Interview – Wie der Einstieg in Data Science gelingt

Data Science beginnt mit guter Datenqualität

Contents

Data Science Blog: Sollten Data Scientists in den jeweiligen Fachbereichen oder in der IT angesiedelt sein oder sogar eine eigene Stabstelle darstellen?
Ich habe gute Erfahrungen damit gemacht, wenn Data Science als eigenständige Einheit funktioniert. So lassen sich Anwendungsfälle, die über einzelne Departments hinausgehen, besser umsetzen. Zudem ist es auch einfach abwechslungsreicher für die Data Scientists.

Data Science Blog: Wann ist mit einem Break-Even-Point zu rechnen, wenn ein Unternehmen die Investition plant, eine Data Science Abteilung aufzubauen? Sie sollten vor der Gründung einer Data Science Abteilung eine realistische Machbarkeitsstudie durchführen. Nicht jedes Unternehmen und Geschäftsmodell wird in gleichem Maße von einer Data Science Abteilung profitieren. Ich würde aber sagen, dass man schon mit 10 bis 12 Monaten rechnen muss. Diese Zahl hängt aber sehr stark davon ab, wie viel Aufbau- und Aufräumarbeit bei der Datanbasis geleistet werden muss. Schlussendlich sollten auch immer weiche Faktoren mit in die Rechnung genommen werden. Eventuell fühlen sich Kunden durch entsprechende Maßnahmen besser angesprochen oder strategische Entscheidungen können auf einer soliden Datengrundlage getroffen werden. Das werden Sie nicht 1:1 in einer monetären Kenngröße abgebildet sehen, der positive Effekt ist aber zweifelsfrei vorhanden.

Data Science Blog: Die Methodenvielfalt scheint groß zu sein: Predictive Analytics, Distributed Data Processing, Realtime Analytics, Machine Learning. Welche Methoden bringen den größten Mehrwert?
Ich glaube das lässt sich so allgemein nicht beantworten. Sehr gute Erfahrungen haben wir mit automatisierten Warnsystemen gemacht – diese liefern einen sehr direkten und messbaren Mehrwert und sind verhältnismäßig zügig und ohne große Kosten aufgebaut. Auch hier kommt interessante Analytics zum Einsatz. Nehmen Sie als Beispiel einen Anbieter von Webhosting der messen möchte, ob eine Webseite Opfer einer Massenanfragen-Attacke ist. Hier müssen Sie clevere Analytics verwenden, sonst klemmen Sie im schlimmsten Fall einem Ihrer Kunden zur besten Verkaufszeit die Webseite ab.

Data Science Blog: Was macht Ihrer Meinung nach einen guten Data Scientist aus? Welche Skills sollte ein Data Scientist haben und wie können Neulinge diese erwerben?
Sie sollten ihr Handwerk grundlegend verstehen. Damit meine ich das Verarbeiten von Daten und die Anwendung von Standard Analytics Verfahren. Selbstverständlich sollten Sie sehr flüssig programmieren können, meiner Ansicht nach idealerweise in Python. Diese beiden Eigenschaften sind nicht hinreichend, aber die Basis Ihres Erfolgs. Daneben sollten Sie eine absolute Umsetzer-Mentalität und ein Bewusstsein für hohe Qualität haben. Wenn Sie dazu noch Spaß daran haben, Ihre Arbeit anderen zu erklären und eigenständig werthaltige Anwendungsszenarieren aufzuspüren, sind Sie – denke ich – sehr gut aufgestellt. Neulinge sollten sich nicht vom Hype um Data Science verrückt machen lassen, sondern sich bewusst sein, dass auch hier der erste Schritt darin besteht, ein solides Handwerk zu erlernen mit dem Sie später viel anfangen können.

Benjamin Aunkofer

Benjamin Aunkofer ist Lead Data Scientist bei DATANOMIQ und Hochschul-Dozent für Data Science und Data Strategy. Darüber hinaus arbeitet er als Interim Head of Business Intelligence und gibt Seminare/Workshops zu den Themen BI, Data Science und Machine Learning für Unternehmen.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *

5951 Views