simply would not be extracted in the first place. If your project relates to analyzing customer data, make sure you understand the restrictions and consider anonymization options (see guideline No. 3).
  • Consider establishing an ethical charter that states the goal of the project, including what will and what will not be done based on the analysis. For example, you can clearly state that the goal is not to evaluate the performance of the employees. Communicate to the people who are responsible for extracting the data what these goals are and ask for their assistance to prepare the data accordingly.


  • Start out with a fuzzy idea and simply extract all the data you can get. Instead, think about what problem are you trying to solve? And what data do you actually need to solve this problem? Your project should focus on business goals that can get the support of the process managers you work with (see guideline No. 4).
  • Make your first project too big. Instead, focus on one process with a clear goal. If you make the scope of your project too big, people might block it or work against you while they do not yet even understand what process mining can do.

Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 4 von 4:

Dieser Artikel ist Teil 4 von 4 aus der Reihe Datenschutz, Sicherheit und Ethik beim Process Mining.

english-flagRead this article in English:
Privacy, Security and Ethics in Process Mining – Rule 4 of 4

Schaffung einer Kooperationskultur

Möglicherweise ist der wichtigste Bestandteil bei der Schaffung eines verantwortungsbewussten Process Mining-Umfeldes der Aufbau einer Kooperationskultur innerhalb Ihrer Organisation. Process Mining kann die Fehler Ihrer Prozesse viel eindeutiger aufzeigen, als das manchen Menschen lieb ist. Daher sollten Sie Change Management-Experten miteinbeziehen wie beispielsweise Lean-Coaches, die es verstehen, Menschen dazu zu bewegen, sich gegenseitig “die Wahrheit“ zu sagen (siehe auch: Erfolgskriterien beim Process Mining).

Darüber hinaus sollten Sie vorsichtig sein, wie Sie die Ziele Ihres Process Mining-Projektes vermitteln und relevante Stakeholder so einbeziehen, dass ihre Meinung gehört wird. Ziel ist es, eine Atmosphäre zu schaffen, in der die Menschen nicht für ihre Fehler verantwortlich gemacht werden (was nur dazu führt, dass sie verbergen, was sie tun und gegen Sie arbeiten), sondern ein Umfeld zu schaffen, in dem jeder mitgenommen wird und wo die Analyse und Prozessverbesserung ein gemeinsames Ziel darstellt, für das man sich engagiert.

Was man tun sollte:

  • Vergewissern Sie sich, dass Sie die Datenqualität überprüfen, bevor Sie mit der Datenanalyse beginnen, bestenfalls durch die Einbeziehung eines Fachexperten bereits in der Datenvalidierungsphase. Auf diese Weise können Sie das Vertrauen der Prozessmanager stärken, dass die Daten widerspiegeln, was tatsächlich passiert und sicherstellen, dass Sie verstanden haben, was die Daten darstellen.
  • Arbeiten Sie auf iterative Weise und präsentieren Sie Ihre Ergebnisse als Ausgangspunkt einer Diskussion bei jeder Iteration. Geben Sie allen Beteiligten die Möglichkeit zu erklären, warum bestimmte Dinge geschehen und seien Sie offen für zusätzliche Fragen (die in der nächsten Iteration aufgegriffen werden). Dies wird dazu beitragen, die Qualität und Relevanz Ihrer Analyse zu verbessern, als auch das Vertrauen der Prozessverantwortlichen in die endgültigen Projektergebnisse zu erhöhen.

Was man nicht tun sollte:

  • Voreilige Schlüsse ziehen. Sie können nie davon ausgehen, dass Sie alles über den Prozess wissen. Zum Beispiel können langsamere Teams die schwierigen Fälle behandeln, es kann gute Gründe geben, von dem Standardprozess abzuweichen und Sie sehen möglicherweise nicht alles in den Daten (beispielsweise Vorgänge, die außerhalb des Systems durchgeführt werden). Indem Sie konstant Ihre Beobachtungen als Ausgangspunkt für Diskussionen anbringen und den Menschen die Möglichkeit einräumen, Ihre Erfahrung und Interpretationen mitzugeben, beginnen Sie, Vertrauen und die Kooperationskultur aufzubauen, die Process Mining braucht.
  • Schlussfolgerungen erzwingen, die ihren Erwartungen entsprechen oder die sie haben möchten, indem Sie die Daten falsch darstellen (oder Dinge darstellen, die nicht wirklich durch die Daten unterstützt werden). Führen Sie stattdessen ganz genau Buch über die Schritte, die Sie bei der Datenaufbereitung und in Ihrer Process-Mining-Analyse ausgeführt haben. Wenn Zweifel an der Gültigkeit bestehen oder es Fragen zu Ihrer Analysebasis gibt, dann können Sie stets zurückkehren und beispielsweise zeigen, welche Filter bei den Daten angewendet wurden, um zu der bestimmten Prozesssicht zu gelangen, die Sie vorstellen.

Datenschutz, Sicherheit und Ethik beim Process Mining – Regel 1 von 4:

Dieser Artikel ist Teil 1 von 4 aus der Reihe Datenschutz, Sicherheit und Ethik beim Process Mining.

english-flagRead this article in English:
Clarify Goal of the Analysis – Process Mining Rule 1 of 4

Klarstellung des Analyseziels

Die gute Nachricht ist, dass Process Mining in den häufigsten Fällen keine personenbezogenen Daten auswerten muss, da es sich meistens auf interne, organisatorische Prozesse konzentriert und nicht auf die Kundenprofile. Des Weiteren untersuchen Sie die generellen Prozessmuster. Process Mining sucht beispielsweise in der Regel nach Möglichkeiten, den Prozess auf intelligentere Art und Weise aufzubauen, um somit unnötige Leerlaufzeiten zu vermeiden, anstatt die Menschen zu schnellerem Arbeiten zu drängen.

Wenn Sie die Leistung eines bestimmten Prozesses besser verstehen möchten, müssen Sie sich allerdings häufig mit den Attributen auseinandersetzen, die das Variieren des Prozessverhaltens oder deren Durchlaufzeiten erklären können. Und Ihre Kollegen können sich schnell Sorgen machen, wohin dies führt.

Aus diesem Grund sollten Sie sich bereits am Anfang des Process Mining-Projektes über das Analyseziel Gedanken machen. Seien Sie sich im Klaren darüber, wie die Ergebnisse verwendet werden. Denken Sie darüber nach, welche Probleme Sie versuchen zu lösen und welche Daten Sie benötigen, um dieses Problem lösen zu können.

Was man tun sollte:

  • Überprüfen Sie, ob es gesetzliche Einschränkungen hinsichtlich der Daten gibt. So können beispielsweise in Deutschland mitarbeiterbezogene Daten typischerweise nicht verwendet werden und werden normalerweise gar nicht erst extrahiert. Falls sich Ihr Projekt auf die Analyse von Kundendaten konzentriert, sollten Sie sicherstellen, dass Sie die Einschränkungen verstanden und Anonymisierungsoptionen in Betracht gezogen haben (siehe Richtlinie Nr. 3).
  • Ziehen Sie die Aufstellung einer Ethik-Charta in Erwägung, die das Projektziel umfasst, einschließlich allem, was auf der Analyse basierend durchgeführt wird und was nicht. Sie können beispielsweise klar festhalten, dass das Ziel nicht darin besteht, die Leistung der Mitarbeiter zu bewerten. Tauschen Sie sich mit den Personen, die für die Extraktion der Daten verantwortlich sind, darüber aus, was diese Ziele sind, und bitten Sie sie um deren Unterstützung bei der entsprechenden Vorbereitung der Daten.

Was man nicht tun sollte:

  • Mit einer wagen Idee durchzustarten und einfach anzufangen, alle Daten zu extrahieren, die Sie bekommen können. Überlegen Sie sich stattdessen lieber: Welches Problem versuche ich zu lösen? Und welche Daten brauche ich, um dieses Problem zu lösen? Ihr Projekt sollte sich auf Unternehmensziele konzentrieren, die vom Manager des Prozesses, den Sie analysieren, unterstützt werden können (siehe Leitlfaden Nr. 4).
  • Das erste Projekt zu groß machen. Konzentrieren Sie sich stattdessen lieber auf einen Prozess mit klarem Ziel. Wenn der Umfang Ihres Projektes zu groß ist, können andere es blockieren oder gegen Sie arbeiten, ohne zu verstehen, was Process Mining tatsächlich bewegen kann.